
λ
→

∀
=Is

ab
el
le

β

α

Isar

The Isabelle/Isar Reference Manual

Makarius Wenzel

With Contributions by Clemens Ballarin, Stefan Berghofer,
Jasmin Blanchette, Timothy Bourke, Lukas Bulwahn,

Amine Chaieb, Lucas Dixon, Florian Haftmann,
Brian Huffman, Lars Hupel, Gerwin Klein,

Alexander Krauss, Ondřej Kunčar, Andreas Lochbihler,
Tobias Nipkow, Lars Noschinski, David von Oheimb,

Larry Paulson, Sebastian Skalberg,
Christian Sternagel, Dmitriy Traytel

March 13, 2025

Preface

The Isabelle system essentially provides a generic infrastructure for building
deductive systems (programmed in Standard ML), with a special focus on
interactive theorem proving in higher-order logics. Many years ago, even end-
users would refer to certain ML functions (goal commands, tactics, tacticals
etc.) to pursue their everyday theorem proving tasks.
In contrast Isar provides an interpreted language environment of its own,
which has been specifically tailored for the needs of theory and proof devel-
opment. Compared to raw ML, the Isabelle/Isar top-level provides a more
robust and comfortable development platform, with proper support for the-
ory development graphs, managed transactions with unlimited undo etc.
In its pioneering times, the Isabelle/Isar version of the Proof General user in-
terface [2, 3] has contributed to the success of for interactive theory and proof
development in this advanced theorem proving environment, even though
it was somewhat biased towards old-style proof scripts. The more recent
Isabelle/jEdit Prover IDE [61] emphasizes the document-oriented approach
of Isabelle/Isar again more explicitly.

Apart from the technical advances over bare-bones ML programming, the
main purpose of the Isar language is to provide a conceptually different
view on machine-checked proofs [58, 59]. Isar stands for Intelligible semi-
automated reasoning. Drawing from both the traditions of informal mathe-
matical proof texts and high-level programming languages, Isar offers a ver-
satile environment for structured formal proof documents. Thus properly
written Isar proofs become accessible to a broader audience than unstruc-
tured tactic scripts (which typically only provide operational information for
the machine). Writing human-readable proof texts certainly requires some
additional efforts by the writer to achieve a good presentation, both of formal
and informal parts of the text. On the other hand, human-readable formal
texts gain some value in their own right, independently of the mechanic
proof-checking process.
Despite its grand design of structured proof texts, Isar is able to assimilate
the old tactical style as an “improper” sub-language. This provides an easy
upgrade path for existing tactic scripts, as well as some means for interactive
experimentation and debugging of structured proofs. Isabelle/Isar supports

i

ii

a broad range of proof styles, both readable and unreadable ones.

The generic Isabelle/Isar framework (see chapter 2) works reasonably well
for any Isabelle object-logic that conforms to the natural deduction view
of the Isabelle/Pure framework. Specific language elements introduced by
Isabelle/HOL are described in part III. Although the main language elements
are already provided by the Isabelle/Pure framework, examples given in the
generic parts will usually refer to Isabelle/HOL.

Isar commands may be either proper document constructors, or improper
commands. Some proof methods and attributes introduced later are classified
as improper as well. Improper Isar language elements, which are marked
by “∗” in the subsequent chapters; they are often helpful when developing
proof documents, but their use is discouraged for the final human-readable
outcome. Typical examples are diagnostic commands that print terms or
theorems according to the current context; other commands emulate old-
style tactical theorem proving.

Contents

I Basic Concepts 1

1 Synopsis 2
1.1 Notepad . 2

1.1.1 Types and terms . 2
1.1.2 Facts . 2
1.1.3 Block structure . 5

1.2 Calculational reasoning . 6
1.2.1 Special names in Isar proofs 6
1.2.2 Transitive chains . 7
1.2.3 Degenerate calculations 8

1.3 Induction . 9
1.3.1 Induction as Natural Deduction 9
1.3.2 Induction with local parameters and premises 11
1.3.3 Implicit induction context 12
1.3.4 Advanced induction with term definitions 12

1.4 Natural Deduction . 13
1.4.1 Rule statements . 13
1.4.2 Isar context elements 14
1.4.3 Pure rule composition 15
1.4.4 Structured backward reasoning 16
1.4.5 Structured rule application 17
1.4.6 Example: predicate logic 18

1.5 Generalized elimination and cases 21
1.5.1 General elimination rules 21
1.5.2 Rules with cases . 22
1.5.3 Elimination statements and case-splitting 24
1.5.4 Obtaining local contexts 24

iii

CONTENTS iv

2 The Isabelle/Isar Framework 26
2.1 The Pure framework . 29

2.1.1 Primitive inferences . 30
2.1.2 Reasoning with rules 30

2.2 The Isar proof language . 32
2.2.1 Context elements . 34
2.2.2 Structured statements 36
2.2.3 Structured proof refinement 37
2.2.4 Calculational reasoning 38

2.3 Example: First-Order Logic 39
2.3.1 Equational reasoning 40
2.3.2 Basic group theory . 41
2.3.3 Propositional logic . 42
2.3.4 Classical logic . 44
2.3.5 Quantifiers . 45
2.3.6 Canonical reasoning patterns 46

II General Language Elements 50

3 Outer syntax — the theory language 51
3.1 Commands . 51
3.2 Lexical matters . 52
3.3 Common syntax entities . 54

3.3.1 Names . 54
3.3.2 Numbers . 55
3.3.3 Embedded content . 55
3.3.4 Document text . 56
3.3.5 Document comments 56
3.3.6 Type classes, sorts and arities 57
3.3.7 Types and terms . 58
3.3.8 Term patterns and declarations 60
3.3.9 Attributes and theorems 62
3.3.10 Structured specifications 65

3.4 Diagnostic commands . 66

CONTENTS v

4 Document preparation 70
4.1 Markup commands . 70
4.2 Document antiquotations . 72

4.2.1 Styled antiquotations 80
4.2.2 General options . 81

4.3 Markdown-like text structure 82
4.4 Document markers and command tags 83
4.5 Railroad diagrams . 86

5 Specifications 91
5.1 Defining theories . 91
5.2 Local theory targets . 94
5.3 Bundled declarations . 96
5.4 Term definitions . 99
5.5 Axiomatizations . 101
5.6 Generic declarations . 102
5.7 Locales . 103

5.7.1 Locale expressions . 103
5.7.2 Locale declarations . 105
5.7.3 Locale interpretation 109

5.8 Classes . 114
5.8.1 The class target . 117
5.8.2 Co-regularity of type classes and arities 117

5.9 Overloaded constant definitions 118
5.10 Overloaded constant abbreviations: adhoc overloading 120
5.11 Incorporating ML code . 121
5.12 Generated files and exported files 125
5.13 Primitive specification elements 129

5.13.1 Sorts . 129
5.13.2 Types . 129

5.14 Naming existing theorems . 130
5.15 Oracles . 131
5.16 Name spaces . 132

6 Proofs 133

CONTENTS vi

6.1 Proof structure . 133
6.1.1 Formal notepad . 133
6.1.2 Blocks . 134
6.1.3 Omitting proofs . 135

6.2 Statements . 135
6.2.1 Context elements . 135
6.2.2 Term abbreviations 137
6.2.3 Facts and forward chaining 138
6.2.4 Goals . 140

6.3 Calculational reasoning . 144
6.4 Refinement steps . 146

6.4.1 Proof method expressions 146
6.4.2 Initial and terminal proof steps 148
6.4.3 Fundamental methods and attributes 150
6.4.4 Defining proof methods 154

6.5 Proof by cases and induction 155
6.5.1 Rule contexts . 155
6.5.2 Proof methods . 158
6.5.3 Declaring rules . 163

6.6 Generalized elimination and case splitting 164

7 Proof scripts 168
7.1 Commands for step-wise refinement 168
7.2 Explicit subgoal structure . 170
7.3 Tactics: improper proof methods 172

8 Inner syntax — the term language 176
8.1 Printing logical entities . 176

8.1.1 Diagnostic commands 176
8.1.2 Details of printed content 179
8.1.3 Alternative print modes 181

8.2 Mixfix annotations . 182
8.2.1 The general mixfix form 183
8.2.2 Infixes . 186
8.2.3 Binders . 187

CONTENTS vii

8.3 Explicit notation . 188
8.4 The Pure syntax . 189

8.4.1 Lexical matters . 189
8.4.2 Priority grammars . 190
8.4.3 The Pure grammar . 191
8.4.4 Inspecting the syntax 195
8.4.5 Ambiguity of parsed expressions 196

8.5 Syntax transformations . 196
8.5.1 Abstract syntax trees 197
8.5.2 Raw syntax and translations 200
8.5.3 Syntax translation functions 205
8.5.4 Built-in syntax transformations 208

9 Generic tools and packages 211
9.1 Configuration options . 211
9.2 Basic proof tools . 212

9.2.1 Miscellaneous methods and attributes 212
9.2.2 Low-level equational reasoning 215

9.3 The Simplifier . 217
9.3.1 Simplification methods 217
9.3.2 Declaring rules . 222
9.3.3 Ordered rewriting with permutative rules 225
9.3.4 Simplifier tracing and debugging 227
9.3.5 Simplification procedures 229
9.3.6 Configurable Simplifier strategies 232
9.3.7 Forward simplification 236

9.4 The Classical Reasoner . 237
9.4.1 Basic concepts . 237
9.4.2 Rule declarations . 241
9.4.3 Structured methods . 243
9.4.4 Fully automated methods 244
9.4.5 Partially automated methods 248
9.4.6 Single-step tactics . 249
9.4.7 Modifying the search step 250

9.5 Object-logic setup . 251

CONTENTS viii

9.6 Tracing higher-order unification 253

III Isabelle/HOL 255

10 Higher-Order Logic 256

11 Derived specification elements 258
11.1 Inductive and coinductive definitions 258

11.1.1 Derived rules . 260
11.1.2 Monotonicity theorems 260

11.2 Recursive functions . 262
11.2.1 Proof methods related to recursive definitions 267
11.2.2 Functions with explicit partiality 268
11.2.3 Old-style recursive function definitions (TFL) 269

11.3 Definition by specification . 271
11.4 Old-style datatypes . 272
11.5 Records . 273

11.5.1 Basic concepts . 273
11.5.2 Record specifications 274
11.5.3 Record operations . 276
11.5.4 Derived rules and proof tools 277

11.6 Semantic subtype definitions 278
11.7 Functorial structure of types 281
11.8 Quotient types with lifting and transfer 282

11.8.1 Quotient type definition 282
11.8.2 Lifting package . 283
11.8.3 Transfer package . 289
11.8.4 Old-style definitions for quotient types 292

12 Proof tools 295
12.1 Proving propositions . 295
12.2 Checking and refuting propositions 297
12.3 Coercive subtyping . 302
12.4 Arithmetic proof support . 303
12.5 Intuitionistic proof search . 304

CONTENTS ix

12.6 Model Elimination and Resolution 304
12.7 Algebraic reasoning via Gröbner bases 305
12.8 Coherent Logic . 306
12.9 Unstructured case analysis and induction 307
12.10Adhoc tuples . 308

13 Executable code 310

IV Appendix 323

A Isabelle/Isar quick reference 324
A.1 Proof commands . 324

A.1.1 Main grammar . 324
A.1.2 Primitives . 325
A.1.3 Abbreviations and synonyms 325
A.1.4 Derived elements . 325
A.1.5 Diagnostic commands 326

A.2 Proof methods . 326
A.3 Attributes . 327
A.4 Rule declarations and methods 327
A.5 Proof scripts . 328

A.5.1 Commands . 328
A.5.2 Methods . 328

B Predefined Isabelle symbols 329

Bibliography 335

Index 341

List of Figures

2.1 Natural Deduction via inferences according to Gentzen, rules
in Isabelle/Pure, and proofs in Isabelle/Isar 27

2.2 Main grammar of the Isar proof language 48
2.3 Isar/VM modes . 49

8.1 Parsing and printing with translations 197

x

Part I

Basic Concepts

1

Chapter 1

Synopsis

1.1 Notepad
An Isar proof body serves as mathematical notepad to compose logical con-
tent, consisting of types, terms, facts.

1.1.1 Types and terms
notepad
begin

Locally fixed entities:

fix x — local constant, without any type information yet
fix x :: ′a — variant with explicit type-constraint for subsequent use

fix a b
assume a = b — type assignment at first occurrence in concrete term

Definitions (non-polymorphic):

define x :: ′a where x = t

Abbreviations (polymorphic):

let ?f = λx. x
term ?f ?f

Notation:

write x (‹∗∗∗›)
end

1.1.2 Facts
A fact is a simultaneous list of theorems.

2

CHAPTER 1. SYNOPSIS 3

Producing facts

notepad
begin

Via assumption (“lambda”):

assume a: A

Via proof (“let”):

have b: B 〈proof 〉

Via abbreviation (“let”):

note c = a b

end

Referencing facts

notepad
begin

Via explicit name:

assume a: A
note a

Via implicit name:

assume A
note this

Via literal proposition (unification with results from the proof text):

assume A
note ‹A›

assume
∧

x. B x
note ‹B a›
note ‹B b›

end

Manipulating facts

notepad
begin

Instantiation:

CHAPTER 1. SYNOPSIS 4

assume a:
∧

x. B x
note a
note a [of b]
note a [where x = b]

Backchaining:

assume 1: A
assume 2: A =⇒ C
note 2 [OF 1]
note 1 [THEN 2]

Symmetric results:

assume x = y
note this [symmetric]

assume x 6= y
note this [symmetric]

Adhoc-simplification (take care!):

assume P ([] @ xs)
note this [simplified]

end

Projections

Isar facts consist of multiple theorems. There is notation to project interval
ranges.
notepad
begin

assume stuff : A B C D
note stuff (1)
note stuff (2−3)
note stuff (2−)

end

Naming conventions

• Lower-case identifiers are usually preferred.

• Facts can be named after the main term within the proposition.

• Facts should not be named after the command that introduced them
(assume, have). This is misleading and hard to maintain.

CHAPTER 1. SYNOPSIS 5

• Natural numbers can be used as “meaningless” names (more appropri-
ate than a1, a2 etc.)

• Symbolic identifiers are supported (e.g. ∗, ∗∗, ∗∗∗).

1.1.3 Block structure
The formal notepad is block structured. The fact produced by the last entry
of a block is exported into the outer context.
notepad
begin

{
have a: A 〈proof 〉
have b: B 〈proof 〉
note a b

}
note this
note ‹A›
note ‹B›

end

Explicit blocks as well as implicit blocks of nested goal statements (e.g. have)
automatically introduce one extra pair of parentheses in reserve. The next
command allows to “jump” between these sub-blocks.
notepad
begin

{
have a: A 〈proof 〉

next
have b: B
proof −

show B 〈proof 〉
next

have c: C 〈proof 〉
next

have d: D 〈proof 〉
qed

}

Alternative version with explicit parentheses everywhere:

CHAPTER 1. SYNOPSIS 6

{
{

have a: A 〈proof 〉
}
{

have b: B
proof −

{
show B 〈proof 〉

}
{

have c: C 〈proof 〉
}
{

have d: D 〈proof 〉
}

qed
}

}

end

1.2 Calculational reasoning
For example, see ~~/src/HOL/Isar_Examples/Group.thy.

1.2.1 Special names in Isar proofs
• term ?thesis — the main conclusion of the innermost pending claim

• term . . . — the argument of the last explicitly stated result (for infix
application this is the right-hand side)

• fact this — the last result produced in the text

notepad
begin

have x = y
proof −

term ?thesis
show ?thesis 〈proof 〉
term ?thesis — static!

CHAPTER 1. SYNOPSIS 7

qed
term . . .
thm this

end

Calculational reasoning maintains the special fact called “calculation” in the
background. Certain language elements combine primary this with secondary
calculation.

1.2.2 Transitive chains
The Idea is to combine this and calculation via typical trans rules (see also
print_trans_rules):
thm trans
thm less_trans
thm less_le_trans

notepad
begin

Plain bottom-up calculation:

have a = b 〈proof 〉
also
have b = c 〈proof 〉
also
have c = d 〈proof 〉
finally
have a = d .

Variant using the . . . abbreviation:

have a = b 〈proof 〉
also
have . . . = c 〈proof 〉
also
have . . . = d 〈proof 〉
finally
have a = d .

Top-down version with explicit claim at the head:

have a = d
proof −

have a = b 〈proof 〉

CHAPTER 1. SYNOPSIS 8

also
have . . . = c 〈proof 〉
also
have . . . = d 〈proof 〉
finally
show ?thesis .

qed
next

Mixed inequalities (require suitable base type):

fix a b c d :: nat

have a < b 〈proof 〉
also
have b ≤ c 〈proof 〉
also
have c = d 〈proof 〉
finally
have a < d .

end

Notes

• The notion of trans rule is very general due to the flexibility of
Isabelle/Pure rule composition.

• User applications may declare their own rules, with some care about
the operational details of higher-order unification.

1.2.3 Degenerate calculations
The Idea is to append this to calculation, without rule composition. This is
occasionally useful to avoid naming intermediate facts.
notepad
begin

A vacuous proof:

have A 〈proof 〉
moreover
have B 〈proof 〉
moreover

CHAPTER 1. SYNOPSIS 9

have C 〈proof 〉
ultimately
have A and B and C .

next

Slightly more content (trivial bigstep reasoning):
have A 〈proof 〉
moreover
have B 〈proof 〉
moreover
have C 〈proof 〉
ultimately
have A ∧ B ∧ C by blast

end

Note that For multi-branch case splitting, it is better to use consider.

1.3 Induction
1.3.1 Induction as Natural Deduction
In principle, induction is just a special case of Natural Deduction (see also
§1.4). For example:
thm nat.induct
print_statement nat.induct

notepad
begin

fix n :: nat
have P n
proof (rule nat.induct) — fragile rule application!

show P 0 〈proof 〉
next

fix n :: nat
assume P n
show P (Suc n) 〈proof 〉

qed
end

In practice, much more proof infrastructure is required.
The proof method induct provides:

• implicit rule selection and robust instantiation

CHAPTER 1. SYNOPSIS 10

• context elements via symbolic case names

• support for rule-structured induction statements, with local parame-
ters, premises, etc.

notepad
begin

fix n :: nat
have P n
proof (induct n)

case 0
show ?case 〈proof 〉

next
case (Suc n)
from Suc.hyps show ?case 〈proof 〉

qed
end

Example

The subsequent example combines the following proof patterns:

• outermost induction (over the datatype structure of natural numbers),
to decompose the proof problem in top-down manner

• calculational reasoning (§1.2) to compose the result in each case

• solving local claims within the calculation by simplification

lemma
fixes n :: nat
shows (

∑
i=0..n. i) = n ∗ (n + 1) div 2

proof (induct n)
case 0
have (

∑
i=0..0. i) = (0::nat) by simp

also have . . . = 0 ∗ (0 + 1) div 2 by simp
finally show ?case .

next
case (Suc n)
have (

∑
i=0..Suc n. i) = (

∑
i=0..n. i) + (n + 1) by simp

also have . . . = n ∗ (n + 1) div 2 + (n + 1) by (simp add: Suc.hyps)
also have . . . = (n ∗ (n + 1) + 2 ∗ (n + 1)) div 2 by simp
also have . . . = (Suc n ∗ (Suc n + 1)) div 2 by simp

CHAPTER 1. SYNOPSIS 11

finally show ?case .
qed

This demonstrates how induction proofs can be done without having to con-
sider the raw Natural Deduction structure.

1.3.2 Induction with local parameters and premises
Idea: Pure rule statements are passed through the induction rule. This
achieves convenient proof patterns, thanks to some internal trickery in the
induct method.
Important: Using compact HOL formulae with ∀ /−→ is a well-known anti-
pattern! It would produce useless formal noise.
notepad
begin

fix n :: nat
fix P :: nat ⇒ bool
fix Q :: ′a ⇒ nat ⇒ bool

have P n
proof (induct n)

case 0
show P 0 〈proof 〉

next
case (Suc n)
from ‹P n› show P (Suc n) 〈proof 〉

qed

have A n =⇒ P n
proof (induct n)

case 0
from ‹A 0› show P 0 〈proof 〉

next
case (Suc n)
from ‹A n =⇒ P n›

and ‹A (Suc n)› show P (Suc n) 〈proof 〉
qed

have
∧

x. Q x n
proof (induct n)

case 0
show Q x 0 〈proof 〉

CHAPTER 1. SYNOPSIS 12

next
case (Suc n)
from ‹

∧
x. Q x n› show Q x (Suc n) 〈proof 〉

Local quantification admits arbitrary instances:

note ‹Q a n› and ‹Q b n›
qed

end

1.3.3 Implicit induction context
The induct method can isolate local parameters and premises directly from
the given statement. This is convenient in practical applications, but requires
some understanding of what is going on internally (as explained above).
notepad
begin

fix n :: nat
fix Q :: ′a ⇒ nat ⇒ bool

fix x :: ′a
assume A x n
then have Q x n
proof (induct n arbitrary: x)

case 0
from ‹A x 0› show Q x 0 〈proof 〉

next
case (Suc n)
from ‹

∧
x. A x n =⇒ Q x n› — arbitrary instances can be produced here

and ‹A x (Suc n)› show Q x (Suc n) 〈proof 〉
qed

end

1.3.4 Advanced induction with term definitions
Induction over subexpressions of a certain shape are delicate to formalize.
The Isar induct method provides infrastructure for this.
Idea: sub-expressions of the problem are turned into a defined induction
variable; often accompanied with fixing of auxiliary parameters in the original
expression.
notepad
begin

CHAPTER 1. SYNOPSIS 13

fix a :: ′a ⇒ nat
fix A :: nat ⇒ bool

assume A (a x)
then have P (a x)
proof (induct a x arbitrary: x)

case 0
note prem = ‹A (a x)›

and defn = ‹0 = a x›
show P (a x) 〈proof 〉

next
case (Suc n)
note hyp = ‹

∧
x. n = a x =⇒ A (a x) =⇒ P (a x)›

and prem = ‹A (a x)›
and defn = ‹Suc n = a x›

show P (a x) 〈proof 〉
qed

end

1.4 Natural Deduction
1.4.1 Rule statements
Isabelle/Pure “theorems” are always natural deduction rules, which some-
times happen to consist of a conclusion only.
The framework connectives

∧
and =⇒ indicate the rule structure declara-

tively. For example:
thm conjI
thm impI
thm nat.induct

The object-logic is embedded into the Pure framework via an implicit deriv-
ability judgment Trueprop :: bool ⇒ prop.
Thus any HOL formulae appears atomic to the Pure framework, while the
rule structure outlines the corresponding proof pattern.
This can be made explicit as follows:
notepad
begin

write Trueprop (‹Tr›)

thm conjI

CHAPTER 1. SYNOPSIS 14

thm impI
thm nat.induct

end

Isar provides first-class notation for rule statements as follows.
print_statement conjI
print_statement impI
print_statement nat.induct

Examples

Introductions and eliminations of some standard connectives of the object-
logic can be written as rule statements as follows. (The proof “by blast”
serves as sanity check.)
lemma (P =⇒ False) =⇒ ¬ P by blast
lemma ¬ P =⇒ P =⇒ Q by blast

lemma P =⇒ Q =⇒ P ∧ Q by blast
lemma P ∧ Q =⇒ (P =⇒ Q =⇒ R) =⇒ R by blast

lemma P =⇒ P ∨ Q by blast
lemma Q =⇒ P ∨ Q by blast
lemma P ∨ Q =⇒ (P =⇒ R) =⇒ (Q =⇒ R) =⇒ R by blast

lemma (
∧

x. P x) =⇒ (∀ x. P x) by blast
lemma (∀ x. P x) =⇒ P x by blast

lemma P x =⇒ (∃ x. P x) by blast
lemma (∃ x. P x) =⇒ (

∧
x. P x =⇒ R) =⇒ R by blast

lemma x ∈ A =⇒ x ∈ B =⇒ x ∈ A ∩ B by blast
lemma x ∈ A ∩ B =⇒ (x ∈ A =⇒ x ∈ B =⇒ R) =⇒ R by blast

lemma x ∈ A =⇒ x ∈ A ∪ B by blast
lemma x ∈ B =⇒ x ∈ A ∪ B by blast
lemma x ∈ A ∪ B =⇒ (x ∈ A =⇒ R) =⇒ (x ∈ B =⇒ R) =⇒ R by blast

1.4.2 Isar context elements
We derive some results out of the blue, using Isar context elements and some
explicit blocks. This illustrates their meaning wrt. Pure connectives, without
goal states getting in the way.

CHAPTER 1. SYNOPSIS 15

notepad
begin

{
fix x
have B x 〈proof 〉

}
have

∧
x. B x by fact

next

{
assume A
have B 〈proof 〉

}
have A =⇒ B by fact

next

{
define x where x = t
have B x 〈proof 〉

}
have B t by fact

next

{
obtain x :: ′a where B x 〈proof 〉
have C 〈proof 〉

}
have C by fact

end

1.4.3 Pure rule composition
The Pure framework provides means for:

• backward-chaining of rules by resolution

• closing of branches by assumption

Both principles involve higher-order unification of λ-terms modulo αβη-
equivalence (cf. Huet and Miller).

CHAPTER 1. SYNOPSIS 16

notepad
begin

assume a: A and b: B
thm conjI
thm conjI [of A B] — instantiation
thm conjI [of A B, OF a b] — instantiation and composition
thm conjI [OF a b] — composition via unification (trivial)
thm conjI [OF ‹A› ‹B›]

thm conjI [OF disjI1]
end

Note: Low-level rule composition is tedious and leads to unreadable / un-
maintainable expressions in the text.

1.4.4 Structured backward reasoning
Idea: Canonical proof decomposition via fix / assume / show, where the
body produces a natural deduction rule to refine some goal.
notepad
begin

fix A B :: ′a ⇒ bool

have
∧

x. A x =⇒ B x
proof −

fix x
assume A x
show B x 〈proof 〉

qed

have
∧

x. A x =⇒ B x
proof −

{
fix x
assume A x
show B x 〈proof 〉

} — implicit block structure made explicit
note ‹

∧
x. A x =⇒ B x›

— side exit for the resulting rule
qed

end

CHAPTER 1. SYNOPSIS 17

1.4.5 Structured rule application
Idea: Previous facts and new claims are composed with a rule from the con-
text (or background library).
notepad
begin

assume r1: A =⇒ B =⇒ C — simple rule (Horn clause)

have A 〈proof 〉 — prefix of facts via outer sub-proof
then have C
proof (rule r1)

show B 〈proof 〉 — remaining rule premises via inner sub-proof
qed

have C
proof (rule r1)

show A 〈proof 〉
show B 〈proof 〉

qed

have A and B 〈proof 〉
then have C
proof (rule r1)
qed

have A and B 〈proof 〉
then have C by (rule r1)

next

assume r2: A =⇒ (
∧

x. B1 x =⇒ B2 x) =⇒ C — nested rule

have A 〈proof 〉
then have C
proof (rule r2)

fix x
assume B1 x
show B2 x 〈proof 〉

qed

The compound rule premise
∧

x. B1 x =⇒ B2 x is better addressed via fix /
assume / show in the nested proof body.

end

CHAPTER 1. SYNOPSIS 18

1.4.6 Example: predicate logic
Using the above principles, standard introduction and elimination proofs of
predicate logic connectives of HOL work as follows.
notepad
begin

have A −→ B and A 〈proof 〉
then have B ..

have A 〈proof 〉
then have A ∨ B ..

have B 〈proof 〉
then have A ∨ B ..

have A ∨ B 〈proof 〉
then have C
proof

assume A
then show C 〈proof 〉

next
assume B
then show C 〈proof 〉

qed

have A and B 〈proof 〉
then have A ∧ B ..

have A ∧ B 〈proof 〉
then have A ..

have A ∧ B 〈proof 〉
then have B ..

have False 〈proof 〉
then have A ..

have True ..

have ¬ A
proof

assume A
then show False 〈proof 〉

CHAPTER 1. SYNOPSIS 19

qed

have ¬ A and A 〈proof 〉
then have B ..

have ∀ x. P x
proof

fix x
show P x 〈proof 〉

qed

have ∀ x. P x 〈proof 〉
then have P a ..

have ∃ x. P x
proof

show P a 〈proof 〉
qed

have ∃ x. P x 〈proof 〉
then have C
proof

fix a
assume P a
show C 〈proof 〉

qed

Less awkward version using obtain:

have ∃ x. P x 〈proof 〉
then obtain a where P a ..

end

Further variations to illustrate Isar sub-proofs involving show:
notepad
begin

have A ∧ B
proof — two strictly isolated subproofs

show A 〈proof 〉
next

show B 〈proof 〉
qed

have A ∧ B

CHAPTER 1. SYNOPSIS 20

proof — one simultaneous sub-proof
show A and B 〈proof 〉

qed

have A ∧ B
proof — two subproofs in the same context

show A 〈proof 〉
show B 〈proof 〉

qed

have A ∧ B
proof — swapped order

show B 〈proof 〉
show A 〈proof 〉

qed

have A ∧ B
proof — sequential subproofs

show A 〈proof 〉
show B using ‹A› 〈proof 〉

qed
end

Example: set-theoretic operators

There is nothing special about logical connectives (∧, ∨, ∀ , ∃ etc.). Opera-
tors from set-theory or lattice-theory work analogously. It is only a matter
of rule declarations in the library; rules can be also specified explicitly.
notepad
begin

have x ∈ A and x ∈ B 〈proof 〉
then have x ∈ A ∩ B ..

have x ∈ A 〈proof 〉
then have x ∈ A ∪ B ..

have x ∈ B 〈proof 〉
then have x ∈ A ∪ B ..

have x ∈ A ∪ B 〈proof 〉
then have C
proof

assume x ∈ A

CHAPTER 1. SYNOPSIS 21

then show C 〈proof 〉
next

assume x ∈ B
then show C 〈proof 〉

qed

next
have x ∈

⋂
A

proof
fix a
assume a ∈ A
show x ∈ a 〈proof 〉

qed

have x ∈
⋂

A 〈proof 〉
then have x ∈ a
proof

show a ∈ A 〈proof 〉
qed

have a ∈ A and x ∈ a 〈proof 〉
then have x ∈

⋃
A ..

have x ∈
⋃

A 〈proof 〉
then obtain a where a ∈ A and x ∈ a ..

end

1.5 Generalized elimination and cases
1.5.1 General elimination rules
The general format of elimination rules is illustrated by the following typical
representatives:
thm exE — local parameter
thm conjE — local premises
thm disjE — split into cases

Combining these characteristics leads to the following general scheme for
elimination rules with cases:

• prefix of assumptions (or “major premises”)

CHAPTER 1. SYNOPSIS 22

• one or more cases that enable to establish the main conclusion in an
augmented context

notepad
begin

assume r :
A1 =⇒ A2 =⇒ — assumptions
(
∧

x y. B1 x y =⇒ C 1 x y =⇒ R) =⇒ — case 1
(
∧

x y. B2 x y =⇒ C 2 x y =⇒ R) =⇒ — case 2
R — main conclusion

have A1 and A2 〈proof 〉
then have R
proof (rule r)

fix x y
assume B1 x y and C 1 x y
show ?thesis 〈proof 〉

next
fix x y
assume B2 x y and C 2 x y
show ?thesis 〈proof 〉

qed
end

Here ?thesis is used to refer to the unchanged goal statement.

1.5.2 Rules with cases
Applying an elimination rule to some goal, leaves that unchanged but allows
to augment the context in the sub-proof of each case.
Isar provides some infrastructure to support this:

• native language elements to state eliminations

• symbolic case names

• method cases to recover this structure in a sub-proof

print_statement exE
print_statement conjE
print_statement disjE

CHAPTER 1. SYNOPSIS 23

lemma
assumes A1 and A2 — assumptions
obtains
(case1) x y where B1 x y and C 1 x y
| (case2) x y where B2 x y and C 2 x y
〈proof 〉

Example

lemma tertium_non_datur :
obtains
(T) A
| (F) ¬ A
by blast

notepad
begin

fix x y :: ′a
have C
proof (cases x = y rule: tertium_non_datur)

case T
from ‹x = y› show ?thesis 〈proof 〉

next
case F
from ‹x 6= y› show ?thesis 〈proof 〉

qed
end

Example

Isabelle/HOL specification mechanisms (datatype, inductive, etc.) provide
suitable derived cases rules.
datatype foo = Foo | Bar foo

notepad
begin

fix x :: foo
have C
proof (cases x)

case Foo
from ‹x = Foo› show ?thesis 〈proof 〉

next
case (Bar a)

CHAPTER 1. SYNOPSIS 24

from ‹x = Bar a› show ?thesis 〈proof 〉
qed

end

1.5.3 Elimination statements and case-splitting
The consider states rules for generalized elimination and case splitting. This
is like a toplevel statement theorem obtains used within a proof body; or
like a multi-branch obtain without activation of the local context elements
yet.
The proof method cases is able to use such rules with forward-chaining (e.g.
via then). This leads to the subsequent pattern for case-splitting in a par-
ticular situation within a proof.
notepad
begin

consider (a) A | (b) B | (c) C
〈proof 〉 — typically by auto, by blast etc.

then have something
proof cases

case a
then show ?thesis 〈proof 〉

next
case b
then show ?thesis 〈proof 〉

next
case c
then show ?thesis 〈proof 〉

qed
end

1.5.4 Obtaining local contexts
A single “case” branch may be inlined into Isar proof text via obtain. This
proves (

∧
x . B x =⇒ thesis) =⇒ thesis on the spot, and augments the context

afterwards.
notepad
begin

fix B :: ′a ⇒ bool

obtain x where B x 〈proof 〉
note ‹B x›

CHAPTER 1. SYNOPSIS 25

Conclusions from this context may not mention x again!

