
λ
→

∀
=Is

ab
el
le

β

α

Eisbach

The Eisbach User Manual

Daniel Matichuk
Makarius Wenzel

Toby Murray

13 March 2025

Preface

Eisbach is a collection of tools which form the basis for defining new proof
methods in Isabelle/Isar [2]. It can be thought of as a “proof method lan-
guage”, but is more precisely an infrastructure for defining new proof methods
out of existing ones.
The core functionality of Eisbach is provided by the Isar method command.
Here users may define new methods by combining existing ones with the
usual Isar syntax. These methods can be abstracted over terms, facts and
other methods, as one might expect in any higher-order functional language.
Additional functionality is provided by extending the space of methods and
attributes. The new match method allows for explicit control-flow, by taking
a match target and a list of pattern-method pairs. By using the functionality
provided by Eisbach, additional support methods can be easily written. For
example, the catch method, which provides basic try-catch functionality, only
requires a few lines of ML.
Eisbach enables users to implement automated proof tools conveniently via
Isabelle/Isar syntax. This is in contrast to the traditional approach to use
Isabelle/ML (via method_setup), which poses a higher barrier-to-entry for
casual users.

This manual is written for readers familiar with Isabelle/Isar, but not neces-
sarily Isabelle/ML. It covers the usage of the method as well as the match
method, as well as discussing their integration with existing Isar concepts
such as named_theorems.
These commands are provided by theory HOL−Eisbach.Eisbach: it needs to
be imported by all Eisbach applications. Theory HOL−Eisbach.Eisbach_
Tools provides additional proof methods and attributes that are occasionally
useful.

i

Contents

1 The method command 1
1.1 Basic method definitions . 2
1.2 Term abstraction . 3
1.3 Fact abstraction . 3

1.3.1 Named theorems . 3
1.3.2 Simple fact abstraction 4

1.4 Higher-order methods . 4
1.5 Example . 5

2 The match method 7
2.1 Subgoal focus . 9

2.1.1 Operating within a focus 10
2.2 Attributes . 12
2.3 Multi-match . 14
2.4 Dummy patterns . 15
2.5 Backtracking . 15

2.5.1 Cut . 16
2.5.2 Multi-match revisited 17

2.6 Uncurrying . 17
2.7 Reverse matching . 18
2.8 Type matching . 19

3 Method development 20
3.1 Tracing methods . 20
3.2 Integrating with Isabelle/ML 20

Bibliography 22

Index 23

ii

Chapter 1

The method command

The method command provides the ability to write proof methods by com-
bining existing ones with their usual syntax. Specifically it allows compound
proof methods to be named, and to extend the name space of basic methods
accordingly. Method definitions may abstract over parameters: terms, facts,
or other methods. They may also provide an optional text description for
display in print_methods.

The syntax diagram below refers to some syntactic categories that are further
defined in [1].

method
�� ��name args description =

����method

args

�
�term_args

�
�

�
�method_args

�
�

�

��
��

�fact_args

�
�

�
�decl_args

�
�

term_args

for
�� ��fixes

method_args

methods
�� �� name�

�
�
�

1

CHAPTER 1. THE METHOD COMMAND 2

fact_args

uses
�� �� name�

�
�
�

decl_args

declares
�� �� name�

�
�
�

description

�
�text

�
�

1.1 Basic method definitions
Consider the following proof that makes use of usual Isar method combina-
tors.

lemma P ∧ Q −→ P
by ((rule impI , (erule conjE)?) | assumption)+

It is clear that this compound method will be applicable in more cases than
this proof alone. With the method command we can define a proof method
that makes the above functionality available generally.

method prop_solver1 =
((rule impI , (erule conjE)?) | assumption)+

lemma P ∧ Q ∧ R −→ P
by prop_solver1

In this example, the facts impI and conjE are static. They are evaluated
once when the method is defined and cannot be changed later. This makes
the method stable in the sense of static scoping: naming another fact impI
in a later context won’t affect the behaviour of prop_solver1.
The following example defines the same method and gives it a description
for the print_methods command.