{
obtain x where B x 〈proof 〉
from ‹B x› have C 〈proof 〉

}
note ‹C ›

end

Chapter 2

The Isabelle/Isar Framework

Isabelle/Isar [58, 59, 37, 63, 62, 60] is a generic framework for developing
formal mathematical documents with full proof checking. Definitions, state-
ments and proofs are organized as theories. A collection of theories sources
may be presented as a printed document; see also chapter 4.
The main concern of Isar is the design of a human-readable structured proof
language, which is called the “primary proof format” in Isar terminology.
Such a primary proof language is somewhere in the middle between the ex-
tremes of primitive proof objects and actual natural language.
Thus Isar challenges the traditional way of recording informal proofs in math-
ematical prose, as well as the common tendency to see fully formal proofs
directly as objects of some logical calculus (e.g. λ-terms in a version of type
theory). Technically, Isar is an interpreter of a simple block-structured lan-
guage for describing the data flow of local facts and goals, interspersed with
occasional invocations of proof methods. Everything is reduced to logical in-
ferences internally, but these steps are somewhat marginal compared to the
overall bookkeeping of the interpretation process. Thanks to careful design
of the syntax and semantics of Isar language elements, a formal record of Isar
commands may later appear as an intelligible text to the human reader.
The Isar proof language has emerged from careful analysis of some inherent
virtues of the logical framework Isabelle/Pure [45, 46], notably composition
of higher-order natural deduction rules, which is a generalization of Gentzen’s
original calculus [18]. The approach of generic inference systems in Pure is
continued by Isar towards actual proof texts. See also figure 2.1

Concrete applications require another intermediate layer: an object-logic.
Isabelle/HOL [39] (simply-typed set-theory) is most commonly used; elemen-
tary examples are given in the directories ~~/src/Pure/Examples and ~~/
src/HOL/Examples. Some examples demonstrate how to start a fresh object-
logic from Isabelle/Pure, and use Isar proofs from the very start, despite the
lack of advanced proof tools at such an early stage (e.g. see ~~/src/Pure/
Examples/Higher_Order_Logic.thy). Isabelle/FOL [42] and Isabelle/ZF
[43] also work, but are much less developed.

26

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 27

Inferences:

A −→ B A
B

[A]....
B

A −→ B

Isabelle/Pure:

(A −→ B) =⇒ A =⇒ B (A =⇒ B) =⇒ A −→ B

Isabelle/Isar:

have A −→ B 〈proof 〉
also have A 〈proof 〉
finally have B .

have A −→ B
proof

assume A
then show B 〈proof 〉

qed

Figure 2.1: Natural Deduction via inferences according to Gentzen, rules in
Isabelle/Pure, and proofs in Isabelle/Isar

In order to illustrate natural deduction in Isar, we shall subsequently refer to
the background theory and library of Isabelle/HOL. This includes common
notions of predicate logic, naive set-theory etc. using fairly standard math-
ematical notation. From the perspective of generic natural deduction there
is nothing special about the logical connectives of HOL (∧, ∨, ∀ , ∃ , etc.),
only the resulting reasoning principles are relevant to the user. There are
similar rules available for set-theory operators (∩, ∪,

⋂
,
⋃

, etc.), or any
other theory developed in the library (lattice theory, topology etc.).
Subsequently we briefly review fragments of Isar proof texts corresponding
directly to such general deduction schemes. The examples shall refer to set-
theory, to minimize the danger of understanding connectives of predicate
logic as something special.

The following deduction performs ∩-introduction, working forwards from as-
sumptions towards the conclusion. We give both the Isar text, and depict
the primitive rule involved, as determined by unification of fact and goal
statements against rules that are declared in the library context.

assume x ∈ A and x ∈ B
then have x ∈ A ∩ B ..

x ∈ A x ∈ B
x ∈ A ∩ B

Note that assume augments the proof context, then indicates that the cur-

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 28

rent fact shall be used in the next step, and have states an intermediate
goal. The two dots “..” refer to a complete proof of this claim, using the
indicated facts and a canonical rule from the context. We could have been
more explicit here by spelling out the final proof step via the by command:

assume x ∈ A and x ∈ B
then have x ∈ A ∩ B by (rule IntI)

The format of the ∩-introduction rule represents the most basic inference,
which proceeds from given premises to a conclusion, without any nested proof
context involved.
The next example performs backwards introduction of

⋂
A, the intersection

of all sets within a given set. This requires a nested proof of set membership
within a local context, where A is an arbitrary-but-fixed member of the
collection:

have x ∈
⋂
A

proof
fix A
assume A ∈ A
show x ∈ A 〈proof 〉

qed

[A][A ∈ A]....
x ∈ A

x ∈
⋂
A

This Isar reasoning pattern again refers to the primitive rule depicted above.
The system determines it in the “proof” step, which could have been spelled
out more explicitly as “proof (rule InterI)”. Note that the rule involves both
a local parameter A and an assumption A ∈ A in the nested reasoning. Such
compound rules typically demands a genuine subproof in Isar, working back-
wards rather than forwards as seen before. In the proof body we encounter
the fix-assume-show outline of nested subproofs that is typical for Isar. The
final show is like have followed by an additional refinement of the enclosing
claim, using the rule derived from the proof body.

The next example involves
⋃
A, which can be characterized as the set of all

x such that ∃A. x ∈ A ∧ A ∈ A. The elimination rule for x ∈
⋃
A does not

mention ∃ and ∧ at all, but admits to obtain directly a local A such that
x ∈ A and A ∈ A hold. This corresponds to the following Isar proof and
inference rule, respectively:

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 29

assume x ∈
⋃
A

then have C
proof

fix A
assume x ∈ A and A ∈ A
show C 〈proof 〉

qed

x ∈
⋃
A

[A][x ∈ A, A ∈ A]....
C

C

Although the Isar proof follows the natural deduction rule closely, the text
reads not as natural as anticipated. There is a double occurrence of an
arbitrary conclusion C, which represents the final result, but is irrelevant for
now. This issue arises for any elimination rule involving local parameters.
Isar provides the derived language element obtain, which is able to perform
the same elimination proof more conveniently:

assume x ∈
⋃
A

then obtain A where x ∈ A and A ∈ A ..

Here we avoid to mention the final conclusion C and return to plain forward
reasoning. The rule involved in the “..” proof is the same as before.

2.1 The Pure framework
The Pure logic [45, 46] is an intuitionistic fragment of higher-order logic
[14]. In type-theoretic parlance, there are three levels of λ-calculus with
corresponding arrows ⇒/

∧
/=⇒:

α ⇒ β syntactic function space (terms depending on terms)∧
x . B(x) universal quantification (proofs depending on terms)

A =⇒ B implication (proofs depending on proofs)

Here only the types of syntactic terms, and the propositions of proof terms
have been shown. The λ-structure of proofs can be recorded as an optional
feature of the Pure inference kernel [6], but the formal system can never
depend on them due to proof irrelevance.
On top of this most primitive layer of proofs, Pure implements a generic
calculus for nested natural deduction rules, similar to [52]. Here object-logic
inferences are internalized as formulae over

∧
and =⇒. Combining such rule

statements may involve higher-order unification [44].

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 30

2.1.1 Primitive inferences
Term syntax provides explicit notation for abstraction λx :: α. b(x) and
application b a, while types are usually implicit thanks to type-inference;
terms of type prop are called propositions. Logical statements are composed
via

∧
x :: α. B(x) and A =⇒ B. Primitive reasoning operates on judgments

of the form Γ ` ϕ, with standard introduction and elimination rules for
∧

and =⇒ that refer to fixed parameters x1, . . . , xm and hypotheses A1, . . . ,
An from the context Γ; the corresponding proof terms are left implicit. The
subsequent inference rules define Γ ` ϕ inductively, relative to a collection
of axioms from the implicit background theory:

A is axiom
` A A ` A

Γ ` B(x) x /∈ Γ

Γ `
∧

x . B(x)
Γ `

∧
x . B(x)

Γ ` B(a)

Γ ` B
Γ − A ` A =⇒ B

Γ1 ` A =⇒ B Γ2 ` A
Γ1 ∪ Γ2 ` B

Furthermore, Pure provides a built-in equality ≡ :: α ⇒ α ⇒ prop with
axioms for reflexivity, substitution, extensionality, and αβη-conversion on
λ-terms.

An object-logic introduces another layer on top of Pure, e.g. with types i
for individuals and o for propositions, term constants Trueprop :: o ⇒ prop
as (implicit) derivability judgment and connectives like ∧ :: o ⇒ o ⇒ o or
∀ :: (i ⇒ o) ⇒ o, and axioms for object-level rules such as conjI : A =⇒
B =⇒ A ∧ B or allI : (

∧
x . B x) =⇒ ∀ x . B x. Derived object rules are

represented as theorems of Pure. After the initial object-logic setup, further
axiomatizations are usually avoided: definitional principles are used instead
(e.g. definition, inductive, fun, function).

2.1.2 Reasoning with rules
Primitive inferences mostly serve foundational purposes. The main reason-
ing mechanisms of Pure operate on nested natural deduction rules expressed

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 31

as formulae, using
∧

to bind local parameters and =⇒ to express entail-
ment. Multiple parameters and premises are represented by repeating these
connectives in a right-associative manner.
Thanks to the Pure theorem (A =⇒ (

∧
x . B x)) ≡ (

∧
x . A =⇒ B x) the

connectives
∧

and =⇒ commute. So we may assume w.l.o.g. that rule state-
ments always observe the normal form where quantifiers are pulled in front of
implications at each level of nesting. This means that any Pure proposition
may be presented as a Hereditary Harrop Formula [33] which is of the form∧

x1 . . . xm. H 1 =⇒ . . . H n =⇒ A for m, n ≥ 0, and A atomic, and H 1,
. . . , H n being recursively of the same format. Following the convention that
outermost quantifiers are implicit, Horn clauses A1 =⇒ . . . An =⇒ A are a
special case of this.
For example, the ∩-introduction rule encountered before is represented as a
Pure theorem as follows:

IntI : x ∈ A =⇒ x ∈ B =⇒ x ∈ A ∩ B

This is a plain Horn clause, since no further nesting on the left is involved.
The general

⋂
-introduction corresponds to a Hereditary Harrop Formula

with one additional level of nesting:
InterI : (

∧
A. A ∈ A =⇒ x ∈ A) =⇒ x ∈

⋂
A

Goals are also represented as rules: A1 =⇒ . . . An =⇒ C states that the
subgoals A1, . . . , An entail the result C ; for n = 0 the goal is finished. To
allow C being a rule statement itself, there is an internal protective marker
:: prop ⇒ prop, which is defined as identity and hidden from the user. We
initialize and finish goal states as follows:

C =⇒ #C (init) #C
C (finish)

Goal states are refined in intermediate proof steps until a finished form is
achieved. Here the two main reasoning principles are resolution, for back-
chaining a rule against a subgoal (replacing it by zero or more subgoals), and
assumption, for solving a subgoal (finding a short-circuit with local assump-
tions). Below x stands for x1, . . . , xn (for n ≥ 0).

rule: A a =⇒ B a
goal: (

∧
x . H x =⇒ B ′ x) =⇒ C

goal unifier : (λx . B (a x)) θ = B ′θ

(
∧

x . H x =⇒ A (a x)) θ =⇒ C θ
(resolution)

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 32

goal: (
∧

x . H x =⇒ A x) =⇒ C
assm unifier : A θ = H i θ for some H i

C θ
(assumption)

The following trace illustrates goal-oriented reasoning in Isabelle/Pure:
(A ∧ B =⇒ B ∧ A) =⇒ #(A ∧ B =⇒ B ∧ A) (init)
(A ∧ B =⇒ B) =⇒ (A ∧ B =⇒ A) =⇒ #. . . (resolution B =⇒ A =⇒ B ∧ A)

(A ∧ B =⇒ A ∧ B) =⇒ (A ∧ B =⇒ A) =⇒ #. . . (resolution A ∧ B =⇒ B)
(A ∧ B =⇒ A) =⇒ #. . . (assumption)

(A ∧ B =⇒ A ∧ B) =⇒ #. . . (resolution A ∧ B =⇒ A)
#. . . (assumption)

A ∧ B =⇒ B ∧ A (finish)

Compositions of assumption after resolution occurs quite often, typically in
elimination steps. Traditional Isabelle tactics accommodate this by a com-
bined elim_resolution principle. In contrast, Isar uses a combined refinement
rule as follows:1

subgoal: (
∧

x. H x =⇒ B ′ x) =⇒ C
subproof : G a =⇒ B a for schematic a

concl unifier : (λx. B (a x)) θ = B ′θ
assm unifiers: (λx. Gj (a x)) θ = H i θ for each Gj some H i

C θ
(refinement)

Here the subproof rule stems from the main fix-assume-show outline of
Isar (cf. §2.2.3): each assumption indicated in the text results in a marked
premise G above. Consequently, fix-assume-show enables to fit the result
of a subproof quite robustly into a pending subgoal, while maintaining a good
measure of flexibility: the subproof only needs to fit modulo unification, and
its assumptions may be a proper subset of the subgoal premises (see §2.2.3).

2.2 The Isar proof language
Structured proofs are presented as high-level expressions for composing enti-
ties of Pure (propositions, facts, and goals). The Isar proof language allows

1For simplicity and clarity, the presentation ignores weak premises as introduced via
presume or show . . . when.

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 33

to organize reasoning within the underlying rule calculus of Pure, but Isar
is not another logical calculus. Isar merely imposes certain structure and
policies on Pure inferences. The main grammar of the Isar proof language is
given in figure 2.2.
The construction of the Isar proof language proceeds in a bottom-up fashion,
as an exercise in purity and minimalism. The grammar in appendix A.1.1
describes the primitive parts of the core language (category proof), which
is embedded into the main outer theory syntax via elements that require a
proof (e.g. theorem, lemma, function, termination).
The syntax for terms and propositions is inherited from Pure (and the object-
logic). A pattern is a term with schematic variables, to be bound by higher-
order matching. Simultaneous propositions or facts may be separated by the
and keyword.

Facts may be referenced by name or proposition. For example, the result
of “have a: A 〈proof 〉” becomes accessible both via the name a and the
literal proposition ‹A›. Moreover, fact expressions may involve attributes
that modify either the theorem or the background context. For example, the
expression “a [OF b]” refers to the composition of two facts according to the
resolution inference of §2.1.2, while “a [intro]” declares a fact as introduction
rule in the context.
The special fact called “this” always refers to the last result, as produced by
note, assume, have, or show. Since note occurs frequently together with
then, there are some abbreviations:

from a ≡ note a then
with a ≡ from a and this

The method category is essentially a parameter of the Isar language and may
be populated later. The command method_setup allows to define proof
methods semantically in Isabelle/ML. The Eisbach language allows to define
proof methods symbolically, as recursive expressions over existing methods
[32]; see also ~~/src/HOL/Eisbach.
Methods use the facts indicated by then or using, and then operate on the
goal state. Some basic methods are predefined in Pure: “−” leaves the goal
unchanged, “this” applies the facts as rules to the goal, “rule” applies the
facts to another rule and the result to the goal (both “this” and “rule” refer
to resolution of §2.1.2). The secondary arguments to “rule” may be specified
explicitly as in “(rule a)”, or picked from the context. In the latter case, the
system first tries rules declared as elim or dest, followed by those declared
as intro.

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 34

The default method for proof is “standard” (which subsumes rule with argu-
ments picked from the context), for qed it is “succeed”. Further abbreviations
for terminal proof steps are “by method1 method2” for “proof method1 qed
method2”, and “..” for “by standard, and “.” for “by this”. The command
“unfolding facts” operates directly on the goal by applying equalities.

Block structure can be indicated explicitly by “{ . . . }”, although the body
of a subproof “proof . . . qed” already provides implicit nesting. In both sit-
uations, next jumps into the next section of a block, i.e. it acts like closing an
implicit block scope and opening another one. There is no direct connection
to subgoals here!
The commands fix and assume build up a local context (see §2.2.1), while
show refines a pending subgoal by the rule resulting from a nested subproof
(see §2.2.3). Further derived concepts will support calculational reasoning
(see §2.2.4).

2.2.1 Context elements
In judgments Γ ` ϕ of the primitive framework, Γ essentially acts like a proof
context. Isar elaborates this idea towards a more advanced concept, with ad-
ditional information for type-inference, term abbreviations, local facts, hy-
potheses etc.
The element fix x :: α declares a local parameter, i.e. an arbitrary-but-fixed
entity of a given type; in results exported from the context, x may become
anything. The assume «inference» element provides a general interface
to hypotheses: assume «inference» A produces A ` A locally, while the
included inference tells how to discharge A from results A ` B later on.
There is no surface syntax for «inference», i.e. it may only occur internally
when derived commands are defined in ML.
The default inference for assume is export as given below. The derived
element define x where x ≡ a is defined as fix x assume «expand» x ≡ a,
with the subsequent inference expand.

Γ ` B
Γ − A ` A =⇒ B (export)

Γ ` B x
Γ − (x ≡ a) ` B a (expand)

The most interesting derived context element in Isar is obtain [59, §5.3],
which supports generalized elimination steps in a purely forward manner.
The obtain command takes a specification of parameters x and assumptions

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 35

A to be added to the context, together with a proof of a case rule stating
that this extension is conservative (i.e. may be removed from closed results
later on):

〈facts〉 obtain x where A x 〈proof 〉 ≡
have case:

∧
thesis. (

∧
x . A x =⇒ thesis) =⇒ thesis

proof −
fix thesis
assume [intro]:

∧
x . A x =⇒ thesis

show thesis using 〈facts〉 〈proof 〉
qed
fix x assume «elimination case» A x

case: Γ `
∧

thesis. (
∧

x . A x =⇒ thesis) =⇒ thesis
result: Γ ∪ A y ` B

Γ ` B (elimination)

Here the name “thesis” is a specific convention for an arbitrary-but-fixed
proposition; in the primitive natural deduction rules shown before we have
occasionally used C. The whole statement of “obtain x where A x” can
be read as a claim that A x may be assumed for some arbitrary-but-fixed x.
Also note that “obtain A and B” without parameters is similar to “have
A and B”, but the latter involves multiple subgoals that need to be proven
separately.

The subsequent Isar proof texts explain all context elements introduced above
using the formal proof language itself. After finishing a local proof within a
block, the exported result is indicated via note.

{
fix x
have B x 〈proof 〉

}
note ‹

∧
x. B x›

{
assume A
have B 〈proof 〉

}
note ‹A =⇒ B›

{
define x where x ≡ a
have B x 〈proof 〉

}
note ‹B a›

{
obtain x where A x 〈proof 〉
have B 〈proof 〉

}
note ‹B›

This explains the meaning of Isar context elements without, without goal
states getting in the way.

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 36

2.2.2 Structured statements
The syntax of top-level theorem statements is defined as follows:

statement ≡ name: props and . . .
| context∗ conclusion

context ≡ fixes vars and . . .
| assumes name: props and . . .

conclusion ≡ shows name: props and . . .
| obtains vars and . . . where name: props and . . .

. . .

A simple statement consists of named propositions. The full form admits
local context elements followed by the actual conclusions, such as “fixes x
assumes A x shows B x”. The final result emerges as a Pure rule after
discharging the context:

∧
x . A x =⇒ B x.

The obtains variant is another abbreviation defined below; unlike obtain
(cf. §2.2.1) there may be several “cases” separated by “ ”, each consisting of
several parameters (vars) and several premises (props). This specifies multi-
branch elimination rules.
obtains x where A x . . . ≡

fixes thesis
assumes [intro]:

∧
x . A x =⇒ thesis and . . .

shows thesis

Presenting structured statements in such an “open” format usually simplifies
the subsequent proof, because the outer structure of the problem is already
laid out directly. E.g. consider the following canonical patterns for shows
and obtains, respectively:

theorem
fixes x and y
assumes A x and B y
shows C x y

proof −
from ‹A x› and ‹B y›
show C x y 〈proof 〉

qed

theorem
obtains x and y
where A x and B y

proof −
have A a and B b 〈proof 〉
then show thesis ..

qed

Here local facts ‹A x› and ‹B y› are referenced immediately; there is no need
to decompose the logical rule structure again. In the second proof the final
“then show thesis ..” involves the local rule case

∧
x y. A x =⇒ B y =⇒

thesis for the particular instance of terms a and b produced in the body.

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 37

2.2.3 Structured proof refinement
By breaking up the grammar for the Isar proof language, we may understand
a proof text as a linear sequence of individual proof commands. These are
interpreted as transitions of the Isar virtual machine (Isar/VM), which oper-
ates on a block-structured configuration in single steps. This allows users to
write proof texts in an incremental manner, and inspect intermediate config-
urations for debugging.
The basic idea is analogous to evaluating algebraic expressions on a stack
machine: (a + b) · c then corresponds to a sequence of single transitions for
each symbol (, a, +, b,), ·, c. In Isar the algebraic values are facts or goals,
and the operations are inferences.

The Isar/VM state maintains a stack of nodes, each node contains the local
proof context, the linguistic mode, and a pending goal (optional). The mode
determines the type of transition that may be performed next, it essentially
alternates between forward and backward reasoning, with an intermediate
stage for chained facts (see figure 2.3).
For example, in state mode Isar acts like a mathematical scratch-pad, ac-
cepting declarations like fix, assume, and claims like have, show. A goal
statement changes the mode to prove, which means that we may now refine
the problem via unfolding or proof. Then we are again in state mode of
a proof body, which may issue show statements to solve pending subgoals.
A concluding qed will return to the original state mode one level upwards.
The subsequent Isar/VM trace indicates block structure, linguistic mode,
goal state, and inferences:

have A −→ B
proof

assume A
show B
〈proof 〉

qed

begin

begin
end
end

prove
state
state
prove
state
state

(A −→ B) =⇒ #(A −→ B)
(A =⇒ B) =⇒ #(A −→ B)

#(A −→ B)
A −→ B

(init)
(resolution impI)

(refinement #A =⇒ B)
(finish)

Here the refinement inference from §2.1.2 mediates composition of Isar sub-
proofs nicely. Observe that this principle incorporates some degree of freedom
in proof composition. In particular, the proof body allows parameters and
assumptions to be re-ordered, or commuted according to Hereditary Harrop
Form. Moreover, context elements that are not used in a subproof may be
omitted altogether. For example:

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 38

have
∧

x y. A x =⇒ B y =⇒ C x y
proof −

fix x and y
assume A x and B y
show C x y 〈proof 〉

qed

have
∧

x y. A x =⇒ B y =⇒ C x y
proof −

fix x assume A x
fix y assume B y
show C x y 〈proof 〉

qed

have
∧

x y. A x =⇒ B y =⇒ C x y
proof −

fix y assume B y
fix x assume A x
show C x y 〈proof 〉

qed

have
∧

x y. A x =⇒ B y =⇒ C x y
proof −

fix y assume B y
fix x
show C x y 〈proof 〉

qed

Such fine-tuning of Isar text is practically important to improve readability.
Contexts elements are rearranged according to the natural flow of reasoning
in the body, while still observing the overall scoping rules.

This illustrates the basic idea of structured proof processing in Isar. The main
mechanisms are based on natural deduction rule composition within the Pure
framework. In particular, there are no direct operations on goal states within
the proof body. Moreover, there is no hidden automated reasoning involved,
just plain unification.

2.2.4 Calculational reasoning
The existing Isar infrastructure is sufficiently flexible to support calculational
reasoning (chains of transitivity steps) as derived concept. The generic proof
elements introduced below depend on rules declared as trans in the context.
It is left to the object-logic to provide a suitable rule collection for mixed
relations of =, <, ≤, ⊂, ⊆ etc. Due to the flexibility of rule composition
(§2.1.2), substitution of equals by equals is covered as well, even substitution
of inequalities involving monotonicity conditions; see also [59, §6] and [5].
The generic calculational mechanism is based on the observation that rules
such as trans: x = y =⇒ y = z =⇒ x = z proceed from the premises to-
wards the conclusion in a deterministic fashion. Thus we may reason in
forward mode, feeding intermediate results into rules selected from the con-
text. The course of reasoning is organized by maintaining a secondary fact
called “calculation”, apart from the primary “this” already provided by the
Isar primitives. In the definitions below, OF refers to resolution (§2.1.2)
with multiple rule arguments, and trans represents to a suitable rule from
the context:

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 39

also0 ≡ note calculation = this
alson+1 ≡ note calculation = trans [OF calculation this]
finally ≡ also from calculation

The start of a calculation is determined implicitly in the text: here also
sets calculation to the current result; any subsequent occurrence will up-
date calculation by combination with the next result and a transitivity rule.
The calculational sequence is concluded via finally, where the final result is
exposed for use in a concluding claim.
Here is a canonical proof pattern, using have to establish the intermediate
results:

have a = b 〈proof 〉
also have . . . = c 〈proof 〉
also have . . . = d 〈proof 〉
finally have a = d .

The term “. . . ” (literal ellipsis) is a special abbreviation provided by the
Isabelle/Isar term syntax: it statically refers to the right-hand side argument
of the previous statement given in the text. Thus it happens to coincide with
relevant sub-expressions in the calculational chain, but the exact correspon-
dence is dependent on the transitivity rules being involved.

Symmetry rules such as x = y =⇒ y = x are like transitivities with only
one premise. Isar maintains a separate rule collection declared via the sym
attribute, to be used in fact expressions “a [symmetric]”, or single-step proofs
“assume x = y then have y = x ..”.

2.3 Example: First-Order Logic
theory First_Order_Logic
imports Base
begin

In order to commence a new object-logic within Isabelle/Pure we introduce
abstract syntactic categories i for individuals and o for object-propositions.
The latter is embedded into the language of Pure propositions by means of
a separate judgment.
typedecl i
typedecl o

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 40

judgment Trueprop :: o ⇒ prop (‹_› 5)

Note that the object-logic judgment is implicit in the syntax: writing A pro-
duces Trueprop A internally. From the Pure perspective this means “A is
derivable in the object-logic”.

2.3.1 Equational reasoning
Equality is axiomatized as a binary predicate on individuals, with reflexivity
as introduction, and substitution as elimination principle. Note that the lat-
ter is particularly convenient in a framework like Isabelle, because syntactic
congruences are implicitly produced by unification of B x against expressions
containing occurrences of x.
axiomatization equal :: i ⇒ i ⇒ o (infix ‹=› 50)

where refl [intro]: x = x
and subst [elim]: x = y =⇒ B x =⇒ B y

Substitution is very powerful, but also hard to control in full generality. We
derive some common symmetry / transitivity schemes of equal as particular
consequences.
theorem sym [sym]:

assumes x = y
shows y = x

proof −
have x = x ..
with ‹x = y› show y = x ..

qed

theorem forw_subst [trans]:
assumes y = x and B x
shows B y

proof −
from ‹y = x› have x = y ..
from this and ‹B x› show B y ..

qed

theorem back_subst [trans]:
assumes B x and x = y
shows B y

proof −
from ‹x = y› and ‹B x›

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 41

show B y ..
qed

theorem trans [trans]:
assumes x = y and y = z
shows x = z

proof −
from ‹y = z› and ‹x = y›
show x = z ..

qed

2.3.2 Basic group theory
As an example for equational reasoning we consider some bits of group theory.
The subsequent locale definition postulates group operations and axioms; we
also derive some consequences of this specification.
locale group =

fixes prod :: i ⇒ i ⇒ i (infix ‹◦› 70)
and inv :: i ⇒ i (‹(_−1)› [1000] 999)
and unit :: i (‹1›)

assumes assoc: (x ◦ y) ◦ z = x ◦ (y ◦ z)
and left_unit: 1 ◦ x = x
and left_inv: x−1 ◦ x = 1

begin

theorem right_inv: x ◦ x−1 = 1
proof −

have x ◦ x−1 = 1 ◦ (x ◦ x−1) by (rule left_unit [symmetric])
also have . . . = (1 ◦ x) ◦ x−1 by (rule assoc [symmetric])
also have 1 = (x−1)−1 ◦ x−1 by (rule left_inv [symmetric])
also have . . . ◦ x = (x−1)−1 ◦ (x−1 ◦ x) by (rule assoc)
also have x−1 ◦ x = 1 by (rule left_inv)
also have ((x−1)−1 ◦ . . .) ◦ x−1 = (x−1)−1 ◦ (1 ◦ x−1) by (rule assoc)
also have 1 ◦ x−1 = x−1 by (rule left_unit)
also have (x−1)−1 ◦ . . . = 1 by (rule left_inv)
finally show x ◦ x−1 = 1 .

qed

theorem right_unit: x ◦ 1 = x
proof −

have 1 = x−1 ◦ x by (rule left_inv [symmetric])
also have x ◦ . . . = (x ◦ x−1) ◦ x by (rule assoc [symmetric])
also have x ◦ x−1 = 1 by (rule right_inv)

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 42

also have . . . ◦ x = x by (rule left_unit)
finally show x ◦ 1 = x .

qed

Reasoning from basic axioms is often tedious. Our proofs work by producing
various instances of the given rules (potentially the symmetric form) using
the pattern “have eq by (rule r)” and composing the chain of results via
also/finally. These steps may involve any of the transitivity rules declared in
§2.3.1, namely trans in combining the first two results in right_inv and in the
final steps of both proofs, forw_subst in the first combination of right_unit,
and back_subst in all other calculational steps.
Occasional substitutions in calculations are adequate, but should not be over-
emphasized. The other extreme is to compose a chain by plain transitivity
only, with replacements occurring always in topmost position. For example:

have x ◦ 1 = x ◦ (x−1 ◦ x) unfolding left_inv ..
also have . . . = (x ◦ x−1) ◦ x unfolding assoc ..
also have . . . = 1 ◦ x unfolding right_inv ..
also have . . . = x unfolding left_unit ..
finally have x ◦ 1 = x .

Here we have re-used the built-in mechanism for unfolding definitions in
order to normalize each equational problem. A more realistic object-logic
would include proper setup for the Simplifier (§9.3), the main automated tool
for equational reasoning in Isabelle. Then “unfolding left_inv ..” would
become “by (simp only: left_inv)” etc.
end

2.3.3 Propositional logic
We axiomatize basic connectives of propositional logic: implication, disjunc-
tion, and conjunction. The associated rules are modeled after Gentzen’s
system of Natural Deduction [18].
axiomatization imp :: o ⇒ o ⇒ o (infixr ‹−→› 25)

where impI [intro]: (A =⇒ B) =⇒ A −→ B
and impD [dest]: (A −→ B) =⇒ A =⇒ B

axiomatization disj :: o ⇒ o ⇒ o (infixr ‹∨› 30)
where disjI 1 [intro]: A =⇒ A ∨ B

and disjI 2 [intro]: B =⇒ A ∨ B
and disjE [elim]: A ∨ B =⇒ (A =⇒ C) =⇒ (B =⇒ C) =⇒ C

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 43

axiomatization conj :: o ⇒ o ⇒ o (infixr ‹∧› 35)
where conjI [intro]: A =⇒ B =⇒ A ∧ B

and conjD1: A ∧ B =⇒ A
and conjD2: A ∧ B =⇒ B

The conjunctive destructions have the disadvantage that decomposing A ∧ B
involves an immediate decision which component should be projected. The
more convenient simultaneous elimination A ∧ B =⇒ (A =⇒ B =⇒ C) =⇒
C can be derived as follows:
theorem conjE [elim]:

assumes A ∧ B
obtains A and B

proof
from ‹A ∧ B› show A by (rule conjD1)
from ‹A ∧ B› show B by (rule conjD2)

qed

Here is an example of swapping conjuncts with a single intermediate elimi-
nation step:

assume A ∧ B
then obtain B and A ..
then have B ∧ A ..

Note that the analogous elimination rule for disjunction “assumes A ∨ B
obtains A B” coincides with the original axiomatization of disjE.

We continue propositional logic by introducing absurdity with its character-
istic elimination. Plain truth may then be defined as a proposition that is
trivially true.
axiomatization false :: o (‹⊥›)

where falseE [elim]: ⊥ =⇒ A

definition true :: o (‹>›)
where > ≡ ⊥ −→ ⊥

theorem trueI [intro]: >
unfolding true_def ..