CHAPTER 1. THE METHOD COMMAND 3

method prop_solver2 ‹solver for propositional formulae› =
((rule impI , (erule conjE)?) | assumption)+

1.2 Term abstraction
Methods can also abstract over terms using the for keyword, optionally pro-
viding type constraints. For instance, the following proof method intro_ex
takes a term y of any type, which it uses to instantiate the x-variable of exI
(existential introduction) before applying the result as a rule. The instan-
tiation is performed here by Isar’s where attribute. If the current subgoal
is to find a witness for the given predicate Q, then this has the effect of
committing to y.

method intro_ex for Q :: ′a ⇒ bool and y :: ′a =
(rule exI [where P = Q and x = y])

The term parameters y and Q can be used arbitrarily inside the method
body, as part of attribute applications or arguments to other methods. The
expression is type-checked as far as possible when the method is defined,
however dynamic type errors can still occur when it is invoked (e.g. when
terms are instantiated in a parameterized fact). Actual term arguments are
supplied positionally, in the same order as in the method definition.

lemma P a =⇒ ∃ x. P x
by (intro_ex P a)

1.3 Fact abstraction
1.3.1 Named theorems
A named theorem is a fact whose contents are produced dynamically within
the current proof context. The Isar command named_theorems declares
a dynamic fact with a corresponding attribute of the same name. This allows
to maintain a collection of facts in the context as follows:

named_theorems intros

So far intros refers to the empty fact. Using the Isar command declare we
may apply declaration attributes to the context. Below we declare both conjI
and impI as intros, adding them to the named theorem slot.

declare conjI [intros] and impI [intros]

We can refer to named theorems as dynamic facts within a particular proof
context, which are evaluated whenever the method is invoked. Instead of

CHAPTER 1. THE METHOD COMMAND 4

having facts hard-coded into the method, as in prop_solver1, we can instead
refer to these named theorems.

named_theorems elims
declare conjE [elims]

method prop_solver3 =
((rule intros, (erule elims)?) | assumption)+

lemma P ∧ Q −→ P
by prop_solver3

Often these named theorems need to be augmented on the spot, when a
method is invoked. The declares keyword in the signature of method adds
the common method syntax method decl: facts for each named theorem decl.

method prop_solver4 declares intros elims =
((rule intros, (erule elims)?) | assumption)+

lemma P ∧ (P −→ Q) −→ Q ∧ P
by (prop_solver4 elims: impE intros: conjI)

1.3.2 Simple fact abstraction
The declares keyword requires that a corresponding dynamic fact has been
declared with named_theorems. This is useful for managing collections
of facts which are to be augmented with declarations, but is overkill if we
simply want to pass a fact to a method.
We may use the uses keyword in the method header to provide a simple fact
parameter. In contrast to declares, these facts are always implicitly empty
unless augmented when the method is invoked.

method rule_twice uses my_rule =
(rule my_rule, rule my_rule)

lemma P =⇒ Q =⇒ (P ∧ Q) ∧ Q
by (rule_twice my_rule: conjI)

1.4 Higher-order methods
The structured concatenation combinator “method1 ; method2” was intro-
duced in Isabelle2015, motivated by the development of Eisbach. It is simi-
lar to “method1, method2”, but method2 is invoked on all subgoals that have

CHAPTER 1. THE METHOD COMMAND 5

newly emerged from method1. This is useful to handle cases where the num-
ber of subgoals produced by a method is determined dynamically at run-time.

method conj_with uses rule =
(intro conjI ; intro rule)

lemma
assumes A: P
shows P ∧ P ∧ P
by (conj_with rule: A)

Method definitions may take other methods as arguments, and thus imple-
ment method combinators with prefix syntax. For example, to more usefully
exploit Isabelle’s backtracking, the explicit requirement that a method solve
all produced subgoals is frequently useful. This can easily be written as a
higher-order method using “;”. The methods keyword denotes method pa-
rameters that are other proof methods to be invoked by the method being
defined.

method solve methods m = (m ; fail)

Given some method-argument m, solve ‹m› applies the method m and then
fails whenever m produces any new unsolved subgoals — i.e. when m fails
to completely discharge the goal it was applied to.

1.5 Example
With these simple features we are ready to write our first non-trivial proof
method. Returning to the first-order logic example, the following method
definition applies various rules with their canonical methods.

named_theorems subst

method prop_solver declares intros elims subst =
(assumption |
(rule intros) | erule elims |
subst subst | subst (asm) subst |
(erule notE ; solve ‹prop_solver›))+

The only non-trivial part above is the final alternative (erule notE ; solve
‹prop_solver›). Here, in the case that all other alternatives fail, the method
takes one of the assumptions ¬ P of the current goal and eliminates it with
the rule notE, causing the goal to be proved to become P. The method then
recursively invokes itself on the remaining goals. The job of the recursive call

CHAPTER 1. THE METHOD COMMAND 6

is to demonstrate that there is a contradiction in the original assumptions
(i.e. that P can be derived from them). Note this recursive invocation is
applied with the solve method combinator to ensure that a contradiction
will indeed be shown. In the case where a contradiction cannot be found,
backtracking will occur and a different assumption ¬ Q will be chosen for
elimination.
Note that the recursive call to prop_solver does not have any parameters
passed to it. Recall that fact parameters, e.g. intros, elims, and subst, are
managed by declarations in the current proof context. They will therefore
be passed to any recursive call to prop_solver and, more generally, any in-
vocation of a method which declares these named theorems.

After declaring some standard rules to the context, the prop_solver becomes
capable of solving non-trivial propositional tautologies.

lemmas [intros] =
conjI — P =⇒ Q =⇒ P ∧ Q
impI — (P =⇒ Q) =⇒ P −→ Q
disjCI — (¬ Q =⇒ P) =⇒ P ∨ Q
iffI — (P =⇒ Q) =⇒ (Q =⇒ P) =⇒ P ←→ Q
notI — (P =⇒ False) =⇒ ¬ P

lemmas [elims] =
impCE — P −→ Q =⇒ (¬ P =⇒ R) =⇒ (Q =⇒ R) =⇒ R
conjE — P ∧ Q =⇒ (P =⇒ Q =⇒ R) =⇒ R
disjE — P ∨ Q =⇒ (P =⇒ R) =⇒ (Q =⇒ R) =⇒ R

lemma (A ∨ B) ∧ (A −→ C) ∧ (B −→ C) −→ C
by prop_solver

Chapter 2

The match method

So far we have seen methods defined as simple combinations of other methods.
Some familiar programming language concepts have been introduced (i.e.
abstraction and recursion). The only control flow has been implicitly the
result of backtracking. When designing more sophisticated proof methods
this proves too restrictive and difficult to manage conceptually.
To address this, we introduce the match method, which provides more direct
access to the higher-order matching facility at the core of Isabelle. It is
implemented as a separate proof method (in Isabelle/ML), and thus can be
directly applied to proofs, however it is most useful when applied in the
context of writing Eisbach method definitions.

The syntax diagram below refers to some syntactic categories that are further
defined in [1].

match
�� ��kind in

���� pattern ⇒
����text�

� |
����

�
�

kind

conclusion
�� ���

�premises
�� ���

� (
����local

�� ��)
����

�
�

� (
����term)

�����thms

�
�

�
�

7

CHAPTER 2. THE MATCH METHOD 8

pattern

�
�fact_name

�
�

term �
�args

�
�

�

��
��

�for
�� ��fixes

�
�

fact_name

name �
�attributes

�
�

:
����

args

(
���� multi

�� ���
�cut

�� ���
�nat

�
�

�
�

�

� ,
����

�

�

)
����

Matching allows methods to introspect the goal state, and to implement more
explicit control flow. In the basic case, a term or fact ts is given to match
against as a match target, along with a collection of pattern-method pairs
(p, m): roughly speaking, when the pattern p matches any member of ts, the
inner method m will be executed.

lemma
assumes X :

Q −→ P
Q

shows P
by (match X in I : Q −→ P and I ′: Q ⇒ ‹insert mp [OF I I ′]›)

In this example we have a structured Isar proof, with the named assumption
X and a conclusion P. With the match method we can find the local facts Q

CHAPTER 2. THE MATCH METHOD 9

−→ P and Q, binding them to separately as I and I ′. We then specialize the
modus-ponens rule Q −→ P =⇒ Q =⇒ P to these facts to solve the goal.

2.1 Subgoal focus
In the previous example we were able to match against an assumption out of
the Isar proof state. In general, however, proof subgoals can be unstructured,
with goal parameters and premises arising from rule application. To address
this, match uses subgoal focusing to produce structured goals out of unstruc-
tured ones. In place of fact or term, we may give the keyword premises as
the match target. This causes a subgoal focus on the first subgoal, lifting
local goal parameters to fixed term variables and premises into hypothetical
theorems. The match is performed against these theorems, naming them
and binding them as appropriate. Similarly giving the keyword conclusion
matches against the conclusion of the first subgoal.
An unstructured version of the previous example can then be similarly solved
through focusing.

lemma Q −→ P =⇒ Q =⇒ P
by (match premises in

I : Q −→ P and I ′: Q ⇒ ‹insert mp [OF I I ′]›)

Match variables may be specified by giving a list of for-fixes after the pattern
description. This marks those terms as bound variables, which may be used
in the method body.

lemma Q −→ P =⇒ Q =⇒ P
by (match premises in I : Q −→ A and I ′: Q for A ⇒

‹match conclusion in A ⇒ ‹insert mp [OF I I ′]››)

In this example A is a match variable which is bound to P upon a successful
match. The inner match then matches the now-bound A (bound to P) against
the conclusion (also P), finally applying the specialized rule to solve the goal.
Schematic terms like ?P may also be used to specify match variables, but
the result of the match is not bound, and thus cannot be used in the inner
method body.