Now negation represents an implication towards absurdity:
definition not :: o ⇒ o (‹¬ _› [40] 40)

where ¬ A ≡ A −→ ⊥

theorem notI [intro]:

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 44

assumes A =⇒ ⊥
shows ¬ A

unfolding not_def
proof

assume A
then show ⊥ by (rule ‹A =⇒ ⊥›)

qed

theorem notE [elim]:
assumes ¬ A and A
shows B

proof −
from ‹¬ A› have A −→ ⊥ unfolding not_def .
from ‹A −→ ⊥› and ‹A› have ⊥ ..
then show B ..

qed

2.3.4 Classical logic
Subsequently we state the principle of classical contradiction as a local as-
sumption. Thus we refrain from forcing the object-logic into the classical
perspective. Within that context, we may derive well-known consequences
of the classical principle.
locale classical =

assumes classical: (¬ C =⇒ C) =⇒ C
begin

theorem double_negation:
assumes ¬ ¬ C
shows C

proof (rule classical)
assume ¬ C
with ‹¬ ¬ C › show C ..

qed

theorem tertium_non_datur : C ∨ ¬ C
proof (rule double_negation)

show ¬ ¬ (C ∨ ¬ C)
proof

assume ¬ (C ∨ ¬ C)
have ¬ C
proof

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 45

assume C then have C ∨ ¬ C ..
with ‹¬ (C ∨ ¬ C)› show ⊥ ..

qed
then have C ∨ ¬ C ..
with ‹¬ (C ∨ ¬ C)› show ⊥ ..

qed
qed

These examples illustrate both classical reasoning and non-trivial proposi-
tional proofs in general. All three rules characterize classical logic indepen-
dently, but the original rule is already the most convenient to use, because it
leaves the conclusion unchanged. Note that (¬ C =⇒ C) =⇒ C fits again
into our format for eliminations, despite the additional twist that the context
refers to the main conclusion. So we may write classical as the Isar state-
ment “obtains ¬ thesis”. This also explains nicely how classical reasoning
really works: whatever the main thesis might be, we may always assume its
negation!
end

2.3.5 Quantifiers
Representing quantifiers is easy, thanks to the higher-order nature of the
underlying framework. According to the well-known technique introduced by
Church [14], quantifiers are operators on predicates, which are syntactically
represented as λ-terms of type i ⇒ o. Binder notation turns All (λx . B x)
into ∀ x . B x etc.
axiomatization All :: (i ⇒ o) ⇒ o (binder ‹∀ › 10)

where allI [intro]: (
∧

x. B x) =⇒ ∀ x. B x
and allD [dest]: (∀ x. B x) =⇒ B a

axiomatization Ex :: (i ⇒ o) ⇒ o (binder ‹∃ › 10)
where exI [intro]: B a =⇒ (∃ x. B x)

and exE [elim]: (∃ x. B x) =⇒ (
∧

x. B x =⇒ C) =⇒ C

The statement of exE corresponds to “assumes ∃ x . B x obtains x where
B x” in Isar. In the subsequent example we illustrate quantifier reasoning
involving all four rules:
theorem

assumes ∃ x. ∀ y. R x y
shows ∀ y. ∃ x. R x y

proof — ∀ introduction
obtain x where ∀ y. R x y using ‹∃ x. ∀ y. R x y› .. — ∃ elimination

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 46

fix y have R x y using ‹∀ y. R x y› .. — ∀ destruction
then show ∃ x. R x y .. — ∃ introduction

qed

2.3.6 Canonical reasoning patterns
The main rules of first-order predicate logic from §2.3.3 and §2.3.5 can now
be summarized as follows, using the native Isar statement format of §2.2.2.

impI : assumes A =⇒ B shows A −→ B
impD: assumes A −→ B and A shows B
disjI 1: assumes A shows A ∨ B
disjI 2: assumes B shows A ∨ B
disjE : assumes A ∨ B obtains A B
conjI : assumes A and B shows A ∧ B
conjE : assumes A ∧ B obtains A and B
falseE : assumes ⊥ shows A
trueI : shows >
notI : assumes A =⇒ ⊥ shows ¬ A
notE : assumes ¬ A and A shows B
allI : assumes

∧
x . B x shows ∀ x . B x

allE : assumes ∀ x . B x shows B a
exI : assumes B a shows ∃ x . B x
exE : assumes ∃ x . B x obtains a where B a

This essentially provides a declarative reading of Pure rules as Isar reasoning
patterns: the rule statements tells how a canonical proof outline shall look
like. Since the above rules have already been declared as intro, elim, dest
— each according to its particular shape — we can immediately write Isar
proof texts as follows:

have A −→ B
proof

assume A
show B 〈proof 〉

qed

have A −→ B and A 〈proof 〉
then have B ..

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 47

have A 〈proof 〉
then have A ∨ B ..

have B 〈proof 〉
then have A ∨ B ..

have A ∨ B 〈proof 〉
then have C
proof

assume A
then show C 〈proof 〉

next
assume B
then show C 〈proof 〉

qed

have A and B 〈proof 〉
then have A ∧ B ..

have A ∧ B 〈proof 〉
then obtain A and B ..

have ⊥ 〈proof 〉
then have A ..

have > ..

have ¬ A
proof

assume A
then show ⊥ 〈proof 〉

qed

have ¬ A and A 〈proof 〉
then have B ..

have ∀ x. B x
proof

fix x
show B x 〈proof 〉

qed

have ∀ x. B x 〈proof 〉
then have B a ..

have ∃ x. B x
proof

show B a 〈proof 〉
qed

have ∃ x. B x 〈proof 〉
then obtain a where B a ..

Of course, these proofs are merely examples. As sketched in §2.2.3, there is
a fair amount of flexibility in expressing Pure deductions in Isar. Here the
user is asked to express himself adequately, aiming at proof texts of literary
quality.
end

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 48

main = notepad begin statement∗ end
| theorem name: props if name: props for vars
| theorem name:

fixes vars
assumes name: props
shows name: props proof

| theorem name:
fixes vars
assumes name: props
obtains (name) clause | . . . proof

proof = refinement∗ proper_proof
refinement = apply method

| supply name = thms
| subgoal premises name for vars proof
| using thms
| unfolding thms

proper_proof = proof method? statement∗ qed method?

| by method method | .. | . | sorry | done
statement = { statement∗ } | next

| note name = thms
| let term = term
| write name (mixfix)
| fix vars
| assume name: props if props for vars
| presume name: props if props for vars
| define clause
| case name: case
| then? goal
| from thms goal
| with thms goal
| also | finally goal
| moreover | ultimately goal

goal = have name: props if name: props for vars proof
| show name: props if name: props for vars proof
| show name: props when name: props for vars proof
| consider (name) clause | . . . proof
| obtain (name) clause proof

clause = vars where name: props if props for vars

Figure 2.2: Main grammar of the Isar proof language

CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK 49

Figure 2.3: Isar/VM modes

Part II

General Language Elements

50

Chapter 3

Outer syntax — the theory
language

The rather generic framework of Isabelle/Isar syntax emerges from three
main syntactic categories: commands of the top-level Isar engine (covering
theory and proof elements), methods for general goal refinements (analogous
to traditional “tactics”), and attributes for operations on facts (within a cer-
tain context). Subsequently we give a reference of basic syntactic entities
underlying Isabelle/Isar syntax in a bottom-up manner. Concrete theory
and proof language elements will be introduced later on.

In order to get started with writing well-formed Isabelle/Isar documents, the
most important aspect to be noted is the difference of inner versus outer
syntax. Inner syntax is that of Isabelle types and terms of the logic, while
outer syntax is that of Isabelle/Isar theory sources (specifications and proofs).
As a general rule, inner syntax entities may occur only as atomic entities
within outer syntax. For example, the string "x + y" and identifier z are
legal term specifications within a theory, while x + y without quotes is not.
Printed theory documents usually omit quotes to gain readability (this is a
matter of LATEX macro setup, say via \isabellestyle, see also [54]). Expe-
rienced users of Isabelle/Isar may easily reconstruct the lost technical infor-
mation, while mere readers need not care about quotes at all.

3.1 Commands
print_commands∗ : any →

help∗ : any →

help
�� ���

�name

�
�

51

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 52

print_commands prints all outer syntax keywords and commands.

help pats retrieves outer syntax commands according to the specified name
patterns.

Examples

Some common diagnostic commands are retrieved like this (according to
usual naming conventions):
help print
help find

3.2 Lexical matters
The outer lexical syntax consists of three main categories of syntax tokens:

1. major keywords — the command names that are available in the present
logic session;

2. minor keywords — additional literal tokens required by the syntax of
commands;

3. named tokens — various categories of identifiers etc.

Major keywords and minor keywords are guaranteed to be disjoint. This helps
user-interfaces to determine the overall structure of a theory text, without
knowing the full details of command syntax. Internally, there is some ad-
ditional information about the kind of major keywords, which approximates
the command type (theory command, proof command etc.).
Keywords override named tokens. For example, the presence of a command
called term inhibits the identifier term, but the string "term" can be used
instead. By convention, the outer syntax always allows quoted strings in
addition to identifiers, wherever a named entity is expected.
When tokenizing a given input sequence, the lexer repeatedly takes the
longest prefix of the input that forms a valid token. Spaces, tabs, newlines
and formfeeds between tokens serve as explicit separators.

The categories for named tokens are defined once and for all as follows.

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 53

short_ident = letter (subscript? quasiletter)∗
long_ident = short_ident(.short_ident)+
sym_ident = sym+ | \<short_ident>

nat = digit+
float = nat.nat | -nat.nat

term_var = ?short_ident | ?short_ident.nat
type_ident = ’short_ident

type_var = ?type_ident | ?type_ident.nat
string = " . . . "

altstring = ‘ . . . ‘
cartouche = \<open> . . . \<close>
verbatim = {* . . . *}

letter = latin | \<latin> | \<latin latin> | greek |
subscript = \<^sub>

quasiletter = letter | digit | _ | ’
latin = a | . . . | z | A | . . . | Z
digit = 0 | . . . | 9
sym = ! | # | $ | % | & | * | + | - | / |

< | = | > | ? | @ | ^ | _ | | | ~
greek = \<alpha> | \<beta> | \<gamma> | \<delta> |

\<epsilon> | \<zeta> | \<eta> | \<theta> |
\<iota> | \<kappa> | \<mu> | \<nu> |
\<xi> | \<pi> | \<rho> | \<sigma> | \<tau> |
\<upsilon> | \<phi> | \<chi> | \<psi> |
\<omega> | \<Gamma> | \<Delta> | \<Theta> |
\<Lambda> | \<Xi> | \<Pi> | \<Sigma> |
\<Upsilon> | \<Phi> | \<Psi> | \<Omega>

A term_var or type_var describes an unknown, which is internally a pair of
base name and index (ML type indexname). These components are either
separated by a dot as in ?x .1 or ?x7.3 or run together as in ?x1. The latter
form is possible if the base name does not end with digits. If the index is
0, it may be dropped altogether: ?x and ?x0 and ?x .0 all refer to the same
unknown, with basename x and index 0.
The syntax of string admits any characters, including newlines; “"” (double-
quote) and “\” (backslash) need to be escaped by a backslash; arbitrary
character codes may be specified as “\ddd”, with three decimal digits. Alter-
native strings according to altstring are analogous, using single back-quotes
instead.
The body of verbatim may consist of any text not containing “*}”; this allows

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 54

to include quotes without further escapes, but there is no way to escape “*}”.
Cartouches do not have this limitation.
A cartouche consists of arbitrary text, with properly balanced blocks of
“\<open> . . . \<close>”. Note that the rendering of cartouche delimiters
is usually like this: “‹ . . . ›”.
Source comments take the form (* . . . *) and may be nested: the text is
removed after lexical analysis of the input and thus not suitable for docu-
mentation. The Isar syntax also provides proper document comments that
are considered as part of the text (see §3.3.5).
Common mathematical symbols such as ∀ are represented in Isabelle as
\<forall>. There are infinitely many Isabelle symbols like this, although
proper presentation is left to front-end tools such as LATEX or Isabelle/jEdit.
A list of predefined Isabelle symbols that work well with these tools is given
in appendix B. Note that \<lambda> does not belong to the letter category,
since it is already used differently in the Pure term language.

3.3 Common syntax entities
We now introduce several basic syntactic entities, such as names, terms, and
theorem specifications, which are factored out of the actual Isar language
elements to be described later.

3.3.1 Names
Entity name usually refers to any name of types, constants, theorems etc.
Quoted strings provide an escape for non-identifier names or those ruled out
by outer syntax keywords (e.g. quoted "let").

name

short_ident�
�long_ident

�sym_ident

�nat

�string

�
�
�
�
�

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 55

par_name

(
����name)

����
A system_name is like name, but it excludes white-space characters and
needs to conform to file-name notation. Name components that are special
on Windows (e.g. CON, PRN, AUX) are excluded on all platforms.

3.3.2 Numbers
The outer lexical syntax (§3.2) admits natural numbers and floating point
numbers. These are combined as int and real as follows.

int

nat�
� -

����nat

�
�

real

float�
�int

�
�

Note that there is an overlap with the category name, which also includes
nat.

3.3.3 Embedded content
Entity embedded refers to content of other languages: cartouches allow ar-
bitrary nesting of sub-languages that respect the recursive balancing of car-
touche delimiters. Quoted strings are possible as well, but require escaped
quotes when nested. As a shortcut, tokens that appear as plain identifiers in
the outer language may be used as inner language content without delimiters.

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 56

embedded

cartouche�
�string

�short_ident

�long_ident

�sym_ident

�term_var

�type_ident

�type_var

�nat

�
�
�
�
�
�
�
�
�

3.3.4 Document text
A chunk of document text is usually given as cartouche ‹. . . ›. For conve-
nience, any of the smaller text unit that conforms to name is admitted as
well.

text

embedded

Typical uses are document markup commands, like chapter, section etc.
(§4.1).

3.3.5 Document comments
Formal comments are an integral part of the document, but are logically
void and removed from the resulting theory or term content. The output of
document preparation (chapter 4) supports various styles, according to the
following kinds of comments.

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 57

• Marginal comment of the form \<comment> ‹text› or — ‹text›, usually
with a single space between the comment symbol and the argument
cartouche. The given argument is typeset as regular text, with formal
antiquotations (§4.2).

• Canceled text of the form \<^cancel>‹text› (no white space between
the control symbol and the argument cartouche). The argument is
typeset as formal Isabelle source and overlaid with a “strike-through”
pattern, e.g. ////bad.

• Raw LATEX source of the form \<^latex>‹argument› (no white space
between the control symbol and the argument cartouche). This allows
to augment the generated TEX source arbitrarily, without any sanity
checks!

These formal comments work uniformly in outer syntax, inner syntax (term
language), Isabelle/ML, and some other embedded languages of Isabelle.

3.3.6 Type classes, sorts and arities
Classes are specified by plain names. Sorts have a very simple inner syntax,
which is either a single class name c or a list {c1, . . . , cn} referring to the
intersection of these classes. The syntax of type arities is given directly at
the outer level.

classdecl

name �
� <

�����
�⊆

����
�
�

name�
� ,

����
�
�

�
�

sort

embedded

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 58

arity

�
� (

���� sort�
� ,

����
�
�

)
����

�
�

sort

3.3.7 Types and terms
The actual inner Isabelle syntax, that of types and terms of the logic, is far
too sophisticated in order to be modelled explicitly at the outer theory level.
Basically, any such entity has to be quoted to turn it into a single token (the
parsing and type-checking is performed internally later). For convenience, a
slightly more liberal convention is adopted: quotes may be omitted for any
type or term that is already atomic at the outer level. For example, one
may just write x instead of quoted "x". Note that symbolic identifiers (e.g.
++ or ∀ are available as well, provided these have not been superseded by
commands or other keywords already (such as = or +).

type

embedded

term

embedded
prop

embedded

Positional instantiations are specified as a sequence of terms, or the place-
holder “_” (underscore), which means to skip a position.

inst

_
�����

�term

�
�

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 59

insts

�
�inst

�
�

Named instantiations are specified as pairs of assignments v = t, which refer
to schematic variables in some theorem that is instantiated. Both type and
terms instantiations are admitted, and distinguished by the usual syntax of
variable names.

named_inst

variable =
���� type�

�term

�
�

named_insts

named_inst and
�� ���

�
�
�

variable

name�
�term_var

�type_ident

�type_var

�
�
�
�

Type declarations and definitions usually refer to typespec on the left-hand
side. This models basic type constructor application at the outer syntax
level. Note that only plain postfix notation is available here, but no infixes.

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 60

typeargs

�
�type_ident

� (
���� type_ident�

� ,
����

�
�

)
����

�
�
�

typeargs_sorts

�
�type_ident �

�::
����sort

�
�

� (
���� type_ident �

�::
����sort

�
�

�

� ,
����

�

�

)
����

�
�

�

typespec

typeargs name

typespec_sorts

typeargs_sorts name

3.3.8 Term patterns and declarations
Wherever explicit propositions (or term fragments) occur in a proof text,
casual binding of schematic term variables may be given specified via patterns
of the form “(is p1 . . . pn)”. This works both for term and prop.

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 61

term_pat

(
���� is

����term�
�

�
�

)
����

prop_pat

(
���� is

����prop�
�

�
�

)
����

Declarations of local variables x :: τ and logical propositions a : ϕ represent
different views on the same principle of introducing a local scope. In practice,
one may usually omit the typing of vars (due to type-inference), and the
naming of propositions (due to implicit references of current facts). In any
case, Isar proof elements usually admit to introduce multiple such items
simultaneously.

vars

name�
�

�
�

�
�::

����type

�
�

�

�name �
�::

����type

�
�

mixfix

�

�

�

� and
�� ��

�

�
props

�
�thmdecl

�
�

prop �
�prop_pat

�
�

�

�

�

�

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 62

props ′

prop �
�prop_pat

�
�

�

�

�

�
The treatment of multiple declarations corresponds to the complementary
focus of vars versus props. In “x1 . . . xn :: τ” the typing refers to all variables,
while in a: ϕ1 . . . ϕn the naming refers to all propositions collectively. Isar
language elements that refer to vars or props typically admit separate typings
or namings via another level of iteration, with explicit and separators; e.g.
see fix and assume in §6.2.1.

3.3.9 Attributes and theorems
Attributes have their own “semi-inner” syntax, in the sense that input con-
forming to args below is parsed by the attribute a second time. The attribute
argument specifications may be any sequence of atomic entities (identifiers,
strings etc.), or properly bracketed argument lists. Below atom refers to any
atomic entity, including any keyword conforming to sym_ident.

atom

name�
�type_ident

�type_var

�term_var

�nat

�float

�keyword

�cartouche

�
�
�
�
�
�
�
�

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 63

arg

atom�
� (

����args)
����� [

����args]
����

�
�
�

args

�
�arg

�
�

attributes

[
�����

� name args�
� ,

����
�
�

�
�

]
����

Theorem specifications come in several flavors: axmdecl and thmdecl usually
refer to axioms, assumptions or results of goal statements, while thmdef
collects lists of existing theorems. Existing theorems are given by thm and
thms, the former requires an actual singleton result.
There are three forms of theorem references:

1. named facts a,

2. selections from named facts a(i) or a(j − k),

3. literal fact propositions using token syntax altstring ‘ϕ‘ or cartouche
‹ϕ› (see also method fact).

Any kind of theorem specification may include lists of attributes both on the
left and right hand sides; attributes are applied to any immediately preceding
fact. If names are omitted, the theorems are not stored within the theorem
database of the theory or proof context, but any given attributes are applied
nonetheless.
An extra pair of brackets around attributes (like “[[simproc a]]”) abbreviates
a theorem reference involving an internal dummy fact, which will be ignored

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 64

later on. So only the effect of the attribute on the background context
will persist. This form of in-place declarations is particularly useful with
commands like declare and using.

axmdecl

name �
�attributes

�
�

:
����

thmbind

name attributes�
�name

�attributes

�
�
�

thmdecl

thmbind :
����

thmdef

thmbind =
����

thm

name �
�selection

�
�

�

�altstring

�cartouche

�

�
�

�
�attributes

�
�

�

� [
����attributes]

����

�

�
thms

thm�
�

�
�

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 65

selection

(
���� nat�

�nat -
�����

�nat

�
�

�
�

�

� ,
����

�

�

)
����

3.3.10 Structured specifications
Structured specifications use propositions with explicit notation for the
“eigen-context” to describe rule structure:

∧
x . A x =⇒ . . . =⇒ B x is ex-

pressed as B x if A x and . . . for x. It is also possible to use dummy terms
“_” (underscore) to refer to locally fixed variables anonymously.
Multiple specifications are delimited by “|” to emphasize separate cases: each
with its own scope of inferred types for free variables.

for_fixes

�
�for

�� ��vars

�
�

multi_specs

structured_spec�
� |

����
�
�

structured_spec

�
�thmdecl

�
�

prop spec_prems for_fixes

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 66

spec_prems

�
� if

���� prop�
�

�
�

�

� and
�� ��

�

�

�
�

specification

vars where
�� ��multi_specs

3.4 Diagnostic commands
print_theory∗ : context →

print_definitions∗ : context →
print_methods∗ : context →

print_attributes∗ : context →
print_theorems∗ : context →
find_theorems∗ : context →

find_consts∗ : context →
thm_deps∗ : context →

unused_thms∗ : context →
print_facts∗ : context →

print_term_bindings∗ : context →

print_theory
�� ���

�print_definitions
�� ���print_methods
�� ���print_attributes
�� ���print_theorems
�� ���print_facts
�� ��

�
�
�
�
�
�

�
� !

����
�
�

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 67

find_theorems
�� ���

� (
�����

�nat

�
�

�
�with_dups

�� ��
�
�

)
����

�
�

�

��
��

�thm_criterion

�
�

thm_criterion

�
� -

����
�
�

name
�� ��:

����name�
�intro

�� ���elim
�� ���dest
�� ���solves
�� ���simp
�� ��:

����term

�term

�
�
�
�
�
�
�

find_consts
�� ���

�const_criterion

�
�

const_criterion

�
� -

����
�
�

name
�� ��:

����name�
�strict

�� ��:
����type

�type

�
�
�

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 68

thm_deps
�� ��thmrefs

unused_thms
�� ���

� name�
�

�
�

-
�����

�name

�
�

�
�

These commands print certain parts of the theory and proof context. Note
that there are some further ones available, such as for the set of rules declared
for simplifications.

print_theory prints the main logical content of the background theory;
the “!” option indicates extra verbosity.

print_definitions prints dependencies of definitional specifications within
the background theory, which may be constants (§5.4, §5.9) or types
(§5.13.2, §11.6); the “!” option indicates extra verbosity.

print_methods prints all proof methods available in the current theory
context; the “!” option indicates extra verbosity.

print_attributes prints all attributes available in the current theory con-
text; the “!” option indicates extra verbosity.

print_theorems prints theorems of the background theory resulting from
the last command; the “!” option indicates extra verbosity.

print_facts prints all local facts of the current context, both named and
unnamed ones; the “!” option indicates extra verbosity.

print_term_bindings prints all term bindings that are present in the
context.

find_theorems criteria retrieves facts from the theory or proof context
matching all of given search criteria. The criterion name: p selects
all theorems whose fully qualified name matches pattern p, which may
contain “∗” wildcards. The criteria intro, elim, and dest select theorems
that match the current goal as introduction, elimination or destruction
rules, respectively. The criterion solves returns all rules that would
directly solve the current goal. The criterion simp: t selects all rewrite

CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 69

rules whose left-hand side matches the given term. The criterion term
t selects all theorems that contain the pattern t – as usual, patterns
may contain occurrences of the dummy “_”, schematic variables, and
type constraints.
Criteria can be preceded by “−” to select theorems that do not match.
Note that giving the empty list of criteria yields all currently known
facts. An optional limit for the number of printed facts may be given;
the default is 40. By default, duplicates are removed from the search
result. Use with_dups to display duplicates.

find_consts criteria prints all constants whose type meets all of the given
criteria. The criterion strict: ty is met by any type that matches the
type pattern ty. Patterns may contain both the dummy type “_”
and sort constraints. The criterion ty is similar, but it also matches
against subtypes. The criterion name: p and the prefix “−” function
as described for find_theorems.

thm_deps thms prints immediate theorem dependencies, i.e. the union of
all theorems that are used directly to prove the argument facts, without
going deeper into the dependency graph.

unused_thms A1 . . . Am − B1 . . . Bn displays all theorems that are
proved in theories B1 . . . Bn or their parents but not in A1 . . . Am or
their parents and that are never used. If n is 0, the end of the range
of theories defaults to the current theory. If no range is specified, only
the unused theorems in the current theory are displayed.

Chapter 4

Document preparation

Isabelle/Isar provides a simple document preparation system based on PDF-
LATEX, with support for hyperlinks and bookmarks within that format. This
allows to produce papers, books, theses etc. from Isabelle theory sources.
LATEX output is generated while processing a session in batch mode, as
explained in the The Isabelle System Manual [54]. The main Isabelle
tools to get started with document preparation are isabelle mkroot and
isabelle build.
The classic Isabelle/HOL tutorial [38] also explains some aspects of theory
presentation.

4.1 Markup commands
chapter : any → any
section : any → any

subsection : any → any
subsubsection : any → any

paragraph : any → any
subparagraph : any → any

text : any → any
txt : any → any

text_raw : any → any

Markup commands provide a structured way to insert text into the docu-
ment generated from a theory. Each markup command takes a single text
argument, which is passed as argument to a corresponding LATEX macro. The
default macros provided by ~~/lib/texinputs/isabelle.sty can be rede-
fined according to the needs of the underlying document and LATEX styles.
Note that formal comments (§3.3.5) are similar to markup commands, but
have a different status within Isabelle/Isar syntax.

70

CHAPTER 4. DOCUMENT PREPARATION 71

chapter
�� ���

�section
�� ���subsection
�� ���subsubsection
�� ���paragraph
�� ���subparagraph
�� ��

�
�
�
�
�
�

text �
� ;

����
�
�

�

� text
�� ���

�txt
�� ���text_raw
�� ��

�
�
�

text

�

�

chapter, section, subsection etc. mark section headings within the the-
ory source. This works in any context, even before the initial theory
command. The corresponding LATEX macros are \isamarkupchapter,
\isamarkupsection, \isamarkupsubsection etc.

text and txt specify paragraphs of plain text. This corresponds to a LATEX
environment \begin{isamarkuptext} . . . \end{isamarkuptext} etc.

text_raw is similar to text, but without any surrounding markup environ-
ment. This allows to inject arbitrary LATEX source into the generated
document.

All text passed to any of the above markup commands may refer to formal
entities via document antiquotations, see also §4.2. These are interpreted in
the present theory or proof context.

The proof markup commands closely resemble those for theory specifications,
but have a different formal status and produce different LATEX macros.

CHAPTER 4. DOCUMENT PREPARATION 72

4.2 Document antiquotations
theory : antiquotation

thm : antiquotation
lemma : antiquotation

prop : antiquotation
term : antiquotation

term_type : antiquotation
typeof : antiquotation
const : antiquotation

abbrev : antiquotation
typ : antiquotation

type : antiquotation
class : antiquotation

locale : antiquotation
bundle : antiquotation

text : antiquotation
goals : antiquotation

subgoals : antiquotation
prf : antiquotation

full_prf : antiquotation
ML_text : antiquotation

ML : antiquotation
ML_def : antiquotation
ML_ref : antiquotation

ML_infix : antiquotation
ML_infix_def : antiquotation
ML_infix_ref : antiquotation

ML_type : antiquotation
ML_type_def : antiquotation
ML_type_ref : antiquotation
ML_structure : antiquotation

ML_structure_def : antiquotation
ML_structure_ref : antiquotation

ML_functor : antiquotation
ML_functor_def : antiquotation
ML_functor_ref : antiquotation

CHAPTER 4. DOCUMENT PREPARATION 73

emph : antiquotation
bold : antiquotation

verbatim : antiquotation
bash_function : antiquotation
system_option : antiquotation

session : antiquotation
file : antiquotation
url : antiquotation

cite : antiquotation
nocite : antiquotation

citet : antiquotation
citep : antiquotation

print_antiquotations∗ : context →

The overall content of an Isabelle/Isar theory may alternate between formal
and informal text. The main body consists of formal specification and proof
commands, interspersed with markup commands (§4.1) or document com-
ments (§3.3.5). The argument of markup commands quotes informal text to
be printed in the resulting document, but may again refer to formal entities
via document antiquotations.
For example, embedding @{term [show_types] "f x = a + x"} within a
text block makes (f :: ′a ⇒ ′a) (x :: ′a) = (a:: ′a) + x appear in the final LATEX
document.
Antiquotations usually spare the author tedious typing of logical entities in
full detail. Even more importantly, some degree of consistency-checking be-
tween the main body of formal text and its informal explanation is achieved,
since terms and types appearing in antiquotations are checked within the
current theory or proof context.

Antiquotations are in general written as @{name [options] arguments}.
The short form \<^name>‹argument_content› (without surrounding @{. . . })
works for a single argument that is a cartouche. A cartouche without spe-
cial decoration is equivalent to \<^cartouche>‹argument_content›, which
is equivalent to @{cartouche ‹argument_content›}. The special name
cartouche is defined in the context: Isabelle/Pure introduces that as an alias
to text (see below). Consequently, ‹foo_bar + baz ≤ bazar› prints literal
quasi-formal text (unchecked). A control symbol \<^name> within the body
text, but without a subsequent cartouche, is equivalent to @{name}.

CHAPTER 4. DOCUMENT PREPARATION 74

antiquotation

@{
����antiquotation_body }

�����
�\<

�̂� ��name >
����cartouche

�cartouche

�
�
�

options

[
�����

� option�
� ,

����
�
�

�
�

]
����

option

name�
�name =

����name

�
�

Note that the syntax of antiquotations may not include source comments
(* . . . *) nor verbatim text {* . . . *}.

CHAPTER 4. DOCUMENT PREPARATION 75

antiquotation_body

text
�� ���

�cartouche
�� ���theory_text
�� ��

�
�
�

options text�

�theory
�� ��options embedded

�thm
�� ��options styles thms

�lemma
�� ��options prop by

�� ��method �
�method

�
�

�prop
�� ��options styles prop

�term
�� ��options styles term

�value
�� ��options styles term

�term_type
�� ��options styles term

�typeof
�� ��options styles term

�const
�� ��options term

�abbrev
�� ��options term

�typ
�� ��options type

�type
�� ��options embedded

�class
�� ��options embedded

�locale
�� ��options embedded

�bundle
�� ��options embedded

� command
�� ���

�method
�� ���attribute
�� ��

�
�
�

options name

�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

CHAPTER 4. DOCUMENT PREPARATION 76

antiquotation

goals
�� ��options�

�subgoals
�� ��options

�prf
�� ��options thms

�full_prf
�� ��options thms

�ML_text
�� ��options text

�ML
����options text

�ML_infix
�� ��options text

�ML_type
�� ��options typeargs text

�ML_structure
�� ��options text

�ML_functor
�� ��options text

�emph
�� ��options text

�bold
�� ��options text

�verbatim
�� ��options text

�bash_function
�� ��options embedded

�system_option
�� ��options embedded

�session
�� ��options embedded

�path
�� ��options embedded

�file
�� ��options name

�dir
�� ��options name

�url
�� ��options embedded

� cite
�� ���

�nocite
�� ���citet
�� ���citep
�� ��

�
�
�
�

embedded

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

CHAPTER 4. DOCUMENT PREPARATION 77

styles

(
���� style�

� ,
����

�
�

)
����

style

name�
�

�
�

print_antiquotations
�� ���

� !
����

�
�

@{text s} prints uninterpreted source text s, i.e. inner syntax. This is par-
ticularly useful to print portions of text according to the Isabelle doc-
ument style, without demanding well-formedness, e.g. small pieces of
terms that should not be parsed or type-checked yet.
It is also possible to write this in the short form ‹s› without any further
decoration.

@{theory_text s} prints uninterpreted theory source text s, i.e. outer syntax
with command keywords and other tokens.

@{theory A} prints the session-qualified theory name A, which is guaranteed
to refer to a valid ancestor theory in the current context.

@{thm a1 . . . an} prints theorems a1 . . . an. Full fact expressions are
allowed here, including attributes (§3.3.9).

@{prop ϕ} prints a well-typed proposition ϕ.

@{lemma ϕ by m} proves a well-typed proposition ϕ by method m and
prints the original ϕ.

@{term t} prints a well-typed term t.

@{value t} evaluates a term t and prints its result, see also value.

@{term_type t} prints a well-typed term t annotated with its type.

CHAPTER 4. DOCUMENT PREPARATION 78

@{typeof t} prints the type of a well-typed term t.

@{const c} prints a logical or syntactic constant c.

@{abbrev c x1 . . . xn} prints a constant abbreviation c x1 . . . xn ≡ rhs as
defined in the current context.

@{typ τ} prints a well-formed type τ .

@{type κ} prints a (logical or syntactic) type constructor κ.

@{class c} prints a class c.

@{locale c} prints a locale c.

@{bundle c} prints a bundle c.

@{command name}, @{method name}, @{attribute name} print checked
entities of the Isar language.

@{goals} prints the current dynamic goal state. This is mainly for support
of tactic-emulation scripts within Isar. Presentation of goal states does
not conform to the idea of human-readable proof documents!
When explaining proofs in detail it is usually better to spell out the
reasoning via proper Isar proof commands, instead of peeking at the
internal machine configuration.

@{subgoals} is similar to @{goals}, but does not print the main goal.

@{prf a1 . . . an} prints the (compact) proof terms corresponding to the
theorems a1 . . . an. Note that this requires proof terms to be switched
on for the current logic session.

@{full_prf a1 . . . an} is like @{prf a1 . . . an}, but prints the full proof
terms, i.e. also displays information omitted in the compact proof term,
which is denoted by “_” placeholders there.

@{ML_text s} prints ML text verbatim: only the token language is checked.

@{ML s}, @{ML_infix s}, @{ML_type s}, @{ML_structure s}, and
@{ML_functor s} check text s as ML value, infix operator, type, ex-
ception, structure, and functor respectively. The source is printed ver-
batim. The variants @{ML_def s} and @{ML_ref s} etc. maintain
the document index: “def” means to make a bold entry, “ref” means to
make a regular entry.

CHAPTER 4. DOCUMENT PREPARATION 79

There are two forms for type constructors, with or without separate
type arguments: this impacts only the index entry. For example,
@{ML_type_ref ‹ ′a list›} makes an entry literally for “ ′a list” (sorted
under the letter “a”), but @{ML_type_ref ′a ‹list›} makes an entry
for the constructor name “list”.

@{emph s} prints document source recursively, with LATEX markup
\emph{. . . }.

@{bold s} prints document source recursively, with LATEX markup
\textbf{. . . }.

@{verbatim s} prints uninterpreted source text literally as ASCII characters,
using some type-writer font style.

@{bash_function name} prints the given GNU bash function verbatim. The
name is checked wrt. the Isabelle system environment [54].

@{system_option name} prints the given system option verbatim. The
name is checked wrt. cumulative etc/options of all Isabelle compo-
nents, notably ~~/etc/options.

@{session name} prints given session name verbatim. The name is checked
wrt. the dependencies of the current session.

@{path name} prints the file-system path name verbatim.

@{file name} is like @{path name}, but ensures that name refers to a plain
file.

@{dir name} is like @{path name}, but ensures that name refers to a di-
rectory.

@{url name} produces markup for the given URL, which results in an active
hyperlink within the text.

@{cite arg} produces the BibTEX citation macro \cite[...]{...} with its
optional and mandatory argument. The analogous \nocite, and the
\citet and \citep variants from the natbib package1 are supported
as well.
The argument syntax is uniform for all variants and is usually presented
in control-symbol-cartouche form: cite ‹arg›. The formal syntax of the
nested argument language is defined as follows:

1https://ctan.org/pkg/natbib

https://ctan.org/pkg/natbib

CHAPTER 4. DOCUMENT PREPARATION 80

arg

�
�embedded in

����
�
�

name�
� and

�� ��
�
�

�

��
��

�using
�� ��name

�
�

Here the embedded text is free-form LATEX, which becomes the optional
argument of the \cite macro. The named items are BibTEX database
entries and become the mandatory argument (separated by comma).
The optional part “using name” specifies an alternative LATEX macro
name.

print_antiquotations prints all document antiquotations that are defined
in the current context; the “!” option indicates extra verbosity.

4.2.1 Styled antiquotations
The antiquotations thm, prop and term admit an extra style specification to
modify the printed result. A style is specified by a name with a possibly
empty number of arguments; multiple styles can be sequenced with commas.
The following standard styles are available:

lhs extracts the first argument of any application form with at least two
arguments — typically meta-level or object-level equality, or any other
binary relation.

rhs is like lhs, but extracts the second argument.

concl extracts the conclusion C from a rule in Horn-clause normal form A1

=⇒ . . . An =⇒ C.

prem n extract premise number n from from a rule in Horn-clause normal
form A1 =⇒ . . . An =⇒ C.

CHAPTER 4. DOCUMENT PREPARATION 81

4.2.2 General options
The following options are available to tune the printed output of antiquo-
tations. Note that many of these coincide with system and configuration
options of the same names.

show_types = bool and show_sorts = bool control printing of explicit type
and sort constraints.

show_structs = bool controls printing of implicit structures.

show_abbrevs = bool controls folding of abbreviations.

names_long = bool forces names of types and constants etc. to be printed
in their fully qualified internal form.

names_short = bool forces names of types and constants etc. to be printed
unqualified. Note that internalizing the output again in the current
context may well yield a different result.

names_unique = bool determines whether the printed version of qualified
names should be made sufficiently long to avoid overlap with names
declared further back. Set to false for more concise output.

eta_contract = bool prints terms in η-contracted form.

display = bool indicates if the text is to be output as multi-line “display
material”, rather than a small piece of text without line breaks (which
is the default).
In this mode the embedded entities are printed in the same style as the
main theory text.

break = bool controls line breaks in non-display material.

cartouche = bool indicates if the output should be delimited as cartouche.

quotes = bool indicates if the output should be delimited via double quotes
(option cartouche takes precedence). Note that the Isabelle LATEX
styles may suppress quotes on their own account.

mode = name adds name to the print mode to be used for presentation.
Note that the standard setup for LATEX output is already present by
default, with mode “latex”.

CHAPTER 4. DOCUMENT PREPARATION 82

margin = nat and indent = nat change the margin or indentation for pretty
printing of display material.

goals_limit = nat determines the maximum number of subgoals to be
printed (for goal-based antiquotation).

source = bool prints the original source text of the antiquotation arguments,
rather than its internal representation. Note that formal checking of
thm, term, etc. is still enabled; use the text antiquotation for unchecked
output.
Regular term and typ antiquotations with source = false involve a full
round-trip from the original source to an internalized logical entity back
to a source form, according to the syntax of the current context. Thus
the printed output is not under direct control of the author, it may
even fluctuate a bit as the underlying theory is changed later on.
In contrast, source = true admits direct printing of the given source
text, with the desirable well-formedness check in the background, but
without modification of the printed text.
Cartouche delimiters of the argument are stripped for antiquotations
that are internally categorized as “embedded”.

source_cartouche is like source, but cartouche delimiters are always pre-
served in the output.

For Boolean flags, “name = true” may be abbreviated as “name”. All of
the above flags are disabled by default, unless changed specifically for a logic
session in the corresponding ROOT file.

4.3 Markdown-like text structure
The markup commands text, txt, text_raw (§4.1) consist of plain text.
Its internal structure consists of paragraphs and (nested) lists, using special
Isabelle symbols and some rules for indentation and blank lines. This quasi-
visual format resembles Markdown2, but the full complexity of that notation
is avoided.
This is a summary of the main principles of minimal Markdown in Isabelle:

• List items start with the following markers
2http://commonmark.org

http://commonmark.org

CHAPTER 4. DOCUMENT PREPARATION 83

itemize: \<^item>

enumerate: \<^enum>

description: \<^descr>

• Adjacent list items with same indentation and same marker are grouped
into a single list.

• Singleton blank lines separate paragraphs.

• Multiple blank lines escape from the current list hierarchy.

Notable differences to official Markdown:

• Indentation of list items needs to match exactly.

• Indentation is unlimited (official Markdown interprets four spaces as
block quote).

• List items always consist of paragraphs — there is no notion of “tight”
list.

• Section headings are expressed via Isar document markup commands
(§4.1).

• URLs, font styles, other special content is expressed via antiquotations
(§4.2), usually with proper nesting of sub-languages via text cartouches.

4.4 Document markers and command tags
Document markers are formal comments of the form 0‹marker_body› (using
the control symbol \<^marker>) and may occur anywhere within the outer
syntax of a command: the inner syntax of a marker body resembles that
for attributes (§3.3.9). In contrast, Command tags may only occur after a
command keyword and are treated as special markers as explained below.

marker

0
����cartouche

CHAPTER 4. DOCUMENT PREPARATION 84

marker_body

�
� name args�

� ,
����

�
�

�
�

tags

�
�tag

�
�

tag

%
���� short_ident�

�string

�
�

Document markers are stripped from the document output, but surrounding
white-space is preserved: e.g. a marker at the end of a line does not affect
the subsequent line break. Markers operate within the semantic presentation
context of a command, and may modify it to change the overall appearance
of a command span (e.g. by adding tags).
Each document marker has its own syntax defined in the theory context; the
following markers are predefined in Isabelle/Pure:

title
�� ���

�creator
�� ���contributor
�� ���date
�� ���license
�� ���description
�� ��

�
�
�
�
�
�

embedded

CHAPTER 4. DOCUMENT PREPARATION 85

tag
�� ���

�scope

�
�

name

scope

(
���� proof

�� ���
�command

�� ��
�
�

)
����

0‹title arg›, 0‹creator arg›, 0‹contributor arg›, 0‹date arg›, 0‹license
arg›, and 0‹description arg› produce markup in the PIDE document,
without any immediate effect on typesetting. This vocabulary is taken
from the Dublin Core Metadata Initiative3. The argument is an un-
interpreted string, except for description, which consists of words that
are subject to spell-checking.

0‹tag name› updates the list of command tags in the presentation context:
later declarations take precedence, so 0‹tag a, tag b, tag c› produces
a reversed list. The default tags are given by the original keywords
declaration of a command, and the system option document_tags.
The optional scope tells how far the tagging is applied to subsequent
proof structure: “(proof)” means it applies to the following proof text,
and “(command)” means it only applies to the current command. The
default within a proof body is “(proof)”, but for toplevel goal state-
ments it is “(command)”. Thus a tag marker for theorem, lemma
etc. does not affect its proof by default.
An old-style command tag %name is treated like a document marker
0‹tag (proof) name›: the list of command tags precedes the list of
document markers. The head of the resulting tags in the presentation
context is turned into LATEX environments to modify the type-setting.
The following tags are pre-declared for certain classes of commands,
and serve as default markup for certain kinds of commands:

document document markup commands
theory theory begin/end
proof all proof commands
ML all commands involving ML code

3https://www.dublincore.org/specifications/dublin-core/dcmi-terms

https://www.dublincore.org/specifications/dublin-core/dcmi-terms

CHAPTER 4. DOCUMENT PREPARATION 86

The Isabelle document preparation system [54] allows tagged command re-
gions to be presented specifically, e.g. to fold proof texts, or drop parts of the
text completely.
For example “by auto 0‹tag invisible›” causes that piece of proof to be
treated as invisible instead of proof (the default), which may be shown or
hidden depending on the document setup. In contrast, “by auto 0‹tag visi-
ble›” forces this text to be shown invariably.
Explicit tag specifications within a proof apply to all subsequent commands
of the same level of nesting. For example, “proof 0‹tag invisible› . . . qed”
forces the whole sub-proof to be typeset as visible (unless some of its parts
are tagged differently).

Command tags merely produce certain markup environments for type-
setting. The meaning of these is determined by LATEX macros, as defined in
~~/lib/texinputs/isabelle.sty or by the document author. The Isabelle
document preparation tools also provide some high-level options to specify
the meaning of arbitrary tags to “keep”, “drop”, or “fold” the corresponding
parts of the text. Logic sessions may also specify “document versions”, where
given tags are interpreted in some particular way. Again see [54] for further
details.

4.5 Railroad diagrams
rail : antiquotation

rail
�� ��text

The rail antiquotation allows to include syntax diagrams into Isabelle doc-
uments. LATEX requires the style file ~~/lib/texinputs/railsetup.sty,
which can be used via \usepackage{railsetup} in root.tex, for example.
The rail specification language is quoted here as Isabelle string or text
cartouche; it has its own grammar given below.

�
�rule

�
�

�

� ;
����

�

�

CHAPTER 4. DOCUMENT PREPARATION 87

rule

�
� identifier�

�antiquotation

�
�

:
����

�
�

body

body

concatenation�
� |

����
�
�

concatenation

atom �
� ?

����
�
�

�

�

�

�

�
� *

�����
� +

����
�
�

�
�atom

�
�

�
�

atom

(
�����

�body

�
�

)
�����

�identifier

��
� @

����
�
�

string�
�antiquotation

�
�

�\<newline>
�� ��

�

�
�

�
The lexical syntax of identifier coincides with that of short_ident in regular
Isabelle syntax, but string uses single quotes instead of double quotes of the
standard string category.
Each rule defines a formal language (with optional name), using a notation
that is similar to EBNF or regular expressions with recursion. The meaning
and visual appearance of these rail language elements is illustrated by the
following representative examples.

CHAPTER 4. DOCUMENT PREPARATION 88

• Empty ()

• Nonterminal A

A

• Nonterminal via Isabelle antiquotation @{syntax method}

method

• Terminal ’xyz’

xyz
�� ��

• Terminal in keyword style @’xyz’

xyz
�� ��

• Terminal via Isabelle antiquotation @@{method rule}

rule
�� ��

• Concatenation A B C

A B C

• Newline inside concatenation A B C \<newline> D E F

A B C �
��

�D E F

CHAPTER 4. DOCUMENT PREPARATION 89

• Variants A | B | C

A�
�B

�C

�
�
�

• Option A ?

�
�A

�
�

• Repetition A *

�
�A

�
�

• Repetition with separator A * sep

�
� A�

�sep

�
�

�
�

• Strict repetition A +

A�
�

�
�

• Strict repetition with separator A + sep

CHAPTER 4. DOCUMENT PREPARATION 90

A�
�sep

�
�

Chapter 5

Specifications

The Isabelle/Isar theory format integrates specifications and proofs, with
support for interactive development by continuous document editing. There
is a separate document preparation system (see chapter 4), for typesetting
formal developments together with informal text. The resulting hyper-linked
PDF documents can be used both for WWW presentation and printed copies.
The Isar proof language (see chapter 6) is embedded into the theory language
as a proper sub-language. Proof mode is entered by stating some theorem
or lemma at the theory level, and left again with the final conclusion (e.g.
via qed).

5.1 Defining theories
theory : toplevel → theory

end : theory → toplevel
thy_deps∗ : theory →

Isabelle/Isar theories are defined via theory files, which consist of an out-
ermost sequence of definition–statement–proof elements. Some definitions
are self-sufficient (e.g. fun in Isabelle/HOL), with foundational proofs per-
formed internally. Other definitions require an explicit proof as justification
(e.g. function and termination in Isabelle/HOL). Plain statements like
theorem or lemma are merely a special case of that, defining a theorem
from a given proposition and its proof.
The theory body may be sub-structured by means of local theory targets, such
as locale and class. It is also possible to use context begin . . . end blocks
to delimited a local theory context: a named context to augment a locale or
class specification, or an unnamed context to refer to local parameters and
assumptions that are discharged later. See §5.2 for more details.

A theory is commenced by the theory command, which indicates imports
of previous theories, according to an acyclic foundational order. Before the

91

CHAPTER 5. SPECIFICATIONS 92

initial theory command, there may be optional document header material
(like section or text, see §4.1). The document header is outside of the
formal theory context, though.
A theory is concluded by a final end command, one that does not belong to
a local theory target. No further commands may follow such a global end.

theory
�� ��system_name imports

�� �� system_name�
�

�
�

�

��
��

�keywords

�
�

�
�abbrevs

�
�

begin
�� ��

keywords

keywords
�� �� keyword_decls�

� and
�� ��

�
�

keyword_decls

string�
�

�
�

�
�::

����name tags

�
�

abbrevs

abbrevs
�� �� text�

�
�
�

=
���� text�

�
�
�

�

� and
�� ��

�

�

CHAPTER 5. SPECIFICATIONS 93

thy_deps
�� ���

�thy_bounds �
�thy_bounds

�
�

�
�

thy_bounds

name�
� (

���� name�
� |

����
�
�

)
����

�
�

theory A imports B1 . . . Bn begin starts a new theory A based on the
merge of existing theories B1 . . . Bn. Due to the possibility to import
more than one ancestor, the resulting theory structure of an Isabelle
session forms a directed acyclic graph (DAG). Isabelle takes care that
sources contributing to the development graph are always up-to-date:
changed files are automatically rechecked whenever a theory header
specification is processed.
Empty imports are only allowed in the bootstrap process of the special
theory Pure, which is the start of any other formal development based
on Isabelle. Regular user theories usually refer to some more complex
entry point, such as theory Main in Isabelle/HOL.
The keywords specification declares outer syntax (chapter 3) that
is introduced in this theory later on (rare in end-user applications).
Both minor keywords and major keywords of the Isar command lan-
guage need to be specified, in order to make parsing of proof docu-
ments work properly. Command keywords need to be classified ac-
cording to their structural role in the formal text. Examples may be
seen in Isabelle/HOL sources itself, such as keywords "typedef" ::
thy_goal_defn or keywords "datatype" :: thy_defn for theory-level
definitions with and without proof, respectively. Additional tags pro-
vide defaults for document preparation (§4.4).
The abbrevs specification declares additional abbreviations for syn-
tactic completion. The default for a new keyword is just its name, but
completion may be avoided by defining abbrevs with empty text.

CHAPTER 5. SPECIFICATIONS 94

end concludes the current theory definition. Note that some other com-
mands, e.g. local theory targets locale or class may involve a begin
that needs to be matched by end, according to the usual rules for
nested blocks.

thy_deps visualizes the theory hierarchy as a directed acyclic graph. By
default, all imported theories are shown. This may be restricted by
specifying bounds wrt. the theory inclusion relation.

5.2 Local theory targets
context : theory → local_theory

end : local_theory → theory
private

qualified

A local theory target is a specification context that is managed separately
within the enclosing theory. Contexts may introduce parameters (fixed vari-
ables) and assumptions (hypotheses). Definitions and theorems depending
on the context may be added incrementally later on.
Named contexts refer to locales (cf. §5.7) or type classes (cf. §5.8); the name
“−” signifies the global theory context.
Unnamed contexts may introduce additional parameters and assumptions,
and results produced in the context are generalized accordingly. Such auxil-
iary contexts may be nested within other targets, like locale, class, instan-
tiation, overloading.

context
�� ��name �

�opening

�
�

begin
�� ��

context
�� ���

�includes

�
�

�
�context_elem

�
�

begin
�� ��

target

(
����in

����name)
����

CHAPTER 5. SPECIFICATIONS 95

context c bundles begin opens a named context, by recommencing an
existing locale or class c. Note that locale and class definitions allow
to include the begin keyword as well, in order to continue the local
theory immediately after the initial specification. Optionally given
bundles only take effect in the surface context within the begin / end
block.

context bundles elements begin opens an unnamed context, by extending
the enclosing global or local theory target by the given declaration bun-
dles (§5.3) and context elements (fixes, assumes etc.). This means
any results stemming from definitions and proofs in the extended con-
text will be exported into the enclosing target by lifting over extra
parameters and premises.

end concludes the current local theory, according to the nesting of contexts.
Note that a global end has a different meaning: it concludes the theory
itself (§5.1).

private or qualified may be given as modifiers before any local theory
command. This restricts name space accesses to the local scope, as
determined by the enclosing context begin . . . end block. Outside
its scope, a private name is inaccessible, and a qualified name is only
accessible with some qualification.
Neither a global theory nor a locale target provides a local scope by
itself: an extra unnamed context is required to use private or qualified
here.

(in c) given after any local theory command specifies an immediate target,
e.g. “definition (in c)” or “theorem (in c)”. This works both in
a local or global theory context; the current target context will be
suspended for this command only. Note that “(in −)” will always
produce a global result independently of the current target context.

Any specification element that operates on local_theory according to this
manual implicitly allows the above target syntax (in c), but individual syntax
diagrams omit that aspect for clarity.

The exact meaning of results produced within a local theory context de-
pends on the underlying target infrastructure (locale, type class etc.). The
general idea is as follows, considering a context named c with parameter x
and assumption A[x].

CHAPTER 5. SPECIFICATIONS 96

Definitions are exported by introducing a global version with additional argu-
ments; a syntactic abbreviation links the long form with the abstract version
of the target context. For example, a ≡ t[x] becomes c.a ?x ≡ t[?x] at the
theory level (for arbitrary ?x), together with a local abbreviation a ≡ c.a x
in the target context (for the fixed parameter x).
Theorems are exported by discharging the assumptions and generalizing the
parameters of the context. For example, a: B[x] becomes c.a: A[?x] =⇒
B[?x], again for arbitrary ?x.

5.3 Bundled declarations
bundle : local_theory → local_theory
bundle : theory → local_theory

unbundle : local_theory → local_theory
print_bundles∗ : context →

include : proof (state) → proof (state)
including : proof (prove) → proof (prove)
includes : syntax
opening : syntax

The outer syntax of fact expressions (§3.3.9) involves theorems and at-
tributes, which are evaluated in the context and applied to it. Attributes
may declare theorems to the context, as in this_rule [intro] that_rule [elim]
for example. Configuration options (§9.1) are special declaration attributes
that operate on the context without a theorem, as in [[show_types = false]]
for example.
Expressions of this form may be defined as bundled declarations in the con-
text, and included in other situations later on. Including declaration bundles
augments a local context casually without logical dependencies, which is in
contrast to locales and locale interpretation (§5.7).

CHAPTER 5. SPECIFICATIONS 97

bundle
�� ���

�open_bundle
�� ��

�
�

name �

��
� =

����thms for_fixes�
�begin

�� ��
�
�

unbundle
�� ��bundles

print_bundles
�� ���

� !
����

�
�

include
�� ���

�including
�� ��

�
�

bundles

includes

includes
�� ��bundles

opening

opening
�� ��bundles

bundles

�
�no

����
�
�

name�

� and
�� ��

�

�
bundle b = decls defines a bundle of declarations in the current context.

The RHS is similar to the one of the declare command. Bundles de-

CHAPTER 5. SPECIFICATIONS 98

fined in local theory targets are subject to transformations via mor-
phisms, when moved into different application contexts; this works
analogously to any other local theory specification.

bundle b begin body end defines a bundle of declarations from the body of
local theory specifications. It may consist of commands that are tech-
nically equivalent to declare or declaration, which also includes no-
tation, for example. Named fact declarations like “lemmas a [simp]
= b” or “lemma a [simp]: B 〈proof 〉” are also admitted, but the name
bindings are not recorded in the bundle.

open_bundle b is like bundle b followed by unbundle b, so its declara-
tions are activated immediately, but also named for later re-use.

unbundle b activates the declarations from the given bundles in the current
local theory context. This is analogous to lemmas (§5.14) with the
expanded bundles.

print_bundles prints the named bundles that are available in the current
context; the “!” option indicates extra verbosity.

include b activates the declarations from the given bundles in a proof body
(forward mode). This is analogous to note (§6.2.3) with the expanded
bundles.

including b is similar to include, but works in proof refinement (backward
mode). This is analogous to using (§6.2.3) with the expanded bundles.

includes b is similar to include, but applies to a confined specification
context: unnamed contexts and long statements of theorem.

opening b is similar to includes, but applies to a named specification con-
text: locales, classes and named contexts. The effect is confined to
the surface context within the specification block itself and the corre-
sponding begin / end block.

Bundle names may be prefixed by the reserved word no to indicate that the
polarity of certain declaration commands should be inverted, notably:

• syntax versus no_syntax
• translations versus no_translations
• notation versus no_notation
• type_notation versus no_type_notation

CHAPTER 5. SPECIFICATIONS 99

• adhoc_overloading versus no_adhoc_overloading

This also works recursively for the unbundle command as declaration
inside a bundle definition: no means that both the order and polarity
of declarations is reversed (following algebraic group laws).

Here is an artificial example of bundling various configuration options:
bundle trace = [[simp_trace, linarith_trace, metis_trace, smt_trace]]

lemma x = x
including trace by metis

5.4 Term definitions
definition : local_theory → local_theory

defn : attribute
print_defn_rules∗ : context →

abbreviation : local_theory → local_theory
print_abbrevs∗ : context →

Term definitions may either happen within the logic (as equational axioms of
a certain form (see also §5.9), or outside of it as rewrite system on abstract
syntax. The second form is called “abbreviation”.

definition
�� ���

�decl

�
�

definition

abbreviation
�� ���

�mode

�
�

�
�decl

�
�

abbreviation

print_abbrevs
�� ���

� !
����

�
�

CHAPTER 5. SPECIFICATIONS 100

decl

name �
�::

����type

�
�

�
�mixfix

�
�

where
�� ��

definition

�
�thmdecl

�
�

prop spec_prems for_fixes

abbreviation

prop for_fixes

definition c where eq produces an internal definition c ≡ t according to
the specification given as eq, which is then turned into a proven fact.
The given proposition may deviate from internal meta-level equality
according to the rewrite rules declared as defn by the object-logic.
This usually covers object-level equality x = y and equivalence A ←→
B. End-users normally need not change the defn setup.
Definitions may be presented with explicit arguments on the LHS, as
well as additional conditions, e.g. f x y = t instead of f ≡ λx y. t and
y 6= 0 =⇒ g x y = u instead of an unrestricted g ≡ λx y. u.

print_defn_rules prints the definitional rewrite rules declared via defn
in the current context.

abbreviation c where eq introduces a syntactic constant which is associ-
ated with a certain term according to the meta-level equality eq.
Abbreviations participate in the usual type-inference process, but are
expanded before the logic ever sees them. Pretty printing of terms
involves higher-order rewriting with rules stemming from reverted ab-
breviations. This needs some care to avoid overlapping or looping syn-
tactic replacements!
The optional mode specification restricts output to a particular print
mode; using “input” here achieves the effect of one-way abbreviations.
The mode may also include an “output” qualifier that affects the con-
crete syntax declared for abbreviations, cf. syntax in §8.5.2.

CHAPTER 5. SPECIFICATIONS 101

print_abbrevs prints all constant abbreviations of the current context;
the “!” option indicates extra verbosity.

5.5 Axiomatizations
axiomatization : theory → theory (axiomatic!)

axiomatization
�� ���

�vars

�
�

�
�where

�� ��axiomatization

�
�

axiomatization

thmdecl prop�
� and

�� ��
�
�

spec_prems for_fixes

axiomatization c1 . . . cm where ϕ1 . . . ϕn introduces several constants
simultaneously and states axiomatic properties for these. The con-
stants are marked as being specified once and for all, which prevents
additional specifications for the same constants later on, but it is al-
ways possible to emit axiomatizations without referring to particular
constants. Note that lack of precise dependency tracking of axioma-
tizations may disrupt the well-formedness of an otherwise definitional
theory.
Axiomatization is restricted to a global theory context: support for local
theory targets §5.2 would introduce an extra dimension of uncertainty
what the written specifications really are, and make it infeasible to
argue why they are correct.
Axiomatic specifications are required when declaring a new logical
system within Isabelle/Pure, but in an application environment like
Isabelle/HOL the user normally stays within definitional mechanisms
provided by the logic and its libraries.

CHAPTER 5. SPECIFICATIONS 102

5.6 Generic declarations
declaration : local_theory → local_theory

syntax_declaration : local_theory → local_theory
declare : local_theory → local_theory

Arbitrary operations on the background context may be wrapped-up as
generic declaration elements. Since the underlying concept of local theories
may be subject to later re-interpretation, there is an additional dependency
on a morphism that tells the difference of the original declaration context
wrt. the application context encountered later on. A fact declaration is an
important special case: it consists of a theorem which is applied to the context
by means of an attribute.

declaration
�� ���

�syntax_declaration
�� ��

�
�

�
� (

����pervasive
�� ��)

����
�
�

�

��
�text

declare
�� �� thms�

� and
�� ��

�
�

declaration d adds the declaration function d of ML type
Morphism.declaration, to the current local theory under construc-
tion. In later application contexts, the function is transformed accord-
ing to the morphisms being involved in the interpretation hierarchy.
If the (pervasive) option is given, the corresponding declaration is ap-
plied to all possible contexts involved, including the global background
theory.

syntax_declaration is similar to declaration, but is meant to affect only
“syntactic” tools by convention (such as notation and type-checking
information).

declare thms declares theorems to the current local theory context. No
theorem binding is involved here, unlike lemmas (cf. §5.14), so declare

CHAPTER 5. SPECIFICATIONS 103

only has the effect of applying attributes as included in the theorem
specification.

5.7 Locales
A locale is a functor that maps parameters (including implicit type param-
eters) and a specification to a list of declarations. The syntax of locales is
modeled after the Isar proof context commands (cf. §6.2.1).
Locale hierarchies are supported by maintaining a graph of dependencies be-
tween locale instances in the global theory. Dependencies may be introduced
through import (where a locale is defined as sublocale of the imported in-
stances) or by proving that an existing locale is a sublocale of one or several
locale instances.
A locale may be opened with the purpose of appending to its list of decla-
rations (cf. §5.2). When opening a locale declarations from all dependencies
are collected and are presented as a local theory. In this process, which is
called roundup, redundant locale instances are omitted. A locale instance
is redundant if it is subsumed by an instance encountered earlier. A more
detailed description of this process is available elsewhere [4].

5.7.1 Locale expressions
A locale expression denotes a context composed of instances of existing lo-
cales. The context consists of the declaration elements from the locale in-
stances. Redundant locale instances are omitted according to roundup.

locale_expr

instance�
� +

����
�
�

for_fixes

CHAPTER 5. SPECIFICATIONS 104

instance

�
�qualifier :

����
�
�

name pos_insts�
�named_insts

�
�

�

��
��

�rewrites

�
�

qualifier

name �
� ?

����
�
�

pos_insts

�
� _

�����
�term

�
�

�
�

named_insts

where
�� �� name =

����term�
� and

�� ��
�
�

rewrites

rewrites
�� �� �

�thmdecl

�
�

prop�

� and
�� ��

�

�
A locale instance consists of a reference to a locale and either positional
or named parameter instantiations optionally followed by rewrites clauses.

CHAPTER 5. SPECIFICATIONS 105

Identical instantiations (that is, those that instantiate a parameter by itself)
may be omitted. The notation “_” enables to omit the instantiation for a
parameter inside a positional instantiation.
Terms in instantiations are from the context the locale expressions is declared
in. Local names may be added to this context with the optional for clause.
This is useful for shadowing names bound in outer contexts, and for declaring
syntax. In addition, syntax declarations from one instance are effective when
parsing subsequent instances of the same expression.
Instances have an optional qualifier which applies to names in declarations.
Names include local definitions and theorem names. If present, the qualifier
itself is either mandatory (default) or non-mandatory (when followed by “?”).
Non-mandatory means that the qualifier may be omitted on input. Qualifiers
only affect name spaces; they play no role in determining whether one locale
instance subsumes another.
Rewrite clauses amend instances with equations that act as rewrite rules.
This is particularly useful for changing concepts introduced through defini-
tions. Rewrite clauses are available only in interpretation commands (see
§5.7.3 below) and must be proved the user.

5.7.2 Locale declarations
locale : theory → local_theory

experiment : theory → local_theory
print_locale∗ : context →

print_locales∗ : context →
locale_deps∗ : context →

locale
�� ��name �

� =
����locale

�
�

�
�begin

�� ��
�
�

experiment
�� ���

�context_elem

�
�

begin
�� ��

print_locale
�� ���

� !
����

�
�

name

CHAPTER 5. SPECIFICATIONS 106

print_locales
�� ���

� !
����

�
�

locale

context_elem�
�

�
�

�

�opening �
� +

���� context_elem�
�

�
�

�
�

�locale_expr �
�opening

�
�

�
� +

���� context_elem�
�

�
�

�
�

�

�

�

CHAPTER 5. SPECIFICATIONS 107

context_elem

fixes
�� ��vars�

�constrains
�� �� name ::

����type�
� and

�� ��
�
�

�assumes
�� �� props�

� and
�� ��

�
�

�defines
�� �� �

�thmdecl

�
�

prop �
�prop_pat

�
�

�

� and
�� ��

�

�
�notes

�� �� �
�thmdef

�
�

thms�

� and
�� ��

�

�

�
�

�

�

�

locale loc = import opening bundles + body defines a new locale loc as
a context consisting of a certain view of existing locales (import) plus
some additional elements (body) with declaration bundles enriching the
context of the command itself. All import, bundles and body are op-
tional; the degenerate form locale loc defines an empty locale, which
may still be useful to collect declarations of facts later on. Type-
inference on locale expressions automatically takes care of the most
general typing that the combined context elements may acquire.
The import consists of a locale expression; see §5.7.1 above. Its for
clause defines the parameters of import. These are parameters of the
defined locale. Locale parameters whose instantiation is omitted auto-
matically extend the (possibly empty) for clause: they are inserted at
its beginning. This means that these parameters may be referred to
from within the expression and also in the subsequent context elements
and provides a notational convenience for the inheritance of parameters
in locale declarations.

CHAPTER 5. SPECIFICATIONS 108

Declarations from bundles, see §5.3, are effective in the entire command
including a subsequent begin / end block, but they do not contribute
to the declarations stored in the locale.
The body consists of context elements:

fixes x :: τ (mx) declares a local parameter of type τ and mixfix
annotation mx (both are optional). The special syntax declaration
“(structure)” means that x may be referenced implicitly in this
context.

constrains x :: τ introduces a type constraint τ on the local parame-
ter x. This element is deprecated. The type constraint should be
introduced in the for clause or the relevant fixes element.

assumes a: ϕ1 . . . ϕn introduces local premises, similar to assume
within a proof (cf. §6.2.1).

defines a: x ≡ t defines a previously declared parameter. This is
similar to define within a proof (cf. §6.2.1), but defines is re-
stricted to Pure equalities and the defined variable needs to be
declared beforehand via fixes. The left-hand side of the equation
may have additional arguments, e.g. “defines f x1 . . . xn ≡ t”,
which need to be free in the context.

notes a = b1 . . . bn reconsiders facts within a local context. Most
notably, this may include arbitrary declarations in any attribute
specifications included here, e.g. a local simp rule.

Both assumes and defines elements contribute to the locale spec-
ification. When defining an operation derived from the parameters,
definition (§5.4) is usually more appropriate.
Note that “(is p1 . . . pn)” patterns given in the syntax of assumes and
defines above are illegal in locale definitions. In the long goal format
of §6.2.4, term bindings may be included as expected, though.

Locale specifications are “closed up” by turning the given text into a
predicate definition loc_axioms and deriving the original assumptions
as local lemmas (modulo local definitions). The predicate statement
covers only the newly specified assumptions, omitting the content of
included locale expressions. The full cumulative view is only provided
on export, involving another predicate loc that refers to the complete
specification text.

CHAPTER 5. SPECIFICATIONS 109

In any case, the predicate arguments are those locale parameters that
actually occur in the respective piece of text. Also these predicates
operate at the meta-level in theory, but the locale packages attempts to
internalize statements according to the object-logic setup (e.g. replacing∧

by ∀ , and =⇒ by −→ in HOL; see also §9.5). Separate introduction
rules loc_axioms.intro and loc.intro are provided as well.

experiment body begin opens an anonymous locale context with private
naming policy. Specifications in its body are inaccessible from out-
side. This is useful to perform experiments, without polluting the name
space.

print_locale locale prints the contents of the named locale. The command
omits notes elements by default. Use print_locale! to have them
included.

print_locales prints the names of all locales of the current theory; the “!”
option indicates extra verbosity.

locale_deps visualizes all locales and their relations as a Hasse diagram.
This includes locales defined as type classes (§5.8).

5.7.3 Locale interpretation
interpretation : local_theory → proof (prove)

interpret : proof (state) | proof (chain) → proof (prove)
global_interpretation : theory | local_theory → proof (prove)

sublocale : theory | local_theory → proof (prove)
print_interps∗ : context →

intro_locales : method
unfold_locales : method

trace_locales : attribute default false

Locales may be instantiated, and the resulting instantiated declarations
added to the current context. This requires proof (of the instantiated speci-
fication) and is called locale interpretation. Interpretation is possible within
arbitrary local theories (interpretation), within proof bodies (interpret),
into global theories (global_interpretation) and into locales (sublocale).

interpretation
�� ��locale_expr

CHAPTER 5. SPECIFICATIONS 110

interpret
�� ��locale_expr

global_interpretation
�� ��locale_expr �

�definitions

�
�

sublocale
�� ���

�name <
�����

�⊆
����

�
�

�
�

locale_expr �

��
��

�definitions

�
�

print_interps
�� ��name

definitions

defines
�� �� �

�thmdecl

�
�

name �

��
��

�mixfix

�
�

=
����term �

��

� and
�� ��

�

�
The core of each interpretation command is a locale expression expr ; the com-
mand generates proof obligations for the instantiated specifications. Once
these are discharged by the user, instantiated declarations (in particular,
facts) are added to the context in a post-processing phase, in a manner spe-
cific to each command.