In the following example we extract the predicate of an existentially quan-
tified conclusion in the current subgoal and search the current premises for
a matching fact. If both matches are successful, we then instantiate the ex-
istential introduction rule with both the witness and predicate, solving with
the matched premise.

CHAPTER 2. THE MATCH METHOD 10

method solve_ex =
(match conclusion in ∃ x. Q x for Q ⇒

‹match premises in U : Q y for y ⇒
‹rule exI [where P = Q and x = y, OF U]››)

The first match matches the pattern ∃ x . Q x against the current conclusion,
binding the term Q in the inner match. Next the pattern Q y is matched
against all premises of the current subgoal. In this case Q is fixed and y may
be instantiated. Once a match is found, the local fact U is bound to the
matching premise and the variable y is bound to the matching witness. The
existential introduction rule exI : P x =⇒ ∃ x . P x is then instantiated with
y as the witness and Q as the predicate, with its proof obligation solved by
the local fact U (using the Isar attribute OF). The following example is a
trivial use of this method.

lemma halts p =⇒ ∃ x. halts x
by solve_ex

2.1.1 Operating within a focus
Subgoal focusing provides a structured form of a subgoal, allowing for more
expressive introspection of the goal state. This requires some consideration
in order to be used effectively. When the keyword premises is given as
the match target, the premises of the subgoal are lifted into hypothetical
theorems, which can be found and named via match patterns. Additionally
these premises are stripped from the subgoal, leaving only the conclusion.
This renders them inaccessible to standard proof methods which operate on
the premises, such as frule or erule. Naive usage of these methods within a
match will most likely not function as the method author intended.

method my_allE_bad for y :: ′a =
(match premises in I : ∀ x :: ′a. ?Q x ⇒

‹erule allE [where x = y]›)

Here we take a single parameter y and specialize the universal elimination
rule (∀ x . P x =⇒ (P x =⇒ R) =⇒ R) to it, then attempt to apply this
specialized rule with erule. The method erule will attempt to unify with
a universal quantifier in the premises that matches the type of y. Since
premises causes a focus, however, there are no subgoal premises to be found
and thus my_allE_bad will always fail. If focusing instead left the premises
in place, using methods like erule would lead to unintended behaviour, specif-
ically during backtracking. In our example, erule could choose an alternate
premise while backtracking, while leaving I bound to the original match. In

CHAPTER 2. THE MATCH METHOD 11

the case of more complex inner methods, where either I or bound terms are
used, this would almost certainly not be the intended behaviour.
An alternative implementation would be to specialize the elimination rule to
the bound term and apply it directly.

method my_allE_almost for y :: ′a =
(match premises in I : ∀ x :: ′a. ?Q x ⇒

‹rule allE [where x = y, OF I]›)

lemma ∀ x. P x =⇒ P y
by (my_allE_almost y)

This method will insert a specialized duplicate of a universally quantified
premise. Although this will successfully apply in the presence of such a
premise, it is not likely the intended behaviour. Repeated application of this
method will produce an infinite stream of duplicate specialized premises,
due to the original premise never being removed. To address this, matched
premises may be declared with the thin attribute. This will hide the premise
from subsequent inner matches, and remove it from the list of premises when
the inner method has finished and the subgoal is unfocused. It can be con-
sidered analogous to the existing thin_tac.
To complete our example, the correct implementation of the method will thin
the premise from the match and then apply it to the specialized elimination
rule.

method my_allE for y :: ′a =
(match premises in I [thin]: ∀ x :: ′a. ?Q x ⇒

‹rule allE [where x = y, OF I]›)

lemma ∀ x. P x =⇒ ∀ x. Q x =⇒ P y ∧ Q y
by (my_allE y)+ (rule conjI)

Inner focusing

Premises are accumulated for the purposes of subgoal focusing. In contrast
to using standard methods like frule within focused match, another match
will have access to all the premises of the outer focus.

lemma A =⇒ B =⇒ A ∧ B
by (match premises in H : A ⇒ ‹intro conjI , rule H ,

match premises in H ′: B ⇒ ‹rule H ′››)

In this example, the inner match can find the focused premise B. In contrast,
the assumption method would fail here due to B not being logically accessible.

CHAPTER 2. THE MATCH METHOD 12

lemma A =⇒ A ∧ (B −→ B)
by (match premises in H : A ⇒ ‹intro conjI , rule H , rule impI ,

match premises (local) in A ⇒ ‹fail›
| H ′: B ⇒ ‹rule H ′››)

In this example, the only premise that exists in the first focus is A. Prior
to the inner match, the rule impI changes the goal B −→ B into B =⇒
B. A standard premise match would also include A as an original premise
of the outer match. The local argument limits the match to newly focused
premises.

2.2 Attributes
Attributes may throw errors when applied to a given fact. For example, rule
instantiation will fail if there is a type mismatch or if a given variable doesn’t
exist. Within a match or a method definition, it isn’t generally possible to
guarantee that applied attributes won’t fail. For example, in the following
method there is no guarantee that the two provided facts will necessarily
compose.

method my_compose uses rule1 rule2 =
(rule rule1 [OF rule2])

Some attributes (like OF) have been made partially Eisbach-aware. This
means that they are able to form a closure despite not necessarily always
being applicable. In the case of OF , it is up to the proof author to guard
attribute application with an appropriate match, but there are still no static
guarantees.
In contrast to OF , the where and of attributes attempt to provide static
guarantees that they will apply whenever possible.
Within a match pattern for a fact, each outermost quantifier specifies the re-
quirement that a matching fact must have a schematic variable at that point.
This gives a corresponding name to this “slot” for the purposes of forming
a static closure, allowing the where attribute to perform an instantiation at
run-time.

lemma
assumes A: Q =⇒ False
shows ¬ Q
by (match intros in X :

∧
P. (P =⇒ False) =⇒ ¬ P ⇒

‹rule X [where P = Q, OF A]›)

CHAPTER 2. THE MATCH METHOD 13

Subgoal focusing converts the outermost quantifiers of premises into schemat-
ics when lifting them to hypothetical facts. This allows us to instantiate them
with where when using an appropriate match pattern.

lemma (
∧

x :: ′a. A x =⇒ B x) =⇒ A y =⇒ B y
by (match premises in I :

∧
x :: ′a. ?P x =⇒ ?Q x ⇒

‹rule I [where x = y]›)

The of attribute behaves similarly. It is worth noting, however, that the
positional instantiation of of occurs against the position of the variables as
they are declared in the match pattern.

lemma
fixes A B and x :: ′a and y :: ′b
assumes asm: (

∧
x y. A y x =⇒ B x y)

shows A y x =⇒ B x y
by (match asm in I :

∧
(x :: ′a) (y :: ′b). ?P x y =⇒ ?Q x y ⇒

‹rule I [of x y]›)

In this example, the order of schematics in asm is actually ?y ?x, but we
instantiate our matched rule in the opposite order. This is because the
effective rule I was bound from the match, which declared the ′a slot first
and the ′b slot second.
To get the dynamic behaviour of of we can choose to invoke it unchecked.
This avoids trying to do any type inference for the provided parameters,
instead storing them as their most general type and doing type matching at
run-time. This, like OF , will throw errors if the expected slots don’t exist or
there is a type mismatch.

lemma
fixes A B and x :: ′a and y :: ′b
assumes asm:

∧
x y. A y x =⇒ B x y

shows A y x =⇒ B x y
by (match asm in I : PROP ?P ⇒ ‹rule I [of (unchecked) y x]›)

Attributes may be applied to matched facts directly as they are matched.
Any declarations will therefore be applied in the context of the inner method,
as well as any transformations to the rule.

lemma (
∧

x :: ′a. A x =⇒ B x) =⇒ A y −→ B y
by (match premises in I [of y, intros]:

∧
x :: ′a. ?P x =⇒ ?Q x ⇒

‹prop_solver›)

In this example, the pattern ∧x :: ′a. ?P x =⇒ ?Q x matches against the
only premise, giving an appropriately typed slot for y. After the match, the

CHAPTER 2. THE MATCH METHOD 14

resulting rule is instantiated to y and then declared as an intros rule. This
is then picked up by prop_solver to solve the goal.