CHAPTER 5. SPECIFICATIONS 111

Interpretation commands are aware of interpretations that are already ac-
tive: post-processing is achieved through a variant of roundup that takes
interpretations of the current global or local theory into account. In order
to simplify the proof obligations according to existing interpretations use
methods intro_locales or unfold_locales.
Rewrites clauses rewrites eqns occur within expressions. They amend the
morphism through which a locale instance is interpreted with rewrite rules,
also called rewrite morphisms. This is particularly useful for interpreting con-
cepts introduced through definitions. The equations must be proved the user.
To enable syntax of the instantiated locale within the equation, while reading
a locale expression, equations of a locale instance are read in a temporary
context where the instance is already activated. If activation fails, typically
due to duplicate constant declarations, processing falls back to reading the
equation first.
Given definitions defs produce corresponding definitions in the local theory’s
underlying target and amend the morphism with rewrite rules stemming
from the symmetric of those definitions. Hence these need not be proved
explicitly the user. Such rewrite definitions are a even more useful device
for interpreting concepts introduced through definitions, but they are only
supported for interpretation commands operating in a local theory whose
implementing target actually supports this. Note that despite the suggestive
and connective, defs are processed sequentially without mutual recursion.

interpretation expr interprets expr into a local theory such that its life-
time is limited to the current context block (e.g. a locale or unnamed
context). At the closing end of the block the interpretation and its
declarations disappear. Hence facts based on interpretation can be es-
tablished without creating permanent links to the interpreted locale
instances, as would be the case with sublocale.
When used on the level of a global theory, there is no end of a
current context block, hence interpretation behaves identically to
global_interpretation then.

interpret expr interprets expr into a proof context: the interpretation and
its declarations disappear when closing the current proof block. Note
that for interpret the eqns should be explicitly universally quantified.

global_interpretation expr defines defs interprets expr into a global
theory.
When adding declarations to locales, interpreted versions of these dec-
larations are added to the global theory for all interpretations in the

CHAPTER 5. SPECIFICATIONS 112

global theory as well. That is, interpretations into global theories dy-
namically participate in any declarations added to locales.
Free variables in the interpreted expression are allowed. They are
turned into schematic variables in the generated declarations. In order
to use a free variable whose name is already bound in the context —
for example, because a constant of that name exists — add it to the
for clause.
When used in a nested target, resulting declarations are propagated
through the whole target stack.

sublocale name ⊆ expr defines defs interprets expr into the locale name.
A proof that the specification of name implies the specification of expr
is required. As in the localized version of the theorem command, the
proof is in the context of name. After the proof obligation has been
discharged, the locale hierarchy is changed as if name imported expr
(hence the name sublocale). When the context of name is subse-
quently entered, traversing the locale hierarchy will involve the locale
instances of expr, and their declarations will be added to the context.
This makes sublocale dynamic: extensions of a locale that is instanti-
ated in expr may take place after the sublocale declaration and still
become available in the context. Circular sublocale declarations are
allowed as long as they do not lead to infinite chains.
If interpretations of name exist in the current global theory, the com-
mand adds interpretations for expr as well, with the same qualifier,
although only for fragments of expr that are not interpreted in the
theory already.
Rewrites clauses in the expression or rewrite definitions defs can help
break infinite chains induced by circular sublocale declarations.
In a named context block the sublocale command may also be used,
but the locale argument must be omitted. The command then refers
to the locale (or class) target of the context block.

print_interps name lists all interpretations of locale name in the current
theory or proof context, including those due to a combination of an in-
terpretation or interpret and one or several sublocale declarations.

intro_locales and unfold_locales repeatedly expand all introduction rules
of locale predicates of the theory. While intro_locales only applies the
loc.intro introduction rules and therefore does not descend to assump-
tions, unfold_locales is more aggressive and applies loc_axioms.intro

CHAPTER 5. SPECIFICATIONS 113

as well. Both methods are aware of locale specifications entailed by the
context, both from target statements, and from interpretations (see be-
low). New goals that are entailed by the current context are discharged
automatically.
While unfold_locales is part of the default method for proof and of-
ten invoked “behind the scenes”, intro_locales helps understand which
proof obligations originated from which locale instances. The latter
method is useful while developing proofs but rare in finished develop-
ments.

trace_locales, when set to true, prints the locale instances activated during
roundup. Use this when locale commands yield obscure errors or for
understanding local theories created by complex locale hierarchies.

! If a global theory inherits declarations (body elements) for a locale from
one parent and an interpretation of that locale from another parent, the
interpretation will not be applied to the declarations.

! Since attributes are applied to interpreted theorems, interpretation may
modify the context of common proof tools, e.g. the Simplifier or Classical
Reasoner. As the behaviour of such tools is not stable under interpreta-
tion morphisms, manual declarations might have to be added to the target
context of the interpretation to revert such declarations.

! An interpretation in a local theory or proof context may subsume previ-
ous interpretations. This happens if the same specification fragment is in-
terpreted twice and the instantiation of the second interpretation is more
general than the interpretation of the first. The locale package does not
attempt to remove subsumed interpretations.

! While interpretation (in c) . . . is admissible, it is not useful since its result
is discarded immediately.

CHAPTER 5. SPECIFICATIONS 114

5.8 Classes
class : theory → local_theory

instantiation : theory → local_theory
instance : local_theory → local_theory
instance : theory → proof (prove)
subclass : local_theory → local_theory

print_classes∗ : context →
class_deps∗ : context →
intro_classes : method

A class is a particular locale with exactly one type variable α. Beyond the
underlying locale, a corresponding type class is established which is inter-
preted logically as axiomatic type class [57] whose logical content are the
assumptions of the locale. Thus, classes provide the full generality of locales
combined with the commodity of type classes (notably type-inference). See
[22] for a short tutorial.

class
�� ��class_spec �

�begin
�� ��

�
�

class_spec

name =
���� name �

�opening

�
�

+
���� context_elem�

�
�
�

�

�name �
�opening

�
�

��
�opening

�
�

+
���� context_elem�

�
�
�

�

�

�

instantiation
�� �� name�

� and
�� ��

�
�

::
����arity begin

�� ��

CHAPTER 5. SPECIFICATIONS 115

instance
�� ���

� name�
� and

�� ��
�
�

::
����arity

�name <
�����

�⊆
����

�
�

name

�
�

�

subclass
�� ��name

class_deps
�� ���

�class_bounds �
�class_bounds

�
�

�
�

class_bounds

sort�
� (

���� sort�
� |

����
�
�

)
����

�
�

class c = superclasses bundles + body defines a new class c, inheriting
from superclasses. This introduces a locale c with import of all locales
superclasses.
Any fixes in body are lifted to the global theory level (class opera-
tions f 1, . . . , f n of class c), mapping the local type parameter α to a
schematic type variable ?α :: c.
Likewise, assumes in body are also lifted, mapping each local param-
eter f :: τ [α] to its corresponding global constant f :: τ [?α :: c]. The
corresponding introduction rule is provided as c_class_axioms.intro.
This rule should be rarely needed directly — the intro_classes method
takes care of the details of class membership proofs.
Optionally given bundles take effect in the surface context within the
body and the potentially following begin / end block.

CHAPTER 5. SPECIFICATIONS 116

instantiation t :: (s1, . . . , sn)s begin opens a target (cf. §5.2) which allows
to specify class operations f 1, . . . , f n corresponding to sort s at the
particular type instance (α1 :: s1, . . . , αn :: sn) t. A plain instance
command in the target body poses a goal stating these type arities.
The target is concluded by an end command.
Note that a list of simultaneous type constructors may be given;
this corresponds nicely to mutually recursive type definitions, e.g. in
Isabelle/HOL.

instance in an instantiation target body sets up a goal stating the type
arities claimed at the opening instantiation. The proof would usually
proceed by intro_classes, and then establish the characteristic theo-
rems of the type classes involved. After finishing the proof, the back-
ground theory will be augmented by the proven type arities.
On the theory level, instance t :: (s1, . . . , sn)s provides a convenient
way to instantiate a type class with no need to specify operations: one
can continue with the instantiation proof immediately.

subclass c in a class context for class d sets up a goal stating that class c is
logically contained in class d. After finishing the proof, class d is proven
to be subclass c and the locale c is interpreted into d simultaneously.
A weakened form of this is available through a further variant of
instance: instance c1 ⊆ c2 opens a proof that class c2 implies c1

without reference to the underlying locales; this is useful if the proper-
ties to prove the logical connection are not sufficient on the locale level
but on the theory level.

print_classes prints all classes in the current theory.

class_deps visualizes classes and their subclass relations as a directed
acyclic graph. By default, all classes from the current theory con-
text are show. This may be restricted by optional bounds as follows:
class_deps upper or class_deps upper lower. A class is visualized,
iff it is a subclass of some sort from upper and a superclass of some
sort from lower.

intro_classes repeatedly expands all class introduction rules of this theory.
Note that this method usually needs not be named explicitly, as it is
already included in the default proof step (e.g. of proof). In particular,
instantiation of trivial (syntactic) classes may be performed by a single
“..” proof step.

CHAPTER 5. SPECIFICATIONS 117

5.8.1 The class target
A named context may refer to a locale (cf. §5.2). If this locale is also a class
c, apart from the common locale target behaviour the following happens.

• Local constant declarations g[α] referring to the local type parameter
α and local parameters f [α] are accompanied by theory-level constants
g[?α :: c] referring to theory-level class operations f [?α :: c].

• Local theorem bindings are lifted as are assumptions.

• Local syntax refers to local operations g[α] and global operations g[?α
:: c] uniformly. Type inference resolves ambiguities. In rare cases,
manual type annotations are needed.

5.8.2 Co-regularity of type classes and arities
The class relation together with the collection of type-constructor arities
must obey the principle of co-regularity as defined below.

For the subsequent formulation of co-regularity we assume that the class
relation is closed by transitivity and reflexivity. Moreover the collection of
arities t :: (s)c is completed such that t :: (s)c and c ⊆ c ′ implies t :: (s)c ′

for all such declarations.
Treating sorts as finite sets of classes (meaning the intersection), the class
relation c1 ⊆ c2 is extended to sorts as follows:

s1 ⊆ s2 ≡ ∀ c2 ∈ s2. ∃ c1 ∈ s1. c1 ⊆ c2

This relation on sorts is further extended to tuples of sorts (of the same
length) in the component-wise way.

Co-regularity of the class relation together with the arities relation means:

t :: (s1)c1 =⇒ t :: (s2)c2 =⇒ c1 ⊆ c2 =⇒ s1 ⊆ s2

for all such arities. In other words, whenever the result classes of some type-
constructor arities are related, then the argument sorts need to be related in
the same way.

Co-regularity is a very fundamental property of the order-sorted algebra of
types. For example, it entails principal types and most general unifiers, e.g.
see [40].

CHAPTER 5. SPECIFICATIONS 118

5.9 Overloaded constant definitions
Definitions essentially express abbreviations within the logic. The simplest
form of a definition is c :: σ ≡ t, where c is a new constant and t is a closed
term that does not mention c. Moreover, so-called hidden polymorphism is
excluded: all type variables in t need to occur in its type σ.
Overloading means that a constant being declared as c :: α decl may be
defined separately on type instances c :: (β1, . . . , βn)κ decl for each type
constructor κ. At most occasions overloading will be used in a Haskell-like
fashion together with type classes by means of instantiation (see §5.8).
Sometimes low-level overloading is desirable; this is supported by consts
and overloading explained below.
The right-hand side of overloaded definitions may mention overloaded con-
stants recursively at type instances corresponding to the immediate argument
types β1, . . . , βn. Incomplete specification patterns impose global constraints
on all occurrences. E.g. d :: α × α on the left-hand side means that all corre-
sponding occurrences on some right-hand side need to be an instance of this,
and general d :: α × β will be disallowed. Full details are given by Kunčar
[27].

The consts command and the overloading target provide a convenient
interface for end-users. Regular specification elements such as definition,
inductive, function may be used in the body. It is also possible to use
consts c :: σ with later overloading c ≡ c :: σ to keep the declaration and
definition of a constant separate.

consts : theory → theory
overloading : theory → local_theory

consts
�� �� name ::

����type �
�mixfix

�
�

�

�

�

�
overloading

�� �� spec�
�

�
�

begin
�� ��

CHAPTER 5. SPECIFICATIONS 119

spec

name ≡
�����

�==
����

�
�

term �
� (

����unchecked
�� ��)

����
�
�

consts c :: σ declares constant c to have any instance of type scheme σ.
The optional mixfix annotations may attach concrete syntax to the
constants declared.

overloading x1 ≡ c1 :: τ 1 . . . xn ≡ cn :: τn begin . . . end defines a theory
target (cf. §5.2) which allows to specify already declared constants via
definitions in the body. These are identified by an explicitly given
mapping from variable names x i to constants ci at particular type
instances. The definitions themselves are established using common
specification tools, using the names x i as reference to the corresponding
constants.
Option (unchecked) disables global dependency checks for the corre-
sponding definition, which is occasionally useful for exotic overloading;
this is a form of axiomatic specification. It is at the discretion of the
user to avoid malformed theory specifications!

Example

consts Length :: ′a ⇒ nat

overloading
Length0 ≡ Length :: unit ⇒ nat
Length1 ≡ Length :: ′a × unit ⇒ nat
Length2 ≡ Length :: ′a × ′b × unit ⇒ nat
Length3 ≡ Length :: ′a × ′b × ′c × unit ⇒ nat

begin

fun Length0 :: unit ⇒ nat where Length0 () = 0
fun Length1 :: ′a × unit ⇒ nat where Length1 (a, ()) = 1
fun Length2 :: ′a × ′b × unit ⇒ nat where Length2 (a, b, ()) = 2
fun Length3 :: ′a × ′b × ′c × unit ⇒ nat where Length3 (a, b, c, ()) = 3

end

lemma Length (a, b, c, ()) = 3 by simp

CHAPTER 5. SPECIFICATIONS 120

lemma Length ((a, b), (c, d), ()) = 2 by simp
lemma Length ((a, b, c, d, e), ()) = 1 by simp

5.10 Overloaded constant abbreviations: ad-
hoc overloading

adhoc_overloading : local_theory → local_theory
no_adhoc_overloading : local_theory → local_theory

show_variants : attribute default false

Adhoc overloading allows to overload a constant depending on its type. Typ-
ically this involves the introduction of an uninterpreted constant (used for
input and output) and the addition of some variants (used internally). For
examples see ~~/src/HOL/Examples/Adhoc_Overloading.thy and ~~/src/
HOL/Library/Monad_Syntax.thy.

adhoc_overloading
�� ���

�no_adhoc_overloading
�� ��

�
�

�

��
� name ==

�����
�

����
�
�

term�
�

�
�

�

� and
�� ��

�

�
adhoc_overloading c
 v1 ... vn associates variants with an existing

constant.

no_adhoc_overloading is similar to adhoc_overloading, but removes
the specified variants from the present context.

show_variants controls printing of variants of overloaded constants. If en-
abled, the internally used variants are printed instead of their respective
overloaded constants. This is occasionally useful to check whether the
system agrees with a user’s expectations about derived variants.

CHAPTER 5. SPECIFICATIONS 121

5.11 Incorporating ML code
SML_file : local_theory → local_theory

SML_file_debug : local_theory → local_theory
SML_file_no_debug : local_theory → local_theory

ML_file : local_theory → local_theory
ML_file_debug : local_theory → local_theory

ML_file_no_debug : local_theory → local_theory
ML : local_theory → local_theory

ML_export : local_theory → local_theory
ML_prf : proof → proof
ML_val : any →

ML_command : any →
setup : theory → theory

local_setup : local_theory → local_theory
attribute_setup : local_theory → local_theory

ML_print_depth : attribute default 10
ML_source_trace : attribute default false

ML_debugger : attribute default false
ML_exception_trace : attribute default false

ML_exception_debugger : attribute default false
ML_environment : attribute default Isabelle

SML_file
�� ���

�SML_file_debug
�� ���SML_file_no_debug
�� ���ML_file
�� ���ML_file_debug
�� ���ML_file_no_debug
�� ��

�
�
�
�
�
�

name �
� ;

����
�
�

CHAPTER 5. SPECIFICATIONS 122

ML
�� ���

�ML_export
�� ���ML_prf
�� ���ML_val
�� ���ML_command
�� ���setup
�� ���local_setup
�� ��

�
�
�
�
�
�
�

text

attribute_setup
�� ��name =

����text �
�text

�
�

SML_file name reads and evaluates the given Standard ML file. Top-level
SML bindings are stored within the (global or local) theory context;
the initial environment is restricted to the Standard ML implemen-
tation of Poly/ML, without the many add-ons of Isabelle/ML. Multi-
ple SML_file commands may be used to build larger Standard ML
projects, independently of the regular Isabelle/ML environment.

ML_file name reads and evaluates the given ML file. The current theory
context is passed down to the ML toplevel and may be modified, using
Context.>> or derived ML commands. Top-level ML bindings are
stored within the (global or local) theory context.

SML_file_debug, SML_file_no_debug, ML_file_debug, and
ML_file_no_debug change the ML_debugger option locally while
the given file is compiled.

ML is similar to ML_file, but evaluates directly the given text. Top-level
ML bindings are stored within the (global or local) theory context.

ML_export is similar to ML, but the resulting toplevel bindings are ex-
ported to the global bootstrap environment of the ML process — it
has a lasting effect that cannot be retracted. This allows ML evalua-
tion without a formal theory context, e.g. for command-line tools via
isabelle process [54].

CHAPTER 5. SPECIFICATIONS 123

ML_prf is analogous to ML but works within a proof context. Top-level
ML bindings are stored within the proof context in a purely sequential
fashion, disregarding the nested proof structure. ML bindings intro-
duced by ML_prf are discarded at the end of the proof.

ML_val and ML_command are diagnostic versions of ML, which means
that the context may not be updated. ML_val echos the bindings
produced at the ML toplevel, but ML_command is silent.

setup text changes the current theory context by applying text, which refers
to an ML expression of type theory -> theory. This enables to ini-
tialize any object-logic specific tools and packages written in ML, for
example.

local_setup is similar to setup for a local theory context, and an ML
expression of type local_theory -> local_theory. This allows to
invoke local theory specification packages without going through con-
crete outer syntax, for example.

attribute_setup name = text description defines an attribute in the
current context. The given text has to be an ML expression of
type attribute context_parser, cf. basic parsers defined in struc-
ture Args and Attrib.
In principle, attributes can operate both on a given theorem and the
implicit context, although in practice only one is modified and the other
serves as parameter. Here are examples for these two cases:

attribute_setup my_rule =
‹Attrib.thms >> (fn ths =>

Thm.rule_attribute ths
(fn context: Context.generic => fn th: thm =>

let val th’ = th OF ths
in th’ end))›

attribute_setup my_declaration =
‹Attrib.thms >> (fn ths =>

Thm.declaration_attribute
(fn th: thm => fn context: Context.generic =>

let val context’ = context
in context’ end))›

ML_print_depth controls the printing depth of the ML toplevel pretty
printer. Typically the limit should be less than 10. Bigger values
such as 100–1000 are occasionally useful for debugging.

CHAPTER 5. SPECIFICATIONS 124

ML_source_trace indicates whether the source text that is given to the
ML compiler should be output: it shows the raw Standard ML after
expansion of Isabelle/ML antiquotations.

ML_debugger controls compilation of sources with or without debugging
information. The global system option ML_debugger does the same
when building a session image. It is also possible use commands like
ML_file_debug etc. The ML debugger is explained further in [56].

ML_exception_trace indicates whether the ML run-time system should
print a detailed stack trace on exceptions. The result is dependent
on various ML compiler optimizations. The boundary for the excep-
tion trace is the current Isar command transactions: it is occasionally
better to insert the combinator Runtime.exn_trace into ML code for
debugging [55], closer to the point where it actually happens.

ML_exception_debugger controls detailed exception trace via the Poly/ML
debugger, at the cost of extra compile-time and run-time overhead.
Relevant ML modules need to be compiled beforehand with debugging
enabled, see ML_debugger above.

ML_environment determines the named ML environment for toplevel dec-
larations, e.g. in command ML or ML_file. The following ML envi-
ronments are predefined in Isabelle/Pure:

• Isabelle for Isabelle/ML. It contains all modules of Isabelle/Pure
and further add-ons, e.g. material from Isabelle/HOL.

• SML for official Standard ML. It contains only the initial basis
according to http://sml-family.org/Basis/overview.html.

The Isabelle/ML function ML_Env.setup defines a new ML environ-
ment. This is useful to incorporate big SML projects in an isolated
name space, possibly with variations on ML syntax; the existing setup
of ML_Env.SML_operations follows the official standard.
It is also possible to move toplevel bindings between ML environments,
using a notation with “>” as separator. For example:

declare [[ML_environment = Isabelle>SML]]
ML ‹val println = writeln›

declare [[ML_environment = SML]]
ML ‹println "test"›

http://sml-family.org/Basis/overview.html

CHAPTER 5. SPECIFICATIONS 125

declare [[ML_environment = Isabelle]]
ML ‹ML ‹println› (*bad*) handle ERROR msg => warning msg›

5.12 Generated files and exported files
Write access to the physical file-system is incompatible with the stateless
model of processing Isabelle documents. To avoid bad effects, the following
concepts for abstract file-management are provided by Isabelle:

Generated files are stored within the theory context in Isabelle/ML. This
allows to operate on the content in Isabelle/ML, e.g. via the command
compile_generated_files.

Exported files are stored within the session database in Isabelle/Scala.
This allows to deliver artefacts to external tools, see also [54] for session
ROOT declaration export_files, and isabelle build option -e.

A notable example is the command export_code (chapter 13): it uses both
concepts simultaneously.
File names are hierarchically structured, using a slash as separator. The
(long) theory name is used as a prefix: the resulting name needs to be globally
unique.

generate_file : local_theory → local_theory
export_generated_files : context →

compile_generated_files : context →
external_file : any → any

generate_file
�� ��path =

����content

path

embedded

content

embedded

CHAPTER 5. SPECIFICATIONS 126

export_generated_files
�� �� files_in_theory�

� and
�� ��

�
�

files_in_theory

_
�����

� path�
�

�
�

�
�

�
� (

����in
����name)

����
�
�

compile_generated_files
�� �� files_in_theory�

� and
�� ��

�
�

�

��
��

�external_files
�� �� external_files�

� and
�� ��

�
�

�
�

�

��
��

�export_files
�� �� export_files�

� and
�� ��

�
�

�
�

�

��
��

�export_prefix
�� ��path

�
�

CHAPTER 5. SPECIFICATIONS 127

external_files

path�
�

�
�

�
� (

����in
����path)

����
�
�

export_files

path�
�

�
�

�
�executable

�
�

executable

(
���� exe

�� ���
�executable

�� ��
�
�

)
����

external_file
�� ��name �

� ;
����

�
�

generate_file path = content augments the table of generated files within
the current theory by a new entry: duplicates are not allowed. The
name extension determines a pre-existent file-type; the content is a
string that is preprocessed according to rules of this file-type.
For example, Isabelle/Pure supports .hs as file-type for Haskell: em-
bedded cartouches are evaluated as Isabelle/ML expressions of type
string, the result is inlined in Haskell string syntax.

export_generated_files paths (in thy) retrieves named generated files
from the given theory (that needs be reachable via imports of the cur-
rent one). By default, the current theory node is used. Using “_”
(underscore) instead of explicit path names refers to all files of a the-
ory node.
The overall list of files is prefixed with the respective (long) theory name
and exported to the session database. In Isabelle/jEdit the result can
be browsed via the virtual file-system with prefix “isabelle-export:”
(using the regular file-browser).

CHAPTER 5. SPECIFICATIONS 128

scala_build_generated_files paths (in thy) retrieves named gener-
ated files as for export_generated_files and writes them into a
temporary directory, which is taken as starting point for build pro-
cess of Isabelle/Scala/Java modules (see [54]). The corresponding
build.props file is expected directly in the toplevel directory, instead
of etc/build.props for Isabelle system components. These properties
need to specify sources, resources, services etc. as usual. The resulting
JAR module becomes an export artefact of the session database, with
a name of the form “theory:classpath/module.jar”.

compile_generated_files paths (in thy) where compile_body retrieves
named generated files as for export_generated_files and writes
them into a temporary directory, such that the compile_body may op-
erate on them as an ML function of type Path.T -> unit. This may
create further files, e.g. executables produced by a compiler that is
invoked as external process (e.g. via Isabelle_System.bash), or any
other files.
The option “external_files paths (in base_dir)” copies files from the
physical file-system into the temporary directory, before invoking com-
pile_body. The base_dir prefix is removed from each of the paths, but
the remaining sub-directory structure is reconstructed in the target
directory.
The option “export_files paths” exports the specified files from
the temporary directory to the session database, after invoking com-
pile_body. Entries may be decorated with “(exe)” to say that it is
a platform-specific executable program: the executable file-attribute
will be set, and on Windows the .exe file-extension will be included;
“(executable)” only refers to the file-attribute, without special treat-
ment of the .exe extension.
The option “export_prefix path” specifies an extra path prefix for
all exports of export_files above.

external_file name declares the formal dependency on the given file name,
such that the Isabelle build process knows about it (see also [54]).
This is required for any files mentioned in compile_generated_files
/ external_files above, in order to document source dependencies
properly. It is also possible to use external_file alone, e.g. when
other Isabelle/ML tools use File.read, without specific management
of content by the Prover IDE.

CHAPTER 5. SPECIFICATIONS 129

5.13 Primitive specification elements
5.13.1 Sorts

default_sort : local_theory → local_theory

default_sort
�� ��sort

default_sort s makes sort s the new default sort for any type variable
that is given explicitly in the text, but lacks a sort constraint (wrt. the
current context). Type variables generated by type inference are not
affected.
Usually the default sort is only changed when defining a new object-
logic. For example, the default sort in Isabelle/HOL is type, the class
of all HOL types.
When merging theories, the default sorts of the parents are logically
intersected, i.e. the representations as lists of classes are joined.

5.13.2 Types
type_synonym : local_theory → local_theory

typedecl : local_theory → local_theory

type_synonym
�� ��typespec =

����type �
�mixfix

�
�

typedecl
�� ��typespec �

�mixfix

�
�

type_synonym (α1, . . . , αn) t = τ introduces a type synonym (α1, . . . ,
αn) t for the existing type τ . Unlike the semantic type definitions
in Isabelle/HOL, type synonyms are merely syntactic abbreviations
without any logical significance. Internally, type synonyms are fully
expanded.

CHAPTER 5. SPECIFICATIONS 130

typedecl (α1, . . . , αn) t declares a new type constructor t. If the object-
logic defines a base sort s, then the constructor is declared to operate
on that, via the axiomatic type-class instance t :: (s, . . . , s)s.

! If you introduce a new type axiomatically, i.e. via typedecl and
axiomatization (§5.5), the minimum requirement is that it has a non-empty

model, to avoid immediate collapse of the logical environment. Moreover, one
needs to demonstrate that the interpretation of such free-form axiomatizations
can coexist with other axiomatization schemes for types, notably typedef in
Isabelle/HOL (§11.6), or any other extension that people might have introduced
elsewhere.

5.14 Naming existing theorems
lemmas : local_theory → local_theory

named_theorems : local_theory → local_theory

lemmas
�� �� �

�thmdef

�
�

thms�

� and
�� ��

�

�

for_fixes

named_theorems
�� �� name �

�text

�
�

�

� and
�� ��

�

�
lemmas a = b1 . . . bn for x1 . . . xm evaluates given facts (with attributes)

in the current context, which may be augmented by local variables.
Results are standardized before being stored, i.e. schematic variables
are renamed to enforce index 0 uniformly.

named_theorems name description declares a dynamic fact within the
context. The same name is used to define an attribute with the usual
add/del syntax (e.g. see §9.3.2) to maintain the content incrementally,
in canonical declaration order of the text structure.

CHAPTER 5. SPECIFICATIONS 131

5.15 Oracles
oracle : theory → theory (axiomatic!)

thm_oracles∗ : context →

Oracles allow Isabelle to take advantage of external reasoners such as arith-
metic decision procedures, model checkers, fast tautology checkers or com-
puter algebra systems. Invoked as an oracle, an external reasoner can create
arbitrary Isabelle theorems.
It is the responsibility of the user to ensure that the external reasoner is as
trustworthy as the application requires. Another typical source of errors is
the linkup between Isabelle and the external tool, not just its concrete im-
plementation, but also the required translation between two different logical
environments.
Isabelle merely guarantees well-formedness of the propositions being asserted,
and records within the internal derivation object how presumed theorems
depend on unproven suppositions. This also includes implicit type-class rea-
soning via the order-sorted algebra of class relations and type arities (see also
instantiation and instance).

oracle
�� ��name =

����text

thm_oracles
�� ��thms

oracle name = text turns the given ML expression text of type ’a -> cterm
into an ML function of type ’a -> thm, which is bound to the global
identifier name. This acts like an infinitary specification of axioms!
Invoking the oracle only works within the scope of the resulting theory.
See ~~/src/HOL/Examples/Iff_Oracle.thy for a worked example of
defining a new primitive rule as oracle, and turning it into a proof
method.

thm_oracles thms displays all oracles used in the internal derivation of the
given theorems; this covers the full graph of transitive dependencies.

CHAPTER 5. SPECIFICATIONS 132

5.16 Name spaces
alias : local_theory → local_theory

type_alias : local_theory → local_theory
hide_class : theory → theory
hide_type : theory → theory

hide_const : theory → theory
hide_fact : theory → theory

alias�
�type_alias

�
�

name =
����name

hide_class�
�hide_type

�hide_const

�hide_fact

�
�
�
�

�
� (

����open
�� ��)

����
�
�

name�
�

�
�

Isabelle organizes any kind of name declarations (of types, constants, theo-
rems etc.) by separate hierarchically structured name spaces. Normally the
user does not have to control the behaviour of name spaces by hand, yet the
following commands provide some way to do so.

alias and type_alias introduce aliases for constants and type constructors,
respectively. This allows adhoc changes to name-space accesses.

type_alias b = c introduces an alias for an existing type constructor.

hide_class names fully removes class declarations from a given name
space; with the (open) option, only the unqualified base name is hidden.
Note that hiding name space accesses has no impact on logical dec-
larations — they remain valid internally. Entities that are no longer
accessible to the user are printed with the special qualifier “??” prefixed
to the full internal name.

hide_type, hide_const, and hide_fact are similar to hide_class, but
hide types, constants, and facts, respectively.

Chapter 6

Proofs

Proof commands perform transitions of Isar/VM machine configurations,
which are block-structured, consisting of a stack of nodes with three main
components: logical proof context, current facts, and open goals. Isar/VM
transitions are typed according to the following three different modes of op-
eration:

proof (prove) means that a new goal has just been stated that is now to be
proven; the next command may refine it by some proof method, and
enter a sub-proof to establish the actual result.

proof (state) is like a nested theory mode: the context may be augmented
by stating additional assumptions, intermediate results etc.

proof (chain) is intermediate between proof (state) and proof (prove): existing
facts (i.e. the contents of the special this register) have been just picked
up in order to be used when refining the goal claimed next.

The proof mode indicator may be understood as an instruction to the writer,
telling what kind of operation may be performed next. The corresponding
typings of proof commands restricts the shape of well-formed proof texts
to particular command sequences. So dynamic arrangements of commands
eventually turn out as static texts of a certain structure.
Appendix A gives a simplified grammar of the (extensible) language emerging
that way from the different types of proof commands. The main ideas of the
overall Isar framework are explained in chapter 2.

6.1 Proof structure
6.1.1 Formal notepad

notepad : local_theory → proof (state)

133

CHAPTER 6. PROOFS 134

notepad
�� ��begin

�� ��
end

�� ��
notepad begin opens a proof state without any goal statement. This allows

to experiment with Isar, without producing any persistent result. The
notepad is closed by end.

6.1.2 Blocks
next : proof (state) → proof (state)

{ : proof (state) → proof (state)
} : proof (state) → proof (state)

While Isar is inherently block-structured, opening and closing blocks is
mostly handled rather casually, with little explicit user-intervention. Any lo-
cal goal statement automatically opens two internal blocks, which are closed
again when concluding the sub-proof (by qed etc.). Sections of different
context within a sub-proof may be switched via next, which is just a single
block-close followed by block-open again. The effect of next is to reset the
local proof context; there is no goal focus involved here!
For slightly more advanced applications, there are explicit block parentheses
as well. These typically achieve a stronger forward style of reasoning.

next switches to a fresh block within a sub-proof, resetting the local context
to the initial one.

{ and } explicitly open and close blocks. Any current facts pass through “{”
unchanged, while “}” causes any result to be exported into the enclosing
context. Thus fixed variables are generalized, assumptions discharged,
and local definitions unfolded (cf. §6.2.1). There is no difference of
assume and presume in this mode of forward reasoning — in contrast
to plain backward reasoning with the result exported at show time.

CHAPTER 6. PROOFS 135

6.1.3 Omitting proofs
oops : proof → local_theory | theory

The oops command discontinues the current proof attempt, while consider-
ing the partial proof text as properly processed. This is conceptually quite
different from “faking” actual proofs via sorry (see §6.4.2): oops does not
observe the proof structure at all, but goes back right to the theory level. Fur-
thermore, oops does not produce any result theorem — there is no intended
claim to be able to complete the proof in any way.
A typical application of oops is to explain Isar proofs within the system itself,
in conjunction with the document preparation tools of Isabelle described in
chapter 4. Thus partial or even wrong proof attempts can be discussed in a
logically sound manner. Note that the Isabelle LATEX macros can be easily
adapted to print something like “. . . ” instead of the keyword “oops”.