2.3 Multi-match
In all previous examples, match was only ever searching for a single rule or
premise. Each local fact would therefore always have a length of exactly one.
We may, however, wish to find all matching results. To achieve this, we can
simply mark a given pattern with the (multi) argument.

lemma
assumes asms: A =⇒ B A =⇒ D
shows (A −→ B) ∧ (A −→ D)
apply (match asms in I [intros]: ?P =⇒ ?Q ⇒ ‹solves ‹prop_solver››)?
apply (match asms in I [intros]: ?P =⇒ ?Q (multi) ⇒ ‹prop_solver›)
done

In the first match, without the (multi) argument, I is only ever be bound
to one of the members of asms. This backtracks over both possibilities (see
next section), however neither assumption in isolation is sufficient to solve
to goal. The use of the solves combinator ensures that prop_solver has no
effect on the goal when it doesn’t solve it, and so the first match leaves the
goal unchanged. In the second match, I is bound to all of asms, declaring
both results as intros. With these rules prop_solver is capable of solving the
goal.
Using for-fixed variables in patterns imposes additional constraints on the
results. In all previous examples, the choice of using ?P or a for-fixed P only
depended on whether or not P was mentioned in another pattern or the inner
method. When using a multi-match, however, all for-fixed terms must agree
in the results.

lemma
assumes asms: A =⇒ B A =⇒ D D =⇒ B
shows (A −→ B) ∧ (A −→ D)
apply (match asms in I [intros]: ?P =⇒ Q (multi) for Q ⇒

‹solves ‹prop_solver››)?
apply (match asms in I [intros]: P =⇒ ?Q (multi) for P ⇒

‹prop_solver›)
done

Here we have two seemingly-equivalent applications of match, however only
the second one is capable of solving the goal. The first match selects the first
and third members of asms (those that agree on their conclusion), which

CHAPTER 2. THE MATCH METHOD 15

is not sufficient. The second match selects the first and second members of
asms (those that agree on their assumption), which is enough for prop_solver
to solve the goal.

2.4 Dummy patterns
Dummy patterns may be given as placeholders for unique schematics in pat-
terns. They implicitly receive all currently bound variables as arguments,
and are coerced into the prop type whenever possible. For example, the triv-
ial dummy pattern _ will match any proposition. In contrast, by default the
pattern ?P is considered to have type bool. It will not bind anything with
meta-logical connectives (e.g. _ =⇒ _ or _ &&& _).

lemma
assumes asms: A &&& B =⇒ D
shows (A ∧ B −→ D)
by (match asms in I : _ ⇒ ‹prop_solver intros: I conjunctionI ›)

2.5 Backtracking
Patterns are considered top-down, executing the inner method m of the first
pattern which is satisfied by the current match target. By default, matching
performs extensive backtracking by attempting all valid variable and fact
bindings according to the given pattern. In particular, all unifiers for a
given pattern will be explored, as well as each matching fact. The inner
method m will be re-executed for each different variable/fact binding during
backtracking. A successful match is considered a cut-point for backtracking.
Specifically, once a match is made no other pattern-method pairs will be
considered.
The method foo below fails for all goals that are conjunctions. Any such
goal will match the first pattern, causing the second pattern (that would
otherwise match all goals) to never be considered.

method foo =
(match conclusion in ?P ∧ ?Q ⇒ ‹fail› | ?R ⇒ ‹prop_solver›)

The failure of an inner method that is executed after a successful match
will cause the entire match to fail. This distinction is important due to the
pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods
to move to the next result. Therefore, it is necessary for match to not mask

CHAPTER 2. THE MATCH METHOD 16

such failure. One can always rewrite a match using the combinators “?” and
“|” to try subsequent patterns in the case of an inner-method failure. The
following proof method, for example, always invokes prop_solver for all goals
because its first alternative either never matches or (if it does match) always
fails.

method foo1 =
(match conclusion in ?P ∧ ?Q ⇒ ‹fail›) |
(match conclusion in ?R ⇒ ‹prop_solver›)

2.5.1 Cut
Backtracking may be controlled more precisely by marking individual pat-
terns as cut. This causes backtracking to not progress beyond this pattern:
once a match is found no others will be considered.

method foo2 =
(match premises in I : P ∧ Q (cut) and I ′: P −→ ?U for P Q ⇒

‹rule mp [OF I ′ I [THEN conjunct1]]›)

In this example, once a conjunction is found (P ∧ Q), all possible impli-
cations of P in the premises are considered, evaluating the inner rule with
each consequent. No other conjunctions will be considered, with method
failure occurring once all implications of the form P −→ ?U have been ex-
plored. Here the left-right processing of individual patterns is important, as
all patterns after of the cut will maintain their usual backtracking behaviour.

lemma A ∧ B =⇒ A −→ D =⇒ A −→ C =⇒ C
by foo2

lemma C ∧ D =⇒ A ∧ B =⇒ A −→ C =⇒ C
by (foo2 | prop_solver)

In this example, the first lemma is solved by foo2, by first picking A −→ D
for I ′, then backtracking and ultimately succeeding after picking A −→ C.
In the second lemma, however, C ∧ D is matched first, the second pattern
in the match cannot be found and so the method fails, falling through to
prop_solver .
More precise control is also possible by giving a positive number n as an
argument to cut. This will limit the number of backtracking results of that
match to be at most n. The match argument (cut 1) is the same as simply
(cut).

CHAPTER 2. THE MATCH METHOD 17

2.5.2 Multi-match revisited
A multi-match will produce a sequence of potential bindings for for-fixed
variables, where each binding environment is the result of matching against
at least one element from the match target. For each environment, the match
result will be all elements of the match target which agree with the pattern
under that environment. This can result in unexpected behaviour when
giving very general patterns.

lemma
assumes asms:

∧
x. A x ∧ B x

∧
y. A y ∧ C y

∧
z. B z ∧ C z

shows A x ∧ C x
by (match asms in I :

∧
x. P x ∧ ?Q x (multi) for P ⇒

‹match (P) in A ⇒ ‹fail›
| _ ⇒ ‹match I in

∧
x. A x ∧ B x ⇒ ‹fail›
| _ ⇒ ‹rule I ›››)

Intuitively it seems like this proof should fail to check. The first match result,
which binds I to the first two members of asms, fails the second inner match
due to binding P to A. Backtracking then attempts to bind I to the third
member of asms. This passes all inner matches, but fails when rule cannot
successfully apply this to the current goal. After this, a valid match that is
produced by the unifier is one which binds P to simply λa. A ?x. The first
inner match succeeds because λa. A ?x does not match A. The next inner
match succeeds because I has only been bound to the first member of asms.
This is due to match considering λa. A ?x and λa. A ?y as distinct terms.
The simplest way to address this is to explicitly disallow term bindings which
we would consider invalid.

method abs_used for P =
(match (P) in λa. ?P ⇒ ‹fail› | _ ⇒ ‹−›)

This method has no effect on the goal state, but instead serves as a filter on
the environment produced from match.

2.6 Uncurrying
The match method is not aware of the logical content of match targets. Each
pattern is simply matched against the shallow structure of a fact or term.
Most facts are in normal form, which curries premises via meta-implication
_ =⇒ _.

lemma

CHAPTER 2. THE MATCH METHOD 18

assumes asms: D =⇒ B =⇒ C D =⇒ A
shows D =⇒ B =⇒ C ∧ A
by (match asms in H : D =⇒ _ (multi) ⇒ ‹prop_solver elims: H ›)

For the first member of asms the dummy pattern successfully matches against
B =⇒ C and so the proof is successful.

lemma
assumes asms: A =⇒ B =⇒ C D =⇒ C
shows D ∨ (A ∧ B) =⇒ C
apply (match asms in H : _ =⇒ C (multi) ⇒ ‹prop_solver elims: H ›)

This proof will fail to solve the goal. Our match pattern will only match
rules which have a single premise, and conclusion C, so the first member of
asms is not bound and thus the proof fails. Matching a pattern of the form
P =⇒ Q against this fact will bind P to A and Q to B =⇒ C. Our pattern,
with a concrete C in the conclusion, will fail to match this fact.
To express our desired match, we may uncurry our rules before matching
against them. This forms a meta-conjunction of all premises in a fact, so
that only one implication remains. For example the uncurried version of A
=⇒ B =⇒ C is A &&& B =⇒ C. This will now match our desired pattern _
=⇒ C, and can be curried after the match to put it back into normal form.

lemma
assumes asms: A =⇒ B =⇒ C D =⇒ C
shows D ∨ (A ∧ B) =⇒ C
by (match asms [uncurry] in H [curry]: _ =⇒ C (multi) ⇒

‹prop_solver elims: H ›)

2.7 Reverse matching
The match method only attempts to perform matching of the pattern
against the match target. Specifically this means that it will not instan-
tiate schematic terms in the match target.

lemma
assumes asms:

∧
x :: ′a. A x

shows A y
apply (match asms in H : A y ⇒ ‹rule H ›)?
apply (match asms in H : P for P ⇒

‹match (A y) in P ⇒ ‹rule H ››)
done

In the first match we attempt to find a member of asms which matches our
goal precisely. This fails due to no such member existing. The second match

CHAPTER 2. THE MATCH METHOD 19

reverses the role of the fact in the match, by first giving a general pattern P.
This bound pattern is then matched against A y. In this case, P is bound
to A ?x and so it successfully matches.