6.2 Statements
6.2.1 Context elements

fix : proof (state) → proof (state)
assume : proof (state) → proof (state)

presume : proof (state) → proof (state)
define : proof (state) → proof (state)

The logical proof context consists of fixed variables and assumptions. The
former closely correspond to Skolem constants, or meta-level universal quan-
tification as provided by the Isabelle/Pure logical framework. Introducing
some arbitrary, but fixed variable via “fix x” results in a local value that may
be used in the subsequent proof as any other variable or constant. Further-
more, any result ` ϕ[x] exported from the context will be universally closed
wrt. x at the outermost level: `

∧
x . ϕ[x] (this is expressed in normal form

using Isabelle’s meta-variables).
Similarly, introducing some assumption χ has two effects. On the one hand, a
local theorem is created that may be used as a fact in subsequent proof steps.
On the other hand, any result χ ` ϕ exported from the context becomes
conditional wrt. the assumption: ` χ =⇒ ϕ. Thus, solving an enclosing
goal using such a result would basically introduce a new subgoal stemming
from the assumption. How this situation is handled depends on the version
of assumption command used: while assume insists on solving the subgoal

CHAPTER 6. PROOFS 136

by unification with some premise of the goal, presume leaves the subgoal
unchanged in order to be proved later by the user.
Local definitions, introduced by “define x where x = t”, are achieved by
combining “fix x” with another version of assumption that causes any hy-
pothetical equation x ≡ t to be eliminated by the reflexivity rule. Thus,
exporting some result x ≡ t ` ϕ[x] yields ` ϕ[t].

fix
�� ��vars

assume
�� ���

�presume
�� ��

�
�

concl prems for_fixes

concl

props�
� and

�� ��
�
�

prems

�
� if

���� props ′�
� and

�� ��
�
�

�
�

define
�� ��vars where

�� �� props�
� and

�� ��
�
�

for_fixes

fix x introduces a local variable x that is arbitrary, but fixed.

assume a: ϕ and presume a: ϕ introduce a local fact ϕ ` ϕ by assumption.
Subsequent results applied to an enclosing goal (e.g. by show) are
handled as follows: assume expects to be able to unify with existing
premises in the goal, while presume leaves ϕ as new subgoals.
Several lists of assumptions may be given (separated by and; the re-
sulting list of current facts consists of all of these concatenated.

CHAPTER 6. PROOFS 137

A structured assumption like assume B x if A x for x is equivalent to
assume

∧
x . A x =⇒ B x, but vacuous quantification is avoided: a for-

context only effects propositions according to actual use of variables.

define x where x = t introduces a local (non-polymorphic) definition. In
results that are exported from the context, x is replaced by t.
Internally, equational assumptions are added to the context in Pure
form, using x ≡ t instead of x = t or x ←→ t from the object-logic.
When exporting results from the context, x is generalized and the as-
sumption discharged by reflexivity, causing the replacement by t.
The default name for the definitional fact is x_def. Several simultane-
ous definitions may be given as well, with a collective default name.

It is also possible to abstract over local parameters as follows: define
f :: ′a ⇒ ′b where f x = t for x :: ′a.

6.2.2 Term abbreviations
let : proof (state) → proof (state)
is : syntax

Abbreviations may be either bound by explicit let p ≡ t statements, or by
annotating assumptions or goal statements with a list of patterns “(is p1 . . .
pn)”. In both cases, higher-order matching is invoked to bind extra-logical
term variables, which may be either named schematic variables of the form
?x, or nameless dummies “_” (underscore). Note that in the let form the
patterns occur on the left-hand side, while the is patterns are in postfix
position.
Polymorphism of term bindings is handled in Hindley-Milner style, similar to
ML. Type variables referring to local assumptions or open goal statements are
fixed, while those of finished results or bound by let may occur in arbitrary
instances later. Even though actual polymorphism should be rarely used
in practice, this mechanism is essential to achieve proper incremental type-
inference, as the user proceeds to build up the Isar proof text from left to
right.

Term abbreviations are quite different from local definitions as introduced
via define (see §6.2.1). The latter are visible within the logic as actual
equations, while abbreviations disappear during the input process just after
type checking. Also note that define does not support polymorphism.

CHAPTER 6. PROOFS 138

let
�� �� term�

� and
�� ��

�
�

=
����term�

� and
�� ��

�

�
The syntax of is patterns follows term_pat or prop_pat (see §3.3.8).

let p1 = t1 and . . . pn = tn binds any text variables in patterns p1, . . . ,
pn by simultaneous higher-order matching against terms t1, . . . , tn.

(is p1 . . . pn) resembles let, but matches p1, . . . , pn against the preceding
statement. Also note that is is not a separate command, but part of
others (such as assume, have etc.).

Some implicit term abbreviations for goals and facts are available as well. For
any open goal, thesis refers to its object-level statement, abstracted over any
meta-level parameters (if present). Likewise, this is bound for fact statements
resulting from assumptions or finished goals. In case this refers to an object-
logic statement that is an application f t, then t is bound to the special text
variable “. . . ” (three dots). The canonical application of this convenience are
calculational proofs (see §6.3).

6.2.3 Facts and forward chaining
note : proof (state) → proof (state)
then : proof (state) → proof (chain)
from : proof (state) → proof (chain)
with : proof (state) → proof (chain)

using : proof (prove) → proof (prove)
unfolding : proof (prove) → proof (prove)

use : method
method_facts : fact

New facts are established either by assumption or proof of local statements.
Any fact will usually be involved in further proofs, either as explicit argu-
ments of proof methods, or when forward chaining towards the next goal via
then (and variants); from and with are composite forms involving note.
The using elements augments the collection of used facts after a goal has
been stated. Note that the special theorem name this refers to the most
recently established facts, but only before issuing a follow-up claim.

CHAPTER 6. PROOFS 139

note
�� �� �

�thmdef

�
�

thms�

� and
�� ��

�

�
from

�� ���
�with

�� ���using
�� ���unfolding
�� ��

�
�
�
�

thms�
� and

�� ��
�
�

use thms in
����method

note a = b1 . . . bn recalls existing facts b1, . . . , bn, binding the result as
a. Note that attributes may be involved as well, both on the left and
right hand sides.

then indicates forward chaining by the current facts in order to establish
the goal to be claimed next. The initial proof method invoked to refine
that will be offered the facts to do “anything appropriate” (see also
§6.4.2). For example, method rule (see §6.4.3) would typically do an
elimination rather than an introduction. Automatic methods usually
insert the facts into the goal state before operation. This provides a
simple scheme to control relevance of facts in automated proof search.

from b abbreviates “note b then”; thus then is equivalent to “from this”.

with b1 . . . bn abbreviates “from b1 . . . bn and this”; thus the forward
chaining is from earlier facts together with the current ones.

using b1 . . . bn augments the facts to be used by a subsequent refinement
step (such as apply or proof).

unfolding b1 . . . bn is structurally similar to using, but unfolds definitional
equations b1 . . . bn throughout the goal state and facts. See also the
proof method unfold.

CHAPTER 6. PROOFS 140

(use b1 . . . bn in method) uses the facts in the given method expression.
The facts provided by the proof state (via using etc.) are ignored, but
it is possible to refer to method_facts explicitly.

method_facts is a dynamic fact that refers to the currently used facts of the
goal state.

Forward chaining with an empty list of theorems is the same as not chaining
at all. Thus “from nothing” has no effect apart from entering prove(chain)
mode, since nothing is bound to the empty list of theorems.
Basic proof methods (such as rule) expect multiple facts to be given in their
proper order, corresponding to a prefix of the premises of the rule involved.
Note that positions may be easily skipped using something like from _ and
a and b, for example. This involves the trivial rule PROP ψ =⇒ PROP ψ,
which is bound in Isabelle/Pure as “_” (underscore).
Automated methods (such as simp or auto) just insert any given facts before
their usual operation. Depending on the kind of procedure involved, the
order of facts is less significant here.

6.2.4 Goals
lemma : local_theory → proof (prove)

theorem : local_theory → proof (prove)
corollary : local_theory → proof (prove)

proposition : local_theory → proof (prove)
schematic_goal : local_theory → proof (prove)

have : proof (state) | proof (chain) → proof (prove)
show : proof (state) | proof (chain) → proof (prove)

hence : proof (state) → proof (prove)
thus : proof (state) → proof (prove)

print_statement∗ : context →

From a theory context, proof mode is entered by an initial goal command such
as lemma. Within a proof context, new claims may be introduced locally;
there are variants to interact with the overall proof structure specifically,
such as have or show.
Goals may consist of multiple statements, resulting in a list of facts eventu-
ally. A pending multi-goal is internally represented as a meta-level conjunc-
tion (&&&), which is usually split into the corresponding number of sub-goals
prior to an initial method application, via proof (§6.4.2) or apply (§7.1).
The induct method covered in §6.5 acts on multiple claims simultaneously.

CHAPTER 6. PROOFS 141

Claims at the theory level may be either in short or long form. A short goal
merely consists of several simultaneous propositions (often just one). A long
goal includes an explicit context specification for the subsequent conclusion,
involving local parameters and assumptions. Here the role of each part of
the statement is explicitly marked by separate keywords (see also §5.7); the
local assumptions being introduced here are available as assms in the proof.
Moreover, there are two kinds of conclusions: shows states several simul-
taneous propositions (essentially a big conjunction), while obtains claims
several simultaneous contexts — essentially a big disjunction of eliminated
parameters and assumptions (see §6.6).

lemma
�� ���

�theorem
�� ���corollary
�� ���proposition
�� ���schematic_goal
�� ��

�
�
�
�
�

long_statement�
�short_statement

�
�

have
�� ���

�show
�� ���hence
�� ���thus
�� ��

�
�
�
�

stmt cond_stmt for_fixes

print_statement
�� ���

�modes

�
�

thms

stmt

props�
� and

�� ��
�
�

CHAPTER 6. PROOFS 142

cond_stmt

�
� if

�����
�when

�� ��
�
�

stmt

�
�

short_statement

stmt �
� if

����stmt

�
�

for_fixes

long_statement

�
�thmdecl

�
�

context conclusion

context

�
�includes

�
�

�
�context_elem

�
�

conclusion

shows
�� ��stmt�

�obtains
�� ��obtain_clauses

�
�

obtain_clauses

�
�par_name

�
�

obtain_case�

� |
����

�

�

CHAPTER 6. PROOFS 143

obtain_case

�
�vars where

�� ��
�
�

�
�thmdecl

�
�

prop�
�

�
�

�

� and
�� ��

�

�
lemma a: ϕ enters proof mode with ϕ as main goal, eventually resulting

in some fact ` ϕ to be put back into the target context.
A long_statement may build up an initial proof context for the subse-
quent claim, potentially including local definitions and syntax; see also
includes in §5.3 and context_elem in §5.7.
A short_statement consists of propositions as conclusion, with an op-
tion context of premises and parameters, via if/for in postfix notation,
corresponding to assumes/fixes in the long prefix notation.
Local premises (if present) are called “assms” for long_statement, and
“that” for short_statement.

theorem, corollary, and proposition are the same as lemma. The dif-
ferent command names merely serve as a formal comment in the theory
source.

schematic_goal is similar to theorem, but allows the statement to con-
tain unbound schematic variables.
Under normal circumstances, an Isar proof text needs to specify claims
explicitly. Schematic goals are more like goals in Prolog, where cer-
tain results are synthesized in the course of reasoning. With schematic
statements, the inherent compositionality of Isar proofs is lost, which
also impacts performance, because proof checking is forced into sequen-
tial mode.

have a: ϕ claims a local goal, eventually resulting in a fact within the
current logical context. This operation is completely independent of
any pending sub-goals of an enclosing goal statements, so have may
be freely used for experimental exploration of potential results within
a proof body.

show a: ϕ is like have a: ϕ plus a second stage to refine some pending
sub-goal for each one of the finished result, after having been exported

CHAPTER 6. PROOFS 144

into the corresponding context (at the head of the sub-proof of this
show command).
To accommodate interactive debugging, resulting rules are printed be-
fore being applied internally. Even more, interactive execution of show
predicts potential failure and displays the resulting error as a warning
beforehand. Watch out for the following message:

Local statement fails to refine any pending goal

hence expands to “then have” and thus expands to “then show”. These
conflations are left-over from early history of Isar. The expanded syntax
is more orthogonal and improves readability and maintainability of
proofs.

print_statement a prints facts from the current theory or proof context in
long statement form, according to the syntax for lemma given above.

Any goal statement causes some term abbreviations (such as ?thesis) to be
bound automatically, see also §6.2.2.
Structured goal statements involving if or when define the special fact that
to refer to these assumptions in the proof body. The user may provide
separate names according to the syntax of the statement.

6.3 Calculational reasoning
also : proof (state) → proof (state)

finally : proof (state) → proof (chain)
moreover : proof (state) → proof (state)

ultimately : proof (state) → proof (chain)
print_trans_rules∗ : context →

trans : attribute
sym : attribute

symmetric : attribute

Calculational proof is forward reasoning with implicit application of transi-
tivity rules (such those of =, ≤, <). Isabelle/Isar maintains an auxiliary fact
register calculation for accumulating results obtained by transitivity com-
posed with the current result. Command also updates calculation involving
this, while finally exhibits the final calculation by forward chaining towards
the next goal statement. Both commands require valid current facts, i.e. may

CHAPTER 6. PROOFS 145

occur only after commands that produce theorems such as assume, note,
or some finished proof of have, show etc. The moreover and ultimately
commands are similar to also and finally, but only collect further results in
calculation without applying any rules yet.
Also note that the implicit term abbreviation “. . . ” has its canonical appli-
cation with calculational proofs. It refers to the argument of the preceding
statement. (The argument of a curried infix expression happens to be its
right-hand side.)
Isabelle/Isar calculations are implicitly subject to block structure in the sense
that new threads of calculational reasoning are commenced for any new block
(as opened by a local goal, for example). This means that, apart from being
able to nest calculations, there is no separate begin-calculation command
required.

The Isar calculation proof commands may be defined as follows:1

also0 ≡ note calculation = this
alson+1 ≡ note calculation = trans [OF calculation this]
finally ≡ also from calculation

moreover ≡ note calculation = calculation this
ultimately ≡ moreover from calculation

also
�� ���

�finally
�� ��

�
�

�
� (

����thms)
����

�
�

trans
�� ���

�add
�� ���del
�� ��

�
�
�

also (a1 . . . an) maintains the auxiliary calculation register as follows.
The first occurrence of also in some calculational thread initializes
calculation by this. Any subsequent also on the same level of block-
structure updates calculation by some transitivity rule applied to

1We suppress internal bookkeeping such as proper handling of block-structure.

CHAPTER 6. PROOFS 146

calculation and this (in that order). Transitivity rules are picked from
the current context, unless alternative rules are given as explicit argu-
ments.

finally (a1 . . . an) maintains calculation in the same way as also and then
concludes the current calculational thread. The final result is exhibited
as fact for forward chaining towards the next goal. Basically, finally
abbreviates also from calculation. Typical idioms for concluding cal-
culational proofs are “finally show ?thesis .” and “finally have ϕ .”.

moreover and ultimately are analogous to also and finally, but collect
results only, without applying rules.

print_trans_rules prints the list of transitivity rules (for calculational
commands also and finally) and symmetry rules (for the symmetric
operation and single step elimination patters) of the current context.

trans declares theorems as transitivity rules.

sym declares symmetry rules, as well as Pure.elim? rules.

symmetric resolves a theorem with some rule declared as sym in the cur-
rent context. For example, “assume [symmetric]: x = y” produces a
swapped fact derived from that assumption.
In structured proof texts it is often more appropriate to use an explicit
single-step elimination proof, such as “assume x = y then have y =
x ..”.

6.4 Refinement steps
6.4.1 Proof method expressions
Proof methods are either basic ones, or expressions composed of methods via
“,” (sequential composition), “;” (structural composition), “|” (alternative
choices), “?” (try), “+” (repeat at least once), “[n]” (restriction to first n
subgoals). In practice, proof methods are usually just a comma separated
list of name args specifications. Note that parentheses may be dropped for
single method specifications (with no arguments). The syntactic precedence
of method combinators is | ; , [] + ? (from low to high).

CHAPTER 6. PROOFS 147

method

name�
� (

����methods)
����

�
�

�
� ?

����� +
����� [
�����

�nat

�
�

]
����

�
�
�
�

methods

name args�
�method

�
�

�

� ,
�����

� ;
����� |
����

�
�
�

�

�

Regular Isar proof methods do not admit direct goal addressing, but refer to
the first subgoal or to all subgoals uniformly. Nonetheless, the subsequent
mechanisms allow to imitate the effect of subgoal addressing that is known
from ML tactics.

Goal restriction means the proof state is wrapped-up in a way that certain
subgoals are exposed, and other subgoals are “parked” elsewhere. Thus a
proof method has no other chance than to operate on the subgoals that are
presently exposed.
Structural composition “m1; m2” means that method m1 is applied with re-
striction to the first subgoal, then m2 is applied consecutively with restriction
to each subgoal that has newly emerged due to m1. This is analogous to the
tactic combinator THEN_ALL_NEW in Isabelle/ML, see also [55]. For example,
(rule r ; blast) applies rule r and then solves all new subgoals by blast.
Moreover, the explicit goal restriction operator “[n]” exposes only the first n
subgoals (which need to exist), with default n = 1. For example, the method
expression “simp_all[3]” simplifies the first three subgoals, while “(rule r ,

CHAPTER 6. PROOFS 148

simp_all)[]” simplifies all new goals that emerge from applying rule r to the
originally first one.

Improper methods, notably tactic emulations, offer low-level goal addressing
as explicit argument to the individual tactic being involved. Here “[!]” refers
to all goals, and “[n−]” to all goals starting from n.

goal_spec

[
���� nat -

����nat�
�nat -

�����nat

� !
����

�
�
�
�

]
����

6.4.2 Initial and terminal proof steps
proof : proof (prove) → proof (state)

qed : proof (state) → proof (state) | local_theory | theory
by : proof (prove) → proof (state) | local_theory | theory

.. : proof (prove) → proof (state) | local_theory | theory
. : proof (prove) → proof (state) | local_theory | theory

sorry : proof (prove) → proof (state) | local_theory | theory
standard : method

Arbitrary goal refinement via tactics is considered harmful. Structured proof
composition in Isar admits proof methods to be invoked in two places only.

1. An initial refinement step proof m1 reduces a newly stated goal to a
number of sub-goals that are to be solved later. Facts are passed to m1

for forward chaining, if so indicated by proof (chain) mode.

2. A terminal conclusion step qed m2 is intended to solve remaining goals.
No facts are passed to m2.

The only other (proper) way to affect pending goals in a proof body is by
show, which involves an explicit statement of what is to be solved eventually.

CHAPTER 6. PROOFS 149

Thus we avoid the fundamental problem of unstructured tactic scripts that
consist of numerous consecutive goal transformations, with invisible effects.

As a general rule of thumb for good proof style, initial proof methods should
either solve the goal completely, or constitute some well-understood reduction
to new sub-goals. Arbitrary automatic proof tools that are prone leave a
large number of badly structured sub-goals are no help in continuing the
proof document in an intelligible manner.
Unless given explicitly by the user, the default initial method is standard,
which subsumes at least rule or its classical variant rule. These methods
apply a single standard elimination or introduction rule according to the
topmost logical connective involved. There is no separate default terminal
method. Any remaining goals are always solved by assumption in the very
last step.

proof
�� ���

�method

�
�

qed
�� ���

�method

�
�

by
�� ��method �

�method

�
�

.
�����

� ..
�����sorry
�� ��

�
�
�

proof m1 refines the goal by proof method m1; facts for forward chaining
are passed if so indicated by proof (chain) mode.

qed m2 refines any remaining goals by proof method m2 and concludes the
sub-proof by assumption. If the goal had been show, some pending

CHAPTER 6. PROOFS 150

sub-goal is solved as well by the rule resulting from the result exported
into the enclosing goal context. Thus qed may fail for two reasons:
either m2 fails, or the resulting rule does not fit to any pending goal2
of the enclosing context. Debugging such a situation might involve
temporarily changing show into have, or weakening the local context
by replacing occurrences of assume by presume.

by m1 m2 is a terminal proof ; it abbreviates proof m1 qed m2, but with
backtracking across both methods. Debugging an unsuccessful by m1

m2 command can be done by expanding its definition; in many cases
proof m1 (or even apply m1) is already sufficient to see the problem.

“..” is a standard proof ; it abbreviates by standard.

“.” is a trivial proof ; it abbreviates by this.

sorry is a fake proof pretending to solve the pending claim without
further ado. This only works in interactive development, or if the
quick_and_dirty is enabled. Facts emerging from fake proofs are not
the real thing. Internally, the derivation object is tainted by an oracle
invocation, which may be inspected via the command thm_oracles
(§5.15).
The most important application of sorry is to support experimentation
and top-down proof development.

standard refers to the default refinement step of some Isar language elements
(notably proof and “..”). It is dynamically scoped, so the behaviour
depends on the application environment.
In Isabelle/Pure, standard performs elementary introduction / elim-
ination steps (rule), introduction of type classes (intro_classes) and
locales (intro_locales).
In Isabelle/HOL, standard also takes classical rules into account (cf.
§9.4).

6.4.3 Fundamental methods and attributes
The following proof methods and attributes refer to basic logical operations
of Isar. Further methods and attributes are provided by several generic and
object-logic specific tools and packages (see chapter 9 and part III).

2This includes any additional “strong” assumptions as introduced by assume.

CHAPTER 6. PROOFS 151

print_rules∗ : context →
− : method

goal_cases : method
subproofs : method

fact : method
assumption : method

this : method
rule : method

intro : attribute
elim : attribute
dest : attribute
rule : attribute
OF : attribute
of : attribute

where : attribute

goal_cases
�� ���

�name

�
�

subproofs
�� ��method

fact
�� ���

�thms

�
�

rule
�� ���

�thms

�
�

CHAPTER 6. PROOFS 152

rulemod

intro
�� ���

�elim
�� ���dest
�� ��

�
�
�

!
�����

�
� ?

����

�
�
�

�
�nat

�
�

�

�del
�� ��

�

�

:
����thms

intro
�� ���

�elim
�� ���dest
�� ��

�
�
�

!
�����

�
� ?

����

�
�
�

�
�nat

�
�

rule
�� ��del

�� ��
OF

����thms

of
����insts �

�concl
�� ��:

����insts

�
�

for_fixes

where
�� ��named_insts for_fixes

print_rules prints rules declared via attributes intro, elim, dest of
Isabelle/Pure.
See also the analogous print_claset command for similar rule decla-
rations of the classical reasoner (§9.4).

“−” (minus) inserts the forward chaining facts as premises into the goal,
and nothing else.
Note that command proof without any method actually performs a
single reduction step using the rule method; thus a plain do-nothing
proof step would be “proof −” rather than proof alone.

CHAPTER 6. PROOFS 153

goal_cases a1 . . . an turns the current subgoals into cases within the context
(see also §6.5). The specified case names are used if present; otherwise
cases are numbered starting from 1.
Invoking cases in the subsequent proof body via the case command
will fix goal parameters, assume goal premises, and let variable ?case
refer to the conclusion.

subproofs m applies the method expression m consecutively to each subgoal,
constructing individual subproofs internally (analogous to “show goal
by m” for each subgoal of the proof state). Search alternatives of m
are truncated: the method is forced to be deterministic. This method
combinator impacts the internal construction of proof terms: it makes
a cascade of let-expressions within the derivation tree and may thus
improve scalability.

fact a1 . . . an composes some fact from a1, . . . , an (or implicitly from the
current proof context) modulo unification of schematic type and term
variables. The rule structure is not taken into account, i.e. meta-level
implication is considered atomic. This is the same principle underlying
literal facts (cf. §3.3.9): “have ϕ by fact” is equivalent to “note ‘ϕ‘”
provided that ` ϕ is an instance of some known ` ϕ in the proof
context.

assumption solves some goal by a single assumption step. All given facts are
guaranteed to participate in the refinement; this means there may be
only 0 or 1 in the first place. Recall that qed (§6.4.2) already concludes
any remaining sub-goals by assumption, so structured proofs usually
need not quote the assumption method at all.

this applies all of the current facts directly as rules. Recall that “.” (dot)
abbreviates “by this”.

rule a1 . . . an applies some rule given as argument in backward manner;
facts are used to reduce the rule before applying it to the goal. Thus
rule without facts is plain introduction, while with facts it becomes
elimination.
When no arguments are given, the rule method tries to pick appropriate
rules automatically, as declared in the current context using the intro,
elim, dest attributes (see below). This is included in the standard
behaviour of proof and “..” (double-dot) steps (see §6.4.2).

CHAPTER 6. PROOFS 154

intro, elim, and dest declare introduction, elimination, and destruct rules,
to be used with method rule, and similar tools. Note that the latter
will ignore rules declared with “?”, while “!” are used most aggressively.
The classical reasoner (see §9.4) introduces its own variants of these
attributes; use qualified names to access the present versions of
Isabelle/Pure, i.e. Pure.intro.

rule del undeclares introduction, elimination, or destruct rules.

OF a1 . . . an applies some theorem to all of the given rules a1, . . . , an
in canonical right-to-left order, which means that premises stemming
from the ai emerge in parallel in the result, without interfering with
each other. In many practical situations, the ai do not have premises
themselves, so rule [OF a1 . . . an] can be actually read as functional
application (modulo unification).
Argument positions may be effectively skipped by using “_” (under-
score), which refers to the propositional identity rule in the Pure theory.

of t1 . . . tn performs positional instantiation of term variables. The terms
t1, . . . , tn are substituted for any schematic variables occurring in a
theorem from left to right; “_” (underscore) indicates to skip a position.
Arguments following a “concl:” specification refer to positions of the
conclusion of a rule.
An optional context of local variables for x1 . . . xm may be speci-
fied: the instantiated theorem is exported, and these variables become
schematic (usually with some shifting of indices).

where x1 = t1 and . . . xn = tn performs named instantiation of schematic
type and term variables occurring in a theorem. Schematic variables
have to be specified on the left-hand side (e.g. ?x1.3). The question
mark may be omitted if the variable name is a plain identifier without
index. As type instantiations are inferred from term instantiations,
explicit type instantiations are seldom necessary.
An optional context of local variables for x1 . . . xm may be specified
as for of above.

6.4.4 Defining proof methods
method_setup : local_theory → local_theory

CHAPTER 6. PROOFS 155

method_setup
�� ��name =

����text �
�text

�
�

method_setup name = text description defines a proof method in the
current context. The given text has to be an ML expression of
type (Proof.context -> Proof.method) context_parser, cf. basic
parsers defined in structure Args and Attrib. There are also combina-
tors like METHOD and SIMPLE_METHOD to turn certain tactic forms into
official proof methods; the primed versions refer to tactics with explicit
goal addressing.
Here are some example method definitions:

method_setup my_method1 =
‹Scan.succeed (K (SIMPLE_METHOD’ (fn i: int => no_tac)))›
"my first method (without any arguments)"

method_setup my_method2 =
‹Scan.succeed (fn ctxt: Proof.context =>

SIMPLE_METHOD’ (fn i: int => no_tac))›
"my second method (with context)"

method_setup my_method3 =
‹Attrib.thms >> (fn thms: thm list => fn ctxt: Proof.context =>

SIMPLE_METHOD’ (fn i: int => no_tac))›
"my third method (with theorem arguments and context)"

6.5 Proof by cases and induction
6.5.1 Rule contexts

case : proof (state) → proof (state)
print_cases∗ : context →

case_names : attribute
case_conclusion : attribute

params : attribute
consumes : attribute

The puristic way to build up Isar proof contexts is by explicit language
elements like fix, assume, let (see §6.2.1). This is adequate for plain natural

CHAPTER 6. PROOFS 156

deduction, but easily becomes unwieldy in concrete verification tasks, which
typically involve big induction rules with several cases.
The case command provides a shorthand to refer to a local context symboli-
cally: certain proof methods provide an environment of named “cases” of the
form c: x1, . . . , xm, ϕ1, . . . , ϕn; the effect of “case c” is then equivalent to
“fix x1 . . . xm assume c: ϕ1 . . . ϕn”. Term bindings may be covered as well,
notably ?case for the main conclusion.
By default, the “terminology” x1, . . . , xm of a case value is marked as hidden,
i.e. there is no way to refer to such parameters in the subsequent proof text.
After all, original rule parameters stem from somewhere outside of the current
proof text. By using the explicit form “case (c y1 . . . ym)” instead, the proof
author is able to chose local names that fit nicely into the current context.

It is important to note that proper use of case does not provide means to peek
at the current goal state, which is not directly observable in Isar! Nonetheless,
goal refinement commands do provide named cases goal i for each subgoal i
= 1, . . . , n of the resulting goal state. Using this extra feature requires
great care, because some bits of the internal tactical machinery intrude the
proof text. In particular, parameter names stemming from the left-over of
automated reasoning tools are usually quite unpredictable.
Under normal circumstances, the text of cases emerge from standard elim-
ination or induction rules, which in turn are derived from previous theory
specifications in a canonical way (say from inductive definitions).

Proper cases are only available if both the proof method and the rules in-
volved support this. By using appropriate attributes, case names, conclu-
sions, and parameters may be also declared by hand. Thus variant versions
of rules that have been derived manually become ready to use in advanced
case analysis later.

case
�� ���

�thmdecl

�
�

name�
� (

����name �
� _

�����
�name

�
�

�
�

)
����

�
�

CHAPTER 6. PROOFS 157

case_names
�� �� name �

� [
�����

� _
�����

�name

�
�

�
�

]
����

�
�

�

�

�

�
case_conclusion

�� ��name �
�name

�
�

params
�� �� �

�name

�
�

�

� and
�� ��

�

�
consumes

�� ���
�int

�
�

case a: (c x1 . . . xm) invokes a named local context c: x1, . . . , xm, ϕ1, . . . ,
ϕm, as provided by an appropriate proof method (such as cases and
induct). The command “case a: (c x1 . . . xm)” abbreviates “fix x1 . . .
xm assume a.c: ϕ1 . . . ϕn”. Each local fact is qualified by the prefix
a, and all such facts are collectively bound to the name a.
The fact name is specification a is optional, the default is to re-use c.
So case (c x1 . . . xm) is the same as case c: (c x1 . . . xm).

print_cases prints all local contexts of the current state, using Isar proof
language notation.

case_names c1 . . . ck declares names for the local contexts of premises of
a theorem; c1, . . . , ck refers to the prefix of the list of premises. Each
of the cases ci can be of the form c[h1 . . . hn] where the h1 . . . hn are
the names of the hypotheses in case ci from left to right.

CHAPTER 6. PROOFS 158

case_conclusion c d1 . . . dk declares names for the conclusions of a named
premise c; here d1, . . . , dk refers to the prefix of arguments of a logical
formula built by nesting a binary connective (e.g. ∨).
Note that proof methods such as induct and coinduct already provide
a default name for the conclusion as a whole. The need to name sub-
formulas only arises with cases that split into several sub-cases, as in
common co-induction rules.

params p1 . . . pm and . . . q1 . . . qn renames the innermost parameters of
premises 1, . . . , n of some theorem. An empty list of names may be
given to skip positions, leaving the present parameters unchanged.
Note that the default usage of case rules does not directly expose pa-
rameters to the proof context.

consumes n declares the number of “major premises” of a rule, i.e. the num-
ber of facts to be consumed when it is applied by an appropriate proof
method. The default value of consumes is n = 1, which is appropriate
for the usual kind of cases and induction rules for inductive sets (cf.
§11.1). Rules without any consumes declaration given are treated as if
consumes 0 had been specified.
A negative n is interpreted relatively to the total number of premises
of the rule in the target context. Thus its absolute value specifies the
remaining number of premises, after subtracting the prefix of major
premises as indicated above. This form of declaration has the technical
advantage of being stable under more morphisms, notably those that
export the result from a nested context with additional assumptions.
Note that explicit consumes declarations are only rarely needed; this is
already taken care of automatically by the higher-level cases, induct,
and coinduct declarations.

6.5.2 Proof methods
cases : method

induct : method
induction : method
coinduct : method

The cases, induct, induction, and coinduct methods provide a uniform in-
terface to common proof techniques over datatypes, inductive predicates (or

CHAPTER 6. PROOFS 159

sets), recursive functions etc. The corresponding rules may be specified and
instantiated in a casual manner. Furthermore, these methods provide named
local contexts that may be invoked via the case proof command within the
subsequent proof text. This accommodates compact proof texts even when
reasoning about large specifications.
The induct method also provides some infrastructure to work with structured
statements (either using explicit meta-level connectives, or including facts
and parameters separately). This avoids cumbersome encoding of “strength-
ened” inductive statements within the object-logic.
Method induction differs from induct only in the names of the facts in the
local context invoked by the case command.

cases
�� ���

� (
����no_simp

�� ��)
����

�
�

�

��
��

� insts�
� and

�� ��
�
�

�
�

�
�rule

�
�

induct
�� ���

�induction
�� ��

�
�

�
� (

����no_simp
�� ��)

����
�
�

�
� definsts�

� and
�� ��

�
�

�
�

�

��
��

�arbitrary

�
�

�
�taking

�
�

�
�rule

�
�

coinduct
�� ��insts taking �

�rule

�
�

CHAPTER 6. PROOFS 160

rule

type
�� ���

�pred
�� ���set
�� ��

�
�
�

:
���� name�

�
�
�

�

�rule
�� ��:

���� thm�
�

�
�

�

�

definst

name ==
�����

�≡
����

�
�

term�

� (
����term)

�����inst

�

�
�

definsts

�
�definst

�
�

arbitrary

arbitrary
�� ��:

���� �
�term

�
�

and
�� ���

�

�

�
taking

taking
�� ��:

����insts

cases insts R applies method rule with an appropriate case distinction theo-
rem, instantiated to the subjects insts. Symbolic case names are bound
according to the rule’s local contexts.

CHAPTER 6. PROOFS 161

The rule is determined as follows, according to the facts and arguments
passed to the cases method:

facts arguments rule
` R cases implicit rule R

cases classical case split
cases t datatype exhaustion (type of t)

` A t cases . . . inductive predicate/set elimination (of A)
. . . cases . . . rule: R explicit rule R

Several instantiations may be given, referring to the suffix of premises of
the case rule; within each premise, the prefix of variables is instantiated.
In most situations, only a single term needs to be specified; this refers
to the first variable of the last premise (it is usually the same for all
cases). The (no_simp) option can be used to disable pre-simplification
of cases (see the description of induct below for details).

induct insts R and induction insts R are analogous to the cases method,
but refer to induction rules, which are determined as follows:

facts arguments rule
induct P x datatype induction (type of x)

` A x induct . . . predicate/set induction (of A)
. . . induct . . . rule: R explicit rule R

Several instantiations may be given, each referring to some part of a
mutual inductive definition or datatype — only related partial induc-
tion rules may be used together, though. Any of the lists of terms P,
x , . . . refers to the suffix of variables present in the induction rule.
This enables the writer to specify only induction variables, or both
predicates and variables, for example.
Instantiations may be definitional: equations x ≡ t introduce local defi-
nitions, which are inserted into the claim and discharged after applying
the induction rule. Equalities reappear in the inductive cases, but have
been transformed according to the induction principle being involved
here. In order to achieve practically useful induction hypotheses, some
variables occurring in t need to generalized (see below). Instantiations
of the form t, where t is not a variable, are taken as a shorthand for
x ≡ t, where x is a fresh variable. If this is not intended, t has to be
enclosed in parentheses. By default, the equalities generated by def-
initional instantiations are pre-simplified using a specific set of rules,

CHAPTER 6. PROOFS 162

usually consisting of distinctness and injectivity theorems for data-
types. This pre-simplification may cause some of the parameters of an
inductive case to disappear, or may even completely delete some of the
inductive cases, if one of the equalities occurring in their premises can
be simplified to False. The (no_simp) option can be used to disable
pre-simplification. Additional rules to be used in pre-simplification can
be declared using the induct_simp attribute.
The optional “arbitrary: x1 . . . xm” specification generalizes variables
x1, . . . , xm of the original goal before applying induction. It is possible
to separate variables by “and” to generalize in goals other than the
first. Thus induction hypotheses may become sufficiently general to get
the proof through. Together with definitional instantiations, one may
effectively perform induction over expressions of a certain structure.
The optional “taking: t1 . . . tn” specification provides additional in-
stantiations of a prefix of pending variables in the rule. Such schematic
induction rules rarely occur in practice, though.

coinduct inst R is analogous to the induct method, but refers to coinduction
rules, which are determined as follows:

goal arguments rule
coinduct x type coinduction (type of x)

A x coinduct . . . predicate/set coinduction (of A)
. . . coinduct . . . rule: R explicit rule R

Coinduction is the dual of induction. Induction essentially eliminates A
x towards a generic result P x, while coinduction introduces A x starting
with B x, for a suitable “bisimulation” B. The cases of a coinduct rule
are typically named after the predicates or sets being covered, while
the conclusions consist of several alternatives being named after the
individual destructor patterns.
The given instantiation refers to the suffix of variables occurring in
the rule’s major premise, or conclusion if unavailable. An additional
“taking: t1 . . . tn” specification may be required in order to specify the
bisimulation to be used in the coinduction step.

Above methods produce named local contexts, as determined by the instanti-
ated rule as given in the text. Beyond that, the induct and coinduct methods
guess further instantiations from the goal specification itself. Any persisting
unresolved schematic variables of the resulting rule will render the the cor-
responding case invalid. The term binding ?case for the conclusion will be
provided with each case, provided that term is fully specified.

CHAPTER 6. PROOFS 163

The print_cases command prints all named cases present in the current
proof state.

Despite the additional infrastructure, both cases and coinduct merely apply
a certain rule, after instantiation, while conforming due to the usual way of
monotonic natural deduction: the context of a structured statement

∧
x1 . . .

xm. ϕ1 =⇒ . . . ϕn =⇒ . . . reappears unchanged after the case split.
The induct method is fundamentally different in this respect: the meta-level
structure is passed through the “recursive” course involved in the induc-
tion. Thus the original statement is basically replaced by separate copies,
corresponding to the induction hypotheses and conclusion; the original goal
context is no longer available. Thus local assumptions, fixed parameters and
definitions effectively participate in the inductive rephrasing of the original
statement.
In induct proofs, local assumptions introduced by cases are split into two dif-
ferent kinds: hyps stemming from the rule and prems from the goal statement.
This is reflected in the extracted cases accordingly, so invoking “case c” will
provide separate facts c.hyps and c.prems, as well as fact c to hold the all-
inclusive list.
In induction proofs, local assumptions introduced by cases are split into three
different kinds: IH, the induction hypotheses, hyps, the remaining hypotheses
stemming from the rule, and prems, the assumptions from the goal statement.
The names are c.IH, c.hyps and c.prems, as above.

Facts presented to either method are consumed according to the number of
“major premises” of the rule involved, which is usually 0 for plain cases and
induction rules of datatypes etc. and 1 for rules of inductive predicates or
sets and the like. The remaining facts are inserted into the goal verbatim
before the actual cases, induct, or coinduct rule is applied.

6.5.3 Declaring rules
print_induct_rules∗ : context →

cases : attribute
induct : attribute

coinduct : attribute

cases
�� ��spec

CHAPTER 6. PROOFS 164

induct
�� ��spec

coinduct
�� ��spec

spec

type
�� ���

�pred
�� ���set
�� ��

�
�
�

:
����name�

�del
�� ��

�

�
print_induct_rules prints cases and induct rules for predicates (or sets)

and types of the current context.

cases, induct, and coinduct (as attributes) declare rules for reasoning about
(co)inductive predicates (or sets) and types, using the corresponding
methods of the same name. Certain definitional packages of object-
logics usually declare emerging cases and induction rules as expected,
so users rarely need to intervene.
Rules may be deleted via the del specification, which covers all of the
type/pred/set sub-categories simultaneously. For example, cases del
removes any cases rules declared for some type, predicate, or set.
Manual rule declarations usually refer to the case_names and params
attributes to adjust names of cases and parameters of a rule; the
consumes declaration is taken care of automatically: consumes 0 is
specified for “type” rules and consumes 1 for “predicate” / “set” rules.

6.6 Generalized elimination and case split-
ting

consider : proof (state) | proof (chain) → proof (prove)
obtain : proof (state) | proof (chain) → proof (prove)

CHAPTER 6. PROOFS 165

Generalized elimination means that hypothetical parameters and premises
may be introduced in the current context, potentially with a split into cases.
This works by virtue of a locally proven rule that establishes the soundness
of this temporary context extension. As representative examples, one may
think of standard rules from Isabelle/HOL like this:

∃ x . B x =⇒ (
∧

x . B x =⇒ thesis) =⇒ thesis
A ∧ B =⇒ (A =⇒ B =⇒ thesis) =⇒ thesis
A ∨ B =⇒ (A =⇒ thesis) =⇒ (B =⇒ thesis) =⇒ thesis

In general, these particular rules and connectives need to get involved at
all: this concept works directly in Isabelle/Pure via Isar commands defined
below. In particular, the logic of elimination and case splitting is delegated
to an Isar proof, which often involves automated tools.

consider
�� ��obtain_clauses

obtain
�� ���

�par_name

�
�

�

��
��

�vars where
�� ��

�
�

concl prems for_fixes

concl

props�
� and

�� ��
�
�

prems

�
� if

���� props ′�
� and

�� ��
�
�

�
�

CHAPTER 6. PROOFS 166

consider (a) x where A x | (b) y where B y | . . . states a rule for
case splitting into separate subgoals, such that each case involves new
parameters and premises. After the proof is finished, the resulting rule
may be used directly with the cases proof method (§6.5), in order to
perform actual case-splitting of the proof text via case and next as
usual.
Optional names in round parentheses refer to case names: in the proof of
the rule this is a fact name, in the resulting rule it is used as annotation
with the case_names attribute.

Formally, the command consider is defined as derived Isar language
element as follows:

consider (a) x where A x | (b) y where B y | . . . ≡
have [case_names a b . . .]: thesis

if a [Pure.intro?]:
∧

x . A x =⇒ thesis
and b [Pure.intro?]:

∧
y. B y =⇒ thesis

and . . .
for thesis
apply (insert a b . . .)

See also §6.2.4 for obtains in toplevel goal statements, as well as
print_statement to print existing rules in a similar format.

obtain x where A x states a generalized elimination rule with exactly
one case. After the proof is finished, it is activated for the subsequent
proof text: the context is augmented via fix x assume A x , with spe-
cial provisions to export later results by discharging these assumptions
again.
Note that according to the parameter scopes within the elimination
rule, results must not refer to hypothetical parameters; otherwise the
export will fail! This restriction conforms to the usual manner of exis-
tential reasoning in Natural Deduction.

Formally, the command obtain is defined as derived Isar language
element as follows, using an instrumented variant of assume:

CHAPTER 6. PROOFS 167

obtain x where a: A x 〈proof 〉 ≡
have thesis

if that [Pure.intro?]:
∧

x . A x =⇒ thesis
for thesis
apply (insert that)
〈proof 〉

fix x assume∗ a: A x

In the proof of consider and obtain the local premises are always
bound to the fact name that, according to structured Isar statements
involving if (§6.2.4).
Facts that are established by obtain cannot be polymorphic: any type-
variables occurring here are fixed in the present context. This is a
natural consequence of the role of fix and assume in this construct.

Chapter 7

Proof scripts

Interactive theorem proving is traditionally associated with “proof scripts”,
but Isabelle/Isar is centered around structured proof documents instead (see
also chapter 6).
Nonetheless, it is possible to emulate proof scripts by sequential refinements
of a proof state in backwards mode, notably with the apply command (see
§7.1).
There are also various proof methods that allow to refer to implicit goal state
information that is not accessible to structured Isar proofs (see §7.3). Note
that the subgoal (§7.2) command usually eliminates the need for implicit
goal state references.

7.1 Commands for step-wise refinement
supply∗ : proof (prove) → proof (prove)
apply∗ : proof (prove) → proof (prove)

apply_end∗ : proof (state) → proof (state)
done∗ : proof (prove) → proof (state) | local_theory | theory
defer∗ : proof → proof

prefer∗ : proof → proof
back∗ : proof → proof

supply
�� �� �

�thmdef

�
�

thms�

� and
�� ��

�

�

168

CHAPTER 7. PROOF SCRIPTS 169

apply
�� ���

�apply_end
�� ��

�
�

method

defer
�� ���

�nat

�
�

prefer
�� ��nat

supply supports fact definitions during goal refinement: it is similar to
note, but it operates in backwards mode and does not have any impact
on chained facts.

apply m applies proof method m in initial position, but unlike proof it
retains “proof (prove)” mode. Thus consecutive method applications
may be given just as in tactic scripts.
Facts are passed to m as indicated by the goal’s forward-chain mode,
and are consumed afterwards. Thus any further apply command would
always work in a purely backward manner.

apply_end m applies proof method m as if in terminal position. Basically,
this simulates a multi-step tactic script for qed, but may be given
anywhere within the proof body.
No facts are passed to m here. Furthermore, the static context is that of
the enclosing goal (as for actual qed). Thus the proof method may not
refer to any assumptions introduced in the current body, for example.

done completes a proof script, provided that the current goal state is solved
completely. Note that actual structured proof commands (e.g. “.” or
sorry) may be used to conclude proof scripts as well.

defer n and prefer n shuffle the list of pending goals: defer puts off sub-
goal n to the end of the list (n = 1 by default), while prefer brings
sub-goal n to the front.

back does back-tracking over the result sequence of the latest proof com-
mand. Any proof command may return multiple results, and this com-
mand explores the possibilities step-by-step. It is mainly useful for

CHAPTER 7. PROOF SCRIPTS 170

experimentation and interactive exploration, and should be avoided in
finished proofs.

7.2 Explicit subgoal structure
subgoal∗ : proof → proof

subgoal
�� ���

�thmbind

�
�

�
�prems

�
�

�
�params

�
�

prems

premises
�� ���

�thmbind

�
�

params

for
�� ���

�. . .
�� ��

�
�

_
�����

�name

�
�

�

�

�

�
subgoal allows to impose some structure on backward refinements, to avoid

proof scripts degenerating into long of apply sequences.
The current goal state, which is essentially a hidden part of the Isar/VM
configuration, is turned into a proof context and remaining conclusion.
This corresponds to fix / assume / show in structured proofs, but the
text of the parameters, premises and conclusion is not given explicitly.
Goal parameters may be specified separately, in order to allow referring
to them in the proof body: “subgoal for x y z” names a prefix, and
“subgoal for . . . x y z” names a suffix of goal parameters. The latter
uses a literal \<dots> symbol as notation. Parameter positions may be
skipped via dummies (underscore). Unspecified names remain internal,
and thus inaccessible in the proof text.

CHAPTER 7. PROOF SCRIPTS 171

“subgoal premises prems” indicates that goal premises should be
turned into assumptions of the context (otherwise the remaining con-
clusion is a Pure implication). The fact name and attributes are op-
tional; the particular name “prems” is a common convention for the
premises of an arbitrary goal context in proof scripts.
“subgoal result” indicates a fact name for the result of a proven sub-
goal. Thus it may be re-used in further reasoning, similar to the result
of show in structured Isar proofs.

Here are some abstract examples:
lemma

∧
x y z. A x =⇒ B y =⇒ C z

and
∧

u v. X u =⇒ Y v
subgoal 〈proof 〉
subgoal 〈proof 〉
done

lemma
∧

x y z. A x =⇒ B y =⇒ C z
and

∧
u v. X u =⇒ Y v

subgoal for x y z 〈proof 〉
subgoal for u v 〈proof 〉
done

lemma
∧

x y z. A x =⇒ B y =⇒ C z
and

∧
u v. X u =⇒ Y v

subgoal premises for x y z
using ‹A x› ‹B y›
〈proof 〉

subgoal premises for u v
using ‹X u›
〈proof 〉

done

lemma
∧

x y z. A x =⇒ B y =⇒ C z
and

∧
u v. X u =⇒ Y v

subgoal r premises prems for x y z
proof −

have A x by (fact prems)
moreover have B y by (fact prems)
ultimately show ?thesis 〈proof 〉

qed
subgoal premises prems for u v
proof −

CHAPTER 7. PROOF SCRIPTS 172

have
∧

x y z. A x =⇒ B y =⇒ C z by (fact r)
moreover
have X u by (fact prems)
ultimately show ?thesis 〈proof 〉

qed
done

lemma
∧

x y z. A x =⇒ B y =⇒ C z
subgoal premises prems for . . . z
proof −

from prems show C z 〈proof 〉
qed
done

7.3 Tactics: improper proof methods
The following improper proof methods emulate traditional tactics. These
admit direct access to the goal state, which is normally considered harmful!
In particular, this may involve both numbered goal addressing (default 1),
and dynamic instantiation within the scope of some subgoal.

! Dynamic instantiations refer to universally quantified parameters of a subgoal
(the dynamic context) rather than fixed variables and term abbreviations of a

(static) Isar context.

Tactic emulation methods, unlike their ML counterparts, admit simultaneous
instantiation from both dynamic and static contexts. If names occur in both
contexts goal parameters hide locally fixed variables. Likewise, schematic
variables refer to term abbreviations, if present in the static context. Other-
wise the schematic variable is interpreted as a schematic variable and left to
be solved by unification with certain parts of the subgoal.
Note that the tactic emulation proof methods in Isabelle/Isar are consistently
named foo_tac. Note also that variable names occurring on left hand sides
of instantiations must be preceded by a question mark if they coincide with
a keyword or contain dots. This is consistent with the attribute where (see
§6.4.3).

CHAPTER 7. PROOF SCRIPTS 173

rule_tac∗ : method
erule_tac∗ : method
drule_tac∗ : method
frule_tac∗ : method

cut_tac∗ : method
thin_tac∗ : method

subgoal_tac∗ : method
rename_tac∗ : method

rotate_tac∗ : method
tactic∗ : method

raw_tactic∗ : method

rule_tac
�� ���

�erule_tac
�� ���drule_tac
�� ���frule_tac
�� ���cut_tac
�� ��

�
�
�
�
�

�
�goal_spec

�
�

�

��
� named_insts for_fixes in

����thm�
�thms

�
�

thin_tac
�� ���

�goal_spec

�
�

prop for_fixes

subgoal_tac
�� ���

�goal_spec

�
�

prop�
�

�
�

for_fixes

CHAPTER 7. PROOF SCRIPTS 174

rename_tac
�� ���

�goal_spec

�
�

name�
�

�
�

rotate_tac
�� ���

�goal_spec

�
�

�
�int

�
�

tactic
�� ���

�raw_tactic
�� ��

�
�

text

rule_tac etc. do resolution of rules with explicit instantiation. This works
the same way as the ML tactics Rule_Insts.res_inst_tac etc. (see
[55]).
Multiple rules may be only given if there is no instantiation; then
rule_tac is the same as resolve_tac in ML (see [55]).

cut_tac inserts facts into the proof state as assumption of a subgoal; in-
stantiations may be given as well. Note that the scope of schematic
variables is spread over the main goal statement and rule premises are
turned into new subgoals. This is in contrast to the regular method
insert which inserts closed rule statements.

thin_tac ϕ deletes the specified premise from a subgoal. Note that ϕ may
contain schematic variables, to abbreviate the intended proposition;
the first matching subgoal premise will be deleted. Removing useless
premises from a subgoal increases its readability and can make search
tactics run faster.

subgoal_tac ϕ1 . . . ϕn adds the propositions ϕ1 . . . ϕn as local premises to a
subgoal, and poses the same as new subgoals (in the original context).

rename_tac x1 . . . xn renames parameters of a goal according to the list
x1, . . . , xn, which refers to the suffix of variables.

rotate_tac n rotates the premises of a subgoal by n positions: from right to
left if n is positive, and from left to right if n is negative; the default
value is 1.

CHAPTER 7. PROOF SCRIPTS 175

tactic text produces a proof method from any ML text of type tactic.
Apart from the usual ML environment and the current proof context,
the ML code may refer to the locally bound values facts, which indi-
cates any current facts used for forward-chaining.

raw_tactic is similar to tactic, but presents the goal state in its raw internal
form, where simultaneous subgoals appear as conjunction of the logi-
cal framework instead of the usual split into several subgoals. While
feature this is useful for debugging of complex method definitions, it
should not never appear in production theories.

Chapter 8

Inner syntax — the term
language

The inner syntax of Isabelle provides concrete notation for the main enti-
ties of the logical framework, notably λ-terms with types and type classes.
Applications may either extend existing syntactic categories by additional
notation, or define new sub-languages that are linked to the standard term
language via some explicit markers. For example FOO foo could embed the
syntax corresponding for some user-defined nonterminal foo — within the
bounds of the given lexical syntax of Isabelle/Pure.
The most basic way to specify concrete syntax for logical entities works via
mixfix annotations (§8.2), which may be usually given as part of the original
declaration or via explicit notation commands later on (§8.3). This already
covers many needs of concrete syntax without having to understand the full
complexity of inner syntax layers.
Further details of the syntax engine involves the classical distinction of lexical
language versus context-free grammar (see §8.4), and various mechanisms for
syntax transformations (see §8.5).

8.1 Printing logical entities
8.1.1 Diagnostic commands

typ∗ : context →
term∗ : context →
prop∗ : context →
thm∗ : context →
prf∗ : context →

full_prf∗ : context →
print_state∗ : any →

176

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 177

These diagnostic commands assist interactive development by printing inter-
nal logical entities in a human-readable fashion.

typ
�� ���

�modes

�
�

type �
�::

����sort

�
�

term
�� ���

�modes

�
�

term

prop
�� ���

�modes

�
�

prop

thm
�� ���

�modes

�
�

thms

prf
�� ���

�full_prf
�� ��

�
�

�
�modes

�
�

�
�thms

�
�

print_state
�� ���

�modes

�
�

modes

(
���� name�

�
�
�

)
����

typ τ reads and prints a type expression according to the current context.

typ τ :: s uses type-inference to determine the most general way to make τ
conform to sort s. For concrete τ this checks if the type belongs to that

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 178

sort. Dummy type parameters “_” (underscore) are assigned to fresh
type variables with most general sorts, according the the principles of
type-inference.

term t and prop ϕ read, type-check and print terms or propositions
according to the current theory or proof context; the inferred type
of t is output as well. Note that these commands are also useful
in inspecting the current environment of term abbreviations.

thm a1 . . . an retrieves theorems from the current theory or proof
context. Note that any attributes included in the theorem spec-
ifications are applied to a temporary context derived from the
current theory or proof; the result is discarded, i.e. attributes in-
volved in a1, . . . , an do not have any permanent effect.

prf displays the (compact) proof term of the current proof state (if
present), or of the given theorems. Note that this requires an un-
derlying logic image with proof terms enabled, e.g. HOL−Proofs.

full_prf is like prf , but displays the full proof term, i.e. also displays
information omitted in the compact proof term, which is denoted
by “_” placeholders there.

print_state prints the current proof state (if present), including cur-
rent facts and goals.

The diagnostic commands above accept an optional list of modes, which
is appended to the current print mode; see also §8.1.3. Thus the out-
put behavior may be modified according particular print mode features.
For example, thm ("") symmetric prints a theorem without any spe-
cial markup, bypassing the print mode setup of the Prover IDE.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 179

8.1.2 Details of printed content
show_markup : attribute

show_consts_markup : attribute default true
show_types : attribute default false
show_sorts : attribute default false

show_consts : attribute default false
show_abbrevs : attribute default true

names_long : attribute default false
names_short : attribute default false

names_unique : attribute default true
eta_contract : attribute default true

goals_limit : attribute default 10
show_main_goal : attribute default false

show_hyps : attribute default false
show_tags : attribute default false

show_question_marks : attribute default true
These configuration options control the detail of information that is displayed
for types, terms, theorems, goals etc. See also §9.1.

show_markup controls direct inlining of markup into the printed represen-
tation of formal entities — notably type and sort constraints. This en-
ables Prover IDE users to retrieve that information via tooltips or pop-
ups while hovering with the mouse over the output window, for exam-
ple. Consequently, this option is enabled by default for Isabelle/jEdit.

show_consts_markup controls printing of type constrains for term con-
stants; this requires show_markup.

show_types and show_sorts control printing of type constraints for term
variables, and sort constraints for type variables. By default, neither of
these are shown in output. If show_sorts is enabled, types are always
shown as well. In Isabelle/jEdit, manual setting of these options is
normally not required thanks to show_markup above.
Note that displaying types and sorts may explain why a polymorphic
inference rule fails to resolve with some goal, or why a rewrite rule does
not apply as expected.

show_consts controls printing of types of constants when displaying a goal
state.
Note that the output can be enormous, because polymorphic constants
often occur at several different type instances.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 180

show_abbrevs controls folding of constant abbreviations.

names_long, names_short, and names_unique control the way of printing
fully qualified internal names in external form. See also §4.2 for the
document antiquotation options of the same names.

eta_contract controls η-contracted printing of terms.
The η-contraction law asserts (λx . f x) ≡ f, provided x is not free in
f. It asserts extensionality of functions: f ≡ g if f x ≡ g x for all x.
Higher-order unification frequently puts terms into a fully η-expanded
form. For example, if F has type (τ ⇒ τ) ⇒ τ then its expanded form
is λh. F (λx . h x).
Enabling eta_contract makes Isabelle perform η-contractions before
printing, so that λh. F (λx . h x) appears simply as F.
Note that the distinction between a term and its η-expanded form occa-
sionally matters. While higher-order resolution and rewriting operate
modulo αβη-conversion, some other tools might look at terms more
discretely.

goals_limit controls the maximum number of subgoals to be printed.

show_main_goal controls whether the main result to be proven should be
displayed. This information might be relevant for schematic goals, to
inspect the current claim that has been synthesized so far.

show_hyps controls printing of implicit hypotheses of local facts. Normally,
only those hypotheses are displayed that are not covered by the as-
sumptions of the current context: this situation indicates a fault in
some tool being used.
By enabling show_hyps, output of all hypotheses can be enforced,
which is occasionally useful for diagnostic purposes.

show_tags controls printing of extra annotations within theorems, such as
internal position information, or the case names being attached by the
attribute case_names.
Note that the tagged and untagged attributes provide low-level access
to the collection of tags associated with a theorem.

show_question_marks controls printing of question marks for schematic
variables, such as ?x. Only the leading question mark is affected, the
remaining text is unchanged (including proper markup for schematic
variables that might be relevant for user interfaces).

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 181

8.1.3 Alternative print modes
print_mode_value: unit -> string list
Print_Mode.with_modes: string list -> (’a -> ’b) -> ’a -> ’b

The print mode facility allows to modify various operations for printing.
Commands like typ, term, thm (see §8.1.1) take additional print modes as
optional argument. The underlying ML operations are as follows.

print_mode_value () yields the list of currently active print mode names.
This should be understood as symbolic representation of certain indi-
vidual features for printing (with precedence from left to right).

Print_Mode.with_modes modes f x evaluates f x in an execution context
where the print mode is prepended by the given modes. This provides
a thread-safe way to augment print modes. It is also monotonic in
the set of mode names: it retains the default print mode that certain
user-interfaces might have installed for their proper functioning!

The pretty printer for inner syntax maintains alternative mixfix productions
for any print mode name invented by the user, say in commands like notation
or abbreviation. Mode names can be arbitrary, but the following ones have
a specific meaning by convention:

• "" (the empty string): default mode; implicitly active as last element
in the list of modes.

• input: dummy print mode that is never active; may be used to specify
notation that is only available for input.

• internal dummy print mode that is never active; used internally in
Isabelle/Pure.

• ASCII: prefer ASCII art over mathematical symbols.

• latex: additional mode that is active in LATEX document preparation of
Isabelle theory sources; allows to provide alternative output notation.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 182

8.2 Mixfix annotations
Mixfix annotations specify concrete inner syntax of Isabelle types and terms.
Locally fixed parameters in toplevel theorem statements, locale and class
specifications also admit mixfix annotations in a fairly uniform manner. A
mixfix annotation describes the concrete syntax, the translation to abstract
syntax, and the pretty printing. Special case annotations provide a simple
means of specifying infix operators and binders.
Isabelle mixfix syntax is inspired by obj [17]. It allows to specify any context-
free priority grammar, which is more general than the fixity declarations of
ML and Prolog.

mixfix

(
���� template �

�prios

�
�

�
�nat

�
�

�

� infix
�� ���

�infixl
�� ���infixr
�� ��

�
�
�

template nat

�binder
�� ��template �

�prio

�
�

nat

�structure
�� ��

�

�

�

�

)
����

template

string�
�cartouche

�
�

prios

[
���� nat�

� ,
����

�
�

]
����

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 183

prio

[
����nat]

����
The mixfix template may include literal text, spacing, blocks, and arguments
(denoted by “_”); the special symbol “\<index>” (printed as “ı”) represents
an index argument that specifies an implicit structure reference (see also
§5.7). Only locally fixed variables may be declared as structure.
Infix and binder declarations provide common abbreviations for particular
mixfix declarations. So in practice, mixfix templates mostly degenerate to
literal text for concrete syntax, such as “++” for an infix symbol.

8.2.1 The general mixfix form
In full generality, mixfix declarations work as follows. Suppose a constant c
:: τ 1 ⇒ . . . τn ⇒ τ is annotated by (mixfix [p1, . . . , pn] p), where mixfix is
a string d0 _ d1 _ . . . _ dn consisting of delimiters that surround argument
positions as indicated by underscores.
Altogether this determines a production for a context-free priority grammar,
where for each argument i the syntactic category is determined by τ i (with
priority pi), and the result category is determined from τ (with priority p).
Priority specifications are optional, with default 0 for arguments and 1000
for the result.1

Since τ may be again a function type, the constant type scheme may have
more argument positions than the mixfix pattern. Printing a nested appli-
cation c t1 . . . tm for m > n works by attaching concrete notation only to
the innermost part, essentially by printing (c t1 . . . tn) . . . tm instead. If a
term has fewer arguments than specified in the mixfix template, the concrete
syntax is ignored.

A mixfix template may also contain additional directives for pretty printing,
notably spaces, blocks, and breaks. The general template format is a sequence
over any of the following entities.

d is a delimiter, namely a non-empty sequence delimiter items of the fol-
lowing form:

1. a control symbol followed by a cartouche
1Omitting priorities is prone to syntactic ambiguities unless the delimiter tokens deter-

mine fully bracketed notation, as in if _ then _ else _ fi.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 184

2. a single symbol, excluding the following special characters:
’ single quote
_ underscore
ı index symbol
(open parenthesis
) close parenthesis
/ slash
‹ › cartouche delimiters

’ escapes the special meaning of these meta-characters, producing a literal
version of the following character, unless that is a blank.
A single quote followed by a blank separates delimiters, without affect-
ing printing, but input tokens may have additional white space here.

_ is an argument position, which stands for a certain syntactic category in
the underlying grammar.

ı is an indexed argument position; this is the place where implicit structure
arguments can be attached.

s is a non-empty sequence of spaces for printing. This and the following
specifications do not affect parsing at all.

(n opens a pretty printing block. The optional natural number specifies
the block indentation, i.e. how much spaces to add when a line break
occurs within the block. The default indentation is 0.

(‹properties› opens a pretty printing block, with properties specified within
the given text cartouche. The syntax and semantics of the category
mixfix_properties is described below.

) closes a pretty printing block.

// forces a line break.

/s allows a line break. Here s stands for the string of spaces (zero or more)
right after the slash. These spaces are printed if the break is not taken.

Block properties allow more control over the details of pretty-printed output.
The concrete syntax is defined as follows.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 185

mixfix_properties

�
�entry

�
�

entry

atom �
� =

����atom

�
�

atom

short_ident�
�int

�float

�cartouche

�
�
�
�

Each entry is a name–value pair, but the latter is optional. If the value is
omitted, the default depends on its type (Boolean: true, number: 1, otherwise
the empty string). The following standard block properties are supported:

• indent (natural number): the block indentation — the same as for the
simple syntax without block properties.

• open_block (Boolean): this block has no impact on formatting, but it
may carry markup information.

• consistent (Boolean): this block has consistent breaks (if one break is
taken, all breaks are taken).

• unbreakable (Boolean): all possible breaks of the block are disabled
(turned into spaces).

• markup (string): the optional name of the markup node. If this is pro-
vided, all remaining properties are turned into its XML attributes. This
allows to specify free-form PIDE markup, e.g. for specialized output.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 186

• notation (cartouche): a semi-formal description of the notation that
is surrounded by the block parentheses. The cartouche consists of
multiple words (separated by white-space). The first word specifies the
kind of notation as follows:

– mixfix : general mixfix notation, with delimiters surrounding its
arguments.

– prefix : notation with delimiter before its argument.
– postfix : notation with delimiter after its argument.
– infix : notation with delimiter between its arguments (automati-

cally inserted for infix annotations, see §8.2.2).
– binder : notation that binds variables within its body argument

(automatically inserted for binder annotations, see §8.2.3).
– literal: notation for literal values, such as string or number.
– type_application: application of a type constructor to its argu-

ments.
– application: λ-term application.
– abstraction: λ-term abstraction.
– judgment: judgment form of the object-logic (usually without de-

limiters).

Plenty of examples may be found in the Isabelle sources by searching
for “notation=”.

Note that the general idea of pretty printing with blocks and breaks is de-
scribed in [47]; it goes back to [41].

8.2.2 Infixes
Infix operators are specified by convenient short forms that abbreviate general
mixfix annotations as follows:

(infix "sy" p) ; ("(_ sy/ _)" [p + 1, p + 1] p)
(infixl "sy" p) ; ("(_ sy/ _)" [p, p + 1] p)
(infixr "sy" p) ; ("(_ sy/ _)" [p + 1, p] p)

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 187

The mixfix template "(_ sy/ _)" specifies two argument positions; the de-
limiter is preceded by a space and followed by a space or line break; the entire
phrase is a pretty printing block.
The alternative notation (sy) is introduced in addition. Thus any infix
operator may be written in prefix form (as in Haskell), independently of the
number of arguments.

8.2.3 Binders
A binder is a variable-binding construct such as a quantifier. The idea to
formalize ∀ x . b as All (λx . b) for All :: (′a ⇒ bool) ⇒ bool already goes
back to [14]. Isabelle declarations of certain higher-order operators may be
annotated with binder annotations as follows:

c :: "(τ 1 ⇒ τ 2) ⇒ τ 3" (binder "sy" [p] q)

This introduces concrete binder syntax sy x . b, where x is a bound variable
of type τ 1, the body b has type τ 2 and the whole term has type τ 3. The
optional integer p specifies the syntactic priority of the body; the default is
q, which is also the priority of the whole construct.
Internally, the binder syntax is expanded to something like this:

c_binder :: "idts ⇒ τ 2 ⇒ τ 3" ("(3sy_./ _)" [0, p] q)

Here idts is the nonterminal symbol for a list of identifiers with optional type
constraints (see also §8.4.3). The mixfix template "(3sy_./ _)" defines
argument positions for the bound identifiers and the body, separated by a
dot with optional line break; the entire phrase is a pretty printing block of
indentation level 3. Note that there is no extra space after sy, so it needs
to be included user specification if the binder syntax ends with a token that
may be continued by an identifier token at the start of idts.
Furthermore, a syntax translation to transforms c_binder x1 . . . xn b into
iterated application c (λx1. . . . c (λxn. b). . .). This works in both directions,
for parsing and printing.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 188

8.3 Explicit notation
type_notation : local_theory → local_theory

no_type_notation : local_theory → local_theory
notation : local_theory → local_theory

no_notation : local_theory → local_theory
write : proof (state) → proof (state)

Commands that introduce new logical entities (terms or types) usually allow
to provide mixfix annotations on the spot, which is convenient for default
notation. Nonetheless, the syntax may be modified later on by declarations
for explicit notation. This allows to add or delete mixfix annotations for of
existing logical entities within the current context.

type_notation
�� ���

�no_type_notation
�� ��

�
�

�
�mode

�
�

�

��
� name mixfix�

� and
�� ��

�
�

notation
�� ���

�no_notation
�� ��

�
�

�
�mode

�
�

�

��
� name mixfix�

� and
�� ��

�
�

write
�� ���

�mode

�
�

name mixfix�
� and

�� ��
�
�

type_notation c (mx) associates mixfix syntax with an existing type con-
structor. The arity of the constructor is retrieved from the context.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 189

no_type_notation is similar to type_notation, but removes the spec-
ified syntax annotation from the present context.

notation c (mx) associates mixfix syntax with an existing constant or fixed
variable. The type declaration of the given entity is retrieved from the
context.

no_notation is similar to notation, but removes the specified syntax
annotation from the present context.

write is similar to notation, but works within an Isar proof body.