2.8 Type matching
The rule instantiation attributes where and of attempt to guarantee type-
correctness wherever possible. This can require additional invocations of
match in order to statically ensure that instantiation will succeed.

lemma
assumes asms:

∧
x :: ′a. A x

shows A y
by (match asms in H :

∧
z :: ′b. P z for P ⇒

‹match (y) in y :: ′b for y ⇒ ‹rule H [where z = y]››)

In this example the type ′b is matched to ′a, however statically they are
formally distinct types. The first match binds ′b while the inner match
serves to coerce y into having the type ′b. This allows the rule instantiation
to successfully apply.

Chapter 3

Method development

3.1 Tracing methods
Method tracing is supported by auxiliary print methods provided by
HOL−Eisbach.Eisbach_Tools. These include print_fact, print_term and
print_type. Whenever a print method is evaluated it leaves the goal un-
changed and writes its argument as tracing output.
Print methods can be combined with the fail method to investigate the back-
tracking behaviour of a method.

lemma
assumes asms: A B C D
shows D
apply (match asms in H : _ ⇒ ‹print_fact H , fail›)

This proof will fail, but the tracing output will show the order that the
assumptions are attempted.

3.2 Integrating with Isabelle/ML
Attributes

A custom rule attribute is a simple way to extend the functionality of Eisbach
methods. The dummy rule attribute notation ([[_]]) invokes the given
attribute against a dummy fact and evaluates to the result of that attribute.
When used as a match target, this can serve as an effective auxiliary function.

attribute_setup get_split_rule =
‹Args.term >> (fn t =>

Thm.rule_attribute [] (fn context => fn _ =>
(case get_split_rule (Context.proof_of context) t of

SOME thm => thm
| NONE => Drule.dummy_thm)))›

In this example, the new attribute get_split_rule lifts the ML function of
the same name into an attribute. When applied to a case distinction over a

20

CHAPTER 3. METHOD DEVELOPMENT 21

datatype, it retrieves its corresponding split rule.
We can then integrate this into a method that applies the split rule, first
matching to ensure that fetching the rule was successful.

method splits =
(match conclusion in ?P f for f ⇒

‹match [[get_split_rule f]] in U : (_ :: bool) = _ ⇒
‹rule U [THEN iffD2]››)

lemma L 6= [] =⇒ case L of [] ⇒ False | _ ⇒ True
apply splits
apply (prop_solver intros: allI)
done

Here the new splits method transforms the goal to use only logical connec-
tives: L = [] −→ False ∧ (∀ x y. L = x # y −→ True). This goal is then
in a form solvable by prop_solver when given the universal quantifier intro-
duction rule allI.

Bibliography

[1] M. Wenzel. The Isabelle/Isar Reference Manual.
https://isabelle.in.tum.de/doc/isar-ref.pdf.

[2] M. Wenzel. Isabelle/Isar — a versatile environment for human-readable
formal proof documents. PhD thesis, Institut für Informatik, Technische
Universität München, 2002.
https://mediatum.ub.tum.de/doc/601724/601724.pdf.

22

https://isabelle.in.tum.de/doc/isar-ref.pdf
https://mediatum.ub.tum.de/doc/601724/601724.pdf

Index

conclusion (keyword), 9

declare (command), 3
declares (keyword), 4

for (keyword), 3, 9

match (method), 7
method (command), 1
method_setup (command), i

named_theorems (command), 3, 4

premises (keyword), 9
print_methods (command), 1, 2

uses (keyword), 4

where (attribute), 3

23

	The method command
	Basic method definitions
	Term abstraction
	Fact abstraction
	Named theorems
	Simple fact abstraction

	Higher-order methods
	Example

	The match method
	Subgoal focus
	Operating within a focus

	Attributes
	Multi-match
	Dummy patterns
	Backtracking
	Cut
	Multi-match revisited

	Uncurrying
	Reverse matching
	Type matching

	Method development
	Tracing methods
	Integrating with Isabelle/ML

	Bibliography
	Index