8.4 The Pure syntax
8.4.1 Lexical matters
The inner lexical syntax vaguely resembles the outer one (§3.2), but some
details are different. There are two main categories of inner syntax tokens:

1. delimiters — the literal tokens occurring in productions of the given
priority grammar (cf. §8.4.2);

2. named tokens — various categories of identifiers etc.

Delimiters override named tokens and may thus render certain identifiers
inaccessible. Sometimes the logical context admits alternative ways to refer
to the same entity, potentially via qualified names.

The categories for named tokens are defined once and for all as follows,
reusing some categories of the outer token syntax (§3.2).

id = short_ident
longid = long_ident

var = var
tid = type_ident

tvar = type_var
num_token = nat
float_token = nat.nat

str_token = ’’ . . . ’’
string_token = " . . . "

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 190

cartouche = \<open> . . . \<close>

The token categories num_token, float_token, str_token, string_token, and
cartouche are not used in Pure. Object-logics may implement numerals and
string literals by adding appropriate syntax declarations, together with some
translation functions (e.g. see ~~/src/HOL/Tools/string_syntax.ML).
The derived categories num_const, and float_const, provide robust access
to the respective tokens: the syntax tree holds a syntactic constant instead
of a free variable.
Formal document comments (§3.3.5) may be also used within the inner syn-
tax.

8.4.2 Priority grammars
A context-free grammar consists of a set of terminal symbols, a set of non-
terminal symbols and a set of productions. Productions have the form A =
γ, where A is a nonterminal and γ is a string of terminals and nonterminals.
One designated nonterminal is called the root symbol. The language defined
by the grammar consists of all strings of terminals that can be derived from
the root symbol by applying productions as rewrite rules.
The standard Isabelle parser for inner syntax uses a priority grammar. Each
nonterminal is decorated by an integer priority: A(p). In a derivation, A(p)

may be rewritten using a production A(q) = γ only if p ≤ q. Any priority
grammar can be translated into a normal context-free grammar by introduc-
ing new nonterminals and productions.

Formally, a set of context free productions G induces a derivation relation
−→G as follows. Let α and β denote strings of terminal or nonterminal
symbols. Then α A(p) β −→G α γ β holds if and only if G contains some
production A(q) = γ for p ≤ q.

The following grammar for arithmetic expressions demonstrates how binding
power and associativity of operators can be enforced by priorities.

A(1000) = (A(0))
A(1000) = 0

A(0) = A(0) + A(1)

A(2) = A(3) * A(2)

A(3) = - A(3)

The choice of priorities determines that - binds tighter than *, which binds
tighter than +. Furthermore + associates to the left and * to the right.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 191

For clarity, grammars obey these conventions:

• All priorities must lie between 0 and 1000.

• Priority 0 on the right-hand side and priority 1000 on the left-hand
side may be omitted.

• The production A(p) = α is written as A = α (p), i.e. the priority of
the left-hand side actually appears in a column on the far right.

• Alternatives are separated by |.

• Repetition is indicated by dots (. . .) in an informal but obvious way.

Using these conventions, the example grammar specification above takes the
form:

A = (A)
| 0
| A + A(1) (0)
| A(3) * A(2) (2)
| - A(3) (3)

8.4.3 The Pure grammar
The priority grammar of the Pure theory is defined approximately like this:

any = prop | logic

prop = (prop)
| prop(4) :: type (3)
| any(3) == any(3) (2)
| any(3) ≡ any(3) (2)
| prop(3) &&& prop(2) (2)
| prop(2) ==> prop(1) (1)
| prop(2) =⇒ prop(1) (1)
| [| prop ; . . . ; prop |] ==> prop(1) (1)
| [[prop ; . . . ; prop]] =⇒ prop(1) (1)
| !! idts . prop (0)
|

∧
idts . prop (0)

| OFCLASS (type , logic)

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 192

| SORT_CONSTRAINT (type)
| TERM logic
| PROP aprop

aprop = (aprop)
| id | longid | var | _ | ...
| CONST id | CONST longid
| XCONST id | XCONST longid
| logic(1000) any(1000) . . . any(1000) (999)

logic = (logic)
| logic(4) :: type (3)
| id | longid | var | _ | ...
| CONST id | CONST longid
| XCONST id | XCONST longid
| logic(1000) any(1000) . . . any(1000) (999)
| % pttrns . any(3) (3)
| λ pttrns . any(3) (3)
| (==) | (≡) | (&&&)
| (==>) | (=⇒)
| TYPE (type)

idt = (idt) | id | _
| id :: type (0)
| _ :: type (0)

index = \<^bsub> logic(0) \<^esub> | | ı

idts = idt | idt(1) idts (0)

pttrn = idt

pttrns = pttrn | pttrn(1) pttrns (0)

type = (type)
| tid | tvar | _
| tid :: sort | tvar :: sort | _ :: sort
| type_name | type(1000) type_name
| (type , . . . , type) type_name

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 193

| type(1) => type (0)
| type(1) ⇒ type (0)
| [type , . . . , type] => type (0)
| [type , . . . , type] ⇒ type (0)

type_name = id | longid

sort = class_name | _ | {}
| { class_name , . . . , class_name }

class_name = id | longid

Here literal terminals are printed verbatim; see also §8.4.1 for further token
categories of the inner syntax. The meaning of the nonterminals defined by
the above grammar is as follows:

any denotes any term.

prop denotes meta-level propositions, which are terms of type prop. The
syntax of such formulae of the meta-logic is carefully distinguished
from usual conventions for object-logics. In particular, plain λ-term
notation is not recognized as prop.

aprop denotes atomic propositions, which are embedded into regular prop
by means of an explicit PROP token.
Terms of type prop with non-constant head, e.g. a plain variable, are
printed in this form. Constants that yield type prop are expected to
provide their own concrete syntax; otherwise the printed version will
appear like logic and cannot be parsed again as prop.

logic denotes arbitrary terms of a logical type, excluding type prop. This
is the main syntactic category of object-logic entities, covering plain
λ-term notation (variables, abstraction, application), plus anything de-
fined by the user.
When specifying notation for logical entities, all logical types (excluding
prop) are collapsed to this single category of logic.

index denotes an optional index term for indexed syntax. If omitted, it refers
to the first structure variable in the context. The special dummy “ı”
serves as pattern variable in mixfix annotations that introduce indexed
notation.

idt denotes identifiers, possibly constrained by types.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 194

idts denotes a sequence of idt. This is the most basic category for variables
in iterated binders, such as λ or

∧
.

pttrn and pttrns denote patterns for abstraction, cases bindings etc. In Pure,
these categories start as a merely copy of idt and idts, respectively.
Object-logics may add additional productions for binding forms.

type denotes types of the meta-logic.

sort denotes meta-level sorts.

Here are some further explanations of certain syntax features.

• In idts, note that x :: nat y is parsed as x :: (nat y), treating y like a
type constructor applied to nat. To avoid this interpretation, write (x
:: nat) y with explicit parentheses.

• Similarly, x :: nat y :: nat is parsed as x :: (nat y :: nat). The correct
form is (x :: nat) (y :: nat), or (x :: nat) y :: nat if y is last in the
sequence of identifiers.

• Type constraints for terms bind very weakly. For example, x < y :: nat
is normally parsed as (x < y) :: nat, unless < has a very low priority,
in which case the input is likely to be ambiguous. The correct form is
x < (y :: nat).

• Dummy variables (written as underscore) may occur in different roles.

A sort “_” refers to a vacuous constraint for type variables, which is
effectively ignored in type-inference.

A type “_” or “_ :: sort” acts like an anonymous inference parameter,
which is filled-in according to the most general type produced by
the type-checking phase.

A bound “_” refers to a vacuous abstraction, where the body does
not refer to the binding introduced here. As in the term λx _. x,
which is α-equivalent to λx y. x.

A free “_” refers to an implicit outer binding. Higher definitional
packages usually allow forms like f x _ = x.

A schematic “_” (within a term pattern, see §3.3.8) refers to an anony-
mous variable that is implicitly abstracted over its context of lo-
cally bound variables. For example, this allows pattern matching
of {x . f x = g x} against {x . _ = _}, or even {_. _ = _} by
using both bound and schematic dummies.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 195

The three literal dots “...” may be also written as ellipsis symbol \<dots>.
In both cases this refers to a special schematic variable, which is bound
in the context. This special term abbreviation works nicely with cal-
culational reasoning (§6.3).

CONST ensures that the given identifier is treated as constant term, and
passed through the parse tree in fully internalized form. This is par-
ticularly relevant for translation rules (§8.5.2), notably on the RHS.

XCONST is similar to CONST, but retains the constant name as given. This is
only relevant to translation rules (§8.5.2), notably on the LHS.

8.4.4 Inspecting the syntax
print_syntax∗ : context →

print_syntax prints the inner syntax of the current context. The output
can be quite large; the most important sections are explained below.

lexicon lists the delimiters of the inner token language; see §8.4.1.
productions lists the productions of the underlying priority grammar;

see §8.4.2.
Many productions have an extra . . . ⇒ name. These names later
become the heads of parse trees; they also guide the pretty printer.
Productions without such parse tree names are called copy produc-
tions. Their right-hand side must have exactly one nonterminal
symbol (or named token). The parser does not create a new parse
tree node for copy productions, but simply returns the parse tree
of the right-hand symbol.
If the right-hand side of a copy production consists of a single
nonterminal without any delimiters, then it is called a chain pro-
duction. Chain productions act as abbreviations: conceptually,
they are removed from the grammar by adding new productions.
Priority information attached to chain productions is ignored.

print modes lists the alternative print modes provided by this gram-
mar; see §8.1.3.

parse_rules and print_rules relate to syntax translations (macros);
see §8.5.2.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 196

parse_ast_translation and print_ast_translation list sets of constants
that invoke translation functions for abstract syntax trees, which
are only required in very special situations; see §8.5.3.

parse_translation and print_translation list the sets of constants that
invoke regular translation functions; see §8.5.3.

8.4.5 Ambiguity of parsed expressions
syntax_ambiguity_warning : attribute default true

syntax_ambiguity_limit : attribute default 10

Depending on the grammar and the given input, parsing may be ambiguous.
Isabelle lets the Earley parser enumerate all possible parse trees, and then
tries to make the best out of the situation. Terms that cannot be type-
checked are filtered out, which often leads to a unique result in the end.
Unlike regular type reconstruction, which is applied to the whole collection
of input terms simultaneously, the filtering stage only treats each given term
in isolation. Filtering is also not attempted for individual types or raw ASTs
(as required for translations).
Certain warning or error messages are printed, depending on the situation
and the given configuration options. Parsing ultimately fails, if multiple
results remain after the filtering phase.

syntax_ambiguity_warning controls output of explicit warning messages
about syntax ambiguity.

syntax_ambiguity_limit determines the number of resulting parse trees that
are shown as part of the printed message in case of an ambiguity.

8.5 Syntax transformations
The inner syntax engine of Isabelle provides separate mechanisms to trans-
form parse trees either via rewrite systems on first-order ASTs (§8.5.2), or
ML functions on ASTs or syntactic λ-terms (§8.5.3). This works both for
parsing and printing, as outlined in figure 8.1.
These intermediate syntax tree formats eventually lead to a pre-term with all
names and binding scopes resolved, but most type information still missing.
Explicit type constraints might be given by the user, or implicit position

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 197

string
↓ lexer + parser

parse tree
↓ parse AST translation

AST
↓ AST rewriting (macros)

AST
↓ parse translation

— pre-term —
↓ print translation

AST
↓ AST rewriting (macros)

AST
↓ print AST translation

string

Figure 8.1: Parsing and printing with translations

information by the system — both need to be passed-through carefully by
syntax transformations.
Pre-terms are further processed by the so-called check and uncheck phases
that are intertwined with type-inference (see also [55]). The latter allows
to operate on higher-order abstract syntax with proper binding and type
information already available.
As a rule of thumb, anything that manipulates bindings of variables or con-
stants needs to be implemented as syntax transformation (see below). Any-
thing else is better done via check/uncheck: a prominent example application
is the abbreviation concept of Isabelle/Pure.

8.5.1 Abstract syntax trees
The ML datatype Ast.ast explicitly represents the intermediate AST format
that is used for syntax rewriting (§8.5.2). It is defined in ML as follows:

datatype ast =
Constant of string |
Variable of string |
Appl of ast list

An AST is either an atom (constant or variable) or a list of (at least two)
subtrees. Occasional diagnostic output of ASTs uses notation that resembles

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 198

S-expression of LISP. Constant atoms are shown as quoted strings, variable
atoms as non-quoted strings and applications as a parenthesized list of sub-
trees. For example, the AST

Ast.Appl [Ast.Constant "_abs", Ast.Variable "x", Ast.Variable "t"]

is pretty-printed as ("_abs" x t). Note that () and (x) are excluded as
ASTs, because they have too few subtrees.

AST application is merely a pro-forma mechanism to indicate certain syn-
tactic structures. Thus (c a b) could mean either term application or type
application, depending on the syntactic context.
Nested application like (("_abs" x t) u) is also possible, but ASTs are
definitely first-order: the syntax constant "_abs" does not bind the x in any
way. Proper bindings are introduced in later stages of the term syntax, where
("_abs" x t) becomes an Abs node and occurrences of x in t are replaced
by bound variables (represented as de-Bruijn indices).

AST constants versus variables

Depending on the situation — input syntax, output syntax, transla-
tion patterns — the distinction of atomic ASTs as Ast.Constant versus
Ast.Variable serves slightly different purposes.
Input syntax of a term such as f a b = c does not yet indicate the scopes of
atomic entities f , a, b, c: they could be global constants or local variables,
even bound ones depending on the context of the term. Ast.Variable leaves
this choice still open: later syntax layers (or translation functions) may cap-
ture such a variable to determine its role specifically, to make it a constant,
bound variable, free variable etc. In contrast, syntax translations that in-
troduce already known constants would rather do it via Ast.Constant to
prevent accidental re-interpretation later on.
Output syntax turns term constants into Ast.Constant and variables (free
or schematic) into Ast.Variable. This information is precise when printing
fully formal λ-terms.

AST translation patterns (§8.5.2) that represent terms cannot distinguish
constants and variables syntactically. Explicit indication of CONST c inside
the term language is required, unless c is known as special syntax constant
(see also syntax). It is also possible to use syntax declarations (with-
out mixfix annotation) to enforce that certain unqualified names are always
treated as constant within the syntax machinery.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 199

The situation is simpler for ASTs that represent types or sorts, since the con-
crete syntax already distinguishes type variables from type constants (con-
structors). So (′a, ′b) foo corresponds to an AST application of some constant
for foo and variable arguments for ′a and ′b. Note that the postfix application
is merely a feature of the concrete syntax, while in the AST the constructor
occurs in head position.

Authentic syntax names

Naming constant entities within ASTs is another delicate issue. Unqualified
names are resolved in the name space tables in the last stage of parsing, after
all translations have been applied. Since syntax transformations do not know
about this later name resolution, there can be surprises in boundary cases.
Authentic syntax names for Ast.Constant avoid this problem: the fully-
qualified constant name with a special prefix for its formal category (class,
type, const, fixed) represents the information faithfully within the untyped
AST format. Accidental overlap with free or bound variables is excluded as
well. Authentic syntax names work implicitly in the following situations:

• Input of term constants (or fixed variables) that are introduced by con-
crete syntax via notation: the correspondence of a particular grammar
production to some known term entity is preserved.

• Input of type constants (constructors) and type classes — thanks to
explicit syntactic distinction independently on the context.

• Output of term constants, type constants, type classes — this informa-
tion is already available from the internal term to be printed.

In other words, syntax transformations that operate on input terms written
as prefix applications are difficult to make robust. Luckily, this case rarely
occurs in practice, because syntax forms to be translated usually correspond
to some concrete notation.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 200

8.5.2 Raw syntax and translations
nonterminal : theory → theory

syntax : local_theory → local_theory
no_syntax : local_theory → local_theory

syntax_types : local_theory → local_theory
syntax_consts : local_theory → local_theory

translations : local_theory → local_theory
no_translations : local_theory → local_theory
syntax_ast_trace : attribute default false
syntax_ast_stats : attribute default false

Unlike mixfix notation for existing formal entities (§8.3), raw syntax dec-
larations provide full access to the priority grammar of the inner syntax,
without any sanity checks. This includes additional syntactic categories (via
nonterminal) and free-form grammar productions (via syntax with formal
dependencies via syntax_types and syntax_consts). Additional syntax
translations (or macros, via translations) are required to turn resulting
parse trees into proper representations of formal entities again.

nonterminal
�� �� name�

� and
�� ��

�
�

syntax
�� ���

�no_syntax
�� ��

�
�

�
�mode

�
�

constdecl�
�

�
�

syntax_types
�� ���

�syntax_consts
�� ��

�
�

syntaxdeps�
� and

�� ��
�
�

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 201

translations
�� ���

�no_translations
�� ��

�
�

transpat ==
�����

�=>
�����<=
�����

�����⇀
�����↽
����

�
�
�
�
�
�

transpat�

�

�

�
constdecl

name ::
����type �

�mixfix

�
�

mode

(
���� name�

�output
�� ���name output

�� ��

�
�
�

)
����

syntaxdeps

name�
�

�
�

==
�����

�

����

�
�

name�
�

�
�

transpat

�
� (

����name)
����

�
�

string

nonterminal c declares a type constructor c (without arguments) to act
as purely syntactic type: a nonterminal symbol of the inner syntax.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 202

syntax (mode) c :: σ (mx) augments the priority grammar and the pretty
printer table for the given print mode (default ""). An optional key-
word output means that only the pretty printer table is affected.
Following §8.2, the mixfix annotation mx = template ps q together with
type σ = τ 1 ⇒ . . . τn ⇒ τ and specify a grammar production. The
template contains delimiter tokens that surround n argument positions
(_). The latter correspond to nonterminal symbols Ai derived from the
argument types τ i as follows:

• prop if τ i = prop
• logic if τ i = (. . .)κ for logical type constructor κ 6= prop
• any if τ i = α for type variables
• κ if τ i = κ for nonterminal κ (syntactic type constructor)

Each Ai is decorated by priority pi from the given list ps; missing
priorities default to 0.
The resulting nonterminal of the production is determined similarly
from type τ , with priority q and default 1000.

Parsing via this production produces parse trees t1, . . . , tn for the
argument slots. The resulting parse tree is composed as c t1 . . . tn, by
using the syntax constant c of the syntax declaration.
Such syntactic constants are invented on the spot, without formal check
wrt. existing declarations. It is conventional to use plain identifiers
prefixed by a single underscore (e.g. _foobar). Names should be chosen
with care, to avoid clashes with other syntax declarations.

The special case of copy production is specified by c = "" (empty
string). It means that the resulting parse tree t is copied directly,
without any further decoration.

no_syntax (mode) decls removes grammar declarations (and translations)
resulting from decls, which are interpreted in the same manner as for
syntax above.

syntax_types syntax
 types and syntax_consts syntax
 consts de-
clare dependencies of syntax constants wrt. formal entities of the logic:
multiple names may be given on both sides. This tells the inner-syntax
engine how to markup concrete syntax, to support hyperlinks in the
browser or editor. It is essentially an abstract specification of the effect
of translation rules (see below) or translation functions (see §8.5.3).

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 203

translations rules specifies syntactic translation rules (i.e. macros) as first-
order rewrite rules on ASTs (§8.5.1). The theory context maintains two
independent lists translation rules: parse rules (=> or ⇀) and print rules
(<= or ↽). For convenience, both can be specified simultaneously as
parse / print rules (== or
).
Translation patterns may be prefixed by the syntactic category to be
used for parsing; the default is logic which means that regular term syn-
tax is used. Both sides of the syntax translation rule undergo parsing
and parse AST translations §8.5.3, in order to perform some fundamen-
tal normalization like λx y. b ; λx . λy. b, but other AST translation
rules are not applied recursively here.
When processing AST patterns, the inner syntax lexer runs in a differ-
ent mode that allows identifiers to start with underscore. This accom-
modates the usual naming convention for auxiliary syntax constants —
those that do not have a logical counter part — by allowing to specify
arbitrary AST applications within the term syntax, independently of
the corresponding concrete syntax.
Atomic ASTs are distinguished as Ast.Constant versus Ast.Variable
as follows: a qualified name or syntax constant declared via syntax, or
parse tree head of concrete notation becomes Ast.Constant, anything
else Ast.Variable. Note that CONST and XCONST within the term
language (§8.4.3) allow to enforce treatment as constants.
AST rewrite rules (lhs, rhs) need to obey the following side-conditions:

• Rules must be left linear: lhs must not contain repeated variables.2

• Every variable in rhs must also occur in lhs.

no_translations rules removes syntactic translation rules, which are in-
terpreted in the same manner as for translations above.

syntax_ast_trace and syntax_ast_stats control diagnostic output in the
AST normalization process, when translation rules are applied to con-
crete input or output.

Raw syntax and translations provides a slightly more low-level access to
the grammar and the form of resulting parse trees. It is often possible

2The deeper reason for this is that AST equality is not well-defined: different occur-
rences of the “same” AST could be decorated differently by accidental type-constraints or
source position information, for example.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 204

to avoid this untyped macro mechanism, and use type-safe abbreviation
or notation instead. Some important situations where syntax and
translations are really need are as follows:

• Iterated replacement via recursive translations. For example, con-
sider list enumeration [a, b, c, d] as defined in theory HOL.List.

• Change of binding status of variables: anything beyond the built-in
binder mixfix annotation requires explicit syntax translations. For
example, consider the set comprehension syntax {x . P} as defined in
theory HOL.Set.

Applying translation rules

As a term is being parsed or printed, an AST is generated as an intermediate
form according to figure 8.1. The AST is normalized by applying translation
rules in the manner of a first-order term rewriting system. We first examine
how a single rule is applied.
Let t be the abstract syntax tree to be normalized and (lhs, rhs) some trans-
lation rule. A subtree u of t is called redex if it is an instance of lhs; in
this case the pattern lhs is said to match the object u. A redex matched
by lhs may be replaced by the corresponding instance of rhs, thus rewriting
the AST t. Matching requires some notion of place-holders in rule patterns:
Ast.Variable serves this purpose.
More precisely, the matching of the object u against the pattern lhs is per-
formed as follows:

• Objects of the form Ast.Variable x or Ast.Constant x are matched
by pattern Ast.Constant x. Thus all atomic ASTs in the object are
treated as (potential) constants, and a successful match makes them
actual constants even before name space resolution (see also §8.5.1).

• Objects of the form Ast.Appl [Constant "_constrain", u, T],
for u as Ast.Variable x or Ast.Constant x, are matched by
Ast.Constant x if the AST T encodes a source position (from parsing)
or if types are considered optional (for printing).

• Object u is matched by pattern Ast.Variable x, binding x to u.

• Object Ast.Appl us is matched by Ast.Appl ts if us and ts have the
same length and each corresponding subtree matches.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 205

• In every other case, matching fails.

A successful match yields a substitution that is applied to rhs, generating
the instance that replaces u.
Normalizing an AST involves repeatedly applying translation rules until none
are applicable. This works yoyo-like: top-down, bottom-up, top-down, etc.
At each subtree position, rules are chosen in order of appearance in the theory
definitions.
The configuration options syntax_ast_trace and syntax_ast_stats might
help to understand this process and diagnose problems.

! If syntax translation rules work incorrectly, the output of print_syntax with
its rules sections reveals the actual internal forms of AST pattern, without

potentially confusing concrete syntax. Recall that AST constants appear as quoted
strings and variables without quotes.

! If eta_contract is set to true, terms will be η-contracted before the AST rewriter
sees them. Thus some abstraction nodes needed for print rules to match may

vanish. For example, Ball A (λx. P x) would contract to Ball A P and the standard
print rule would fail to apply. This problem can be avoided by hand-written ML
translation functions (see also §8.5.3), which is in fact the same mechanism used
in built-in binder declarations.

8.5.3 Syntax translation functions
parse_ast_translation : theory → theory

parse_translation : theory → theory
print_translation : theory → theory

typed_print_translation : theory → theory
print_ast_translation : theory → theory

class_syntax : ML antiquotation
type_syntax : ML antiquotation

const_syntax : ML antiquotation
syntax_const : ML antiquotation

Syntax translation functions written in ML admit almost arbitrary manipu-
lations of inner syntax, at the expense of some complexity and obscurity in
the implementation.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 206

parse_ast_translation
�� ���

�parse_translation
�� ���print_translation
�� ���typed_print_translation
�� ���print_ast_translation
�� ��

�
�
�
�
�

text

class_syntax
�� ���

�type_syntax
�� ���const_syntax
�� ���syntax_const
�� ��

�
�
�
�

embedded

parse_translation etc. declare syntax translation functions to the theory.
Any of these commands have a single text argument that refers to an
ML expression of appropriate type as follows:

parse_ast_translation :
(string * (Proof.context -> Ast.ast list -> Ast.ast)) list

parse_translation :
(string * (Proof.context -> term list -> term)) list

print_translation :
(string * (Proof.context -> term list -> term)) list

typed_print_translation :
(string * (Proof.context -> typ -> term list -> term)) list

print_ast_translation :
(string * (Proof.context -> Ast.ast list -> Ast.ast)) list

The argument list consists of (c, tr) pairs, where c is the syntax name
of the formal entity involved, and tr a function that translates a syn-
tax form c args into tr ctxt args (depending on the context). The
Isabelle/ML naming convention for parse translations is c_tr and for
print translations c_tr ′.
The print_syntax command displays the sets of names associated
with the translation functions of a theory under parse_ast_translation
etc.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 207

@{class_syntax c}, @{type_syntax c}, @{const_syntax c} inline the au-
thentic syntax name of the given formal entities into the ML source.
This is the fully-qualified logical name prefixed by a special marker
to indicate its kind: thus different logical name spaces are properly
distinguished within parse trees.

@{const_syntax c} inlines the name c of the given syntax constant, having
checked that it has been declared via some syntax commands within
the theory context. Note that the usual naming convention makes syn-
tax constants start with underscore, to reduce the chance of accidental
clashes with other names occurring in parse trees (unqualified constants
etc.).

The translation strategy

The different kinds of translation functions are invoked during the trans-
formations between parse trees, ASTs and syntactic terms (cf. figure 8.1).
Whenever a combination of the form c x1 . . . xn is encountered, and a trans-
lation function f of appropriate kind is declared for c, the result is produced
by evaluation of f [x1, . . . , xn] in ML.
For AST translations, the arguments x1, . . . , xn are ASTs. A combination
has the form Ast.Constant c or Ast.Appl [Ast.Constant c, x1, . . . , xn].
For term translations, the arguments are terms and a combination has the
form Const (c, τ) or Const (c, τ) $ x1 $. . . $ xn. Terms allow more sophis-
ticated transformations than ASTs do, typically involving abstractions and
bound variables. Typed print translations may even peek at the type τ of the
constant they are invoked on, although some information might have been
suppressed for term output already.
Regardless of whether they act on ASTs or terms, translation functions called
during the parsing process differ from those for printing in their overall be-
haviour:

Parse translations are applied bottom-up. The arguments are already in
translated form. The translations must not fail; exceptions trigger an
error message. There may be at most one function associated with any
syntactic name.

Print translations are applied top-down. They are supplied with argu-
ments that are partly still in internal form. The result again undergoes
translation; therefore a print translation should not introduce as head

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 208

the very constant that invoked it. The function may raise exception
Match to indicate failure; in this event it has no effect. Multiple func-
tions associated with some syntactic name are tried in the order of
declaration in the theory.

Only constant atoms — constructor Ast.Constant for ASTs and Const for
terms — can invoke translation functions. This means that parse translations
can only be associated with parse tree heads of concrete syntax, or syntactic
constants introduced via other translations. For plain identifiers within the
term language, the status of constant versus variable is not yet know dur-
ing parsing. This is in contrast to print translations, where constants are
explicitly known from the given term in its fully internal form.

8.5.4 Built-in syntax transformations
Here are some further details of the main syntax transformation phases of
figure 8.1.

Transforming parse trees to ASTs

The parse tree is the raw output of the parser. It is transformed into an AST
according to some basic scheme that may be augmented by AST translation
functions as explained in §8.5.3.
The parse tree is constructed by nesting the right-hand sides of the produc-
tions used to recognize the input. Such parse trees are simply lists of tokens
and constituent parse trees, the latter representing the nonterminals of the
productions. Ignoring AST translation functions, parse trees are transformed
to ASTs by stripping out delimiters and copy productions, while retaining
some source position information from input tokens.
The Pure syntax provides predefined AST translations to make the basic
λ-term structure more apparent within the (first-order) AST representation,
and thus facilitate the use of translations (see also §8.5.2). This covers or-
dinary term application, type application, nested abstraction, iterated meta
implications and function types. The effect is illustrated on some represen-
tative input strings is as follows:

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 209

input source AST
f x y z (f x y z)
′a ty (ty ’a)
(′a, ′b)ty (ty ’a ’b)
λx y z . t ("_abs" x ("_abs" y ("_abs" z t)))
λx :: ′a. t ("_abs" ("_constrain" x ’a) t)
[[P; Q; R]] =⇒ S ("Pure.imp" P ("Pure.imp" Q ("Pure.imp" R S)))
[′a, ′b, ′c] ⇒ ′d ("fun" ’a ("fun" ’b ("fun" ’c ’d)))

Note that type and sort constraints may occur in many other places —
translations need to cope with them. The built-in syntax transformation
from parse trees to ASTs insert additional constraints that represent source
positions.

Transforming ASTs to terms

After application of macros (§8.5.2), the AST is transformed into a term.
This term still lacks proper type information, but it might contain some con-
straints consisting of applications with head _constrain, where the second
argument is a type encoded as a pre-term within the syntax. Type inference
later introduces correct types, or indicates type errors in the input.
Ignoring parse translations, ASTs are transformed to terms by mapping AST
constants to term constants, AST variables to term variables or constants
(according to the name space), and AST applications to iterated term appli-
cations.
The outcome is still a first-order term. Proper abstractions and bound vari-
ables are introduced by parse translations associated with certain syntax
constants. Thus ("_abs" x x) eventually becomes a de-Bruijn term Abs
("x", _, Bound 0).

Printing of terms

The output phase is essentially the inverse of the input phase. Terms are
translated via abstract syntax trees into pretty-printed text.
Ignoring print translations, the transformation maps term constants, vari-
ables and applications to the corresponding constructs on ASTs. Abstrac-
tions are mapped to applications of the special constant _abs as seen before.
Type constraints are represented via special _constrain forms, according to
various policies of type annotation determined elsewhere. Sort constraints of
type variables are handled in a similar fashion.

CHAPTER 8. INNER SYNTAX — THE TERM LANGUAGE 210

After application of macros (§8.5.2), the AST is finally pretty-printed. The
built-in print AST translations reverse the corresponding parse AST trans-
lations.

For the actual printing process, the priority grammar (§8.4.2) plays a vital
role: productions are used as templates for pretty printing, with argument
slots stemming from nonterminals, and syntactic sugar stemming from literal
tokens.
Each AST application with constant head c and arguments t1, . . . , tn (for
n = 0 the AST is just the constant c itself) is printed according to the
first grammar production of result name c. The required syntax priority of
the argument slot is given by its nonterminal A(p). The argument t i that
corresponds to the position of A(p) is printed recursively, and then put in
parentheses if its priority p requires this. The resulting output is concate-
nated with the syntactic sugar according to the grammar production.
If an AST application (c x1 . . . xm) has more arguments than the corre-
sponding production, it is first split into ((c x1 . . . xn) xn+1 . . . xm) and
then printed recursively as above.
Applications with too few arguments or with non-constant head or without a
corresponding production are printed in prefix-form like f t1 . . . tn for terms.
Multiple productions associated with some name c are tried in order of ap-
pearance within the grammar. An occurrence of some AST variable x is
printed as x outright.

White space is not inserted automatically. If blanks (or breaks) are required
to separate tokens, they need to be specified in the mixfix declaration (§8.2).

Chapter 9

Generic tools and packages

9.1 Configuration options
Isabelle/Pure maintains a record of named configuration options within the
theory or proof context, with values of type bool, int, real, or string. Tools
may declare options in ML, and then refer to these values (relative to the
context). Thus global reference variables are easily avoided. The user may
change the value of a configuration option by means of an associated attribute
of the same name. This form of context declaration works particularly well
with commands such as declare or using like this:
declare [[show_main_goal = false]]

notepad
begin

note [[show_main_goal = true]]
end

print_options : context →

print_options
�� ���

� !
����

�
�

211

CHAPTER 9. GENERIC TOOLS AND PACKAGES 212

name �
� =

���� true
�� ���

�false
�� ���int

�float

�name

�
�
�
�
�

�
�

print_options prints the available configuration options, with names,
types, and current values; the “!” option indicates extra verbosity.

name = value as an attribute expression modifies the named option, with
the syntax of the value depending on the option’s type. For bool the
default value is true. Any attempt to change a global option in a local
context is ignored.

9.2 Basic proof tools
9.2.1 Miscellaneous methods and attributes

unfold : method
fold : method

insert : method
erule∗ : method
drule∗ : method
frule∗ : method
intro : method
elim : method
fail : method

succeed : method
sleep : method

CHAPTER 9. GENERIC TOOLS AND PACKAGES 213

fold
�� ���

�unfold
�� ���insert
�� ��

�
�
�

thms

erule
�� ���

�drule
�� ���frule
�� ��

�
�
�

�
� (

����nat)
����

�
�

thms

intro
�� ���

�elim
�� ��

�
�

�
�thms

�
�

sleep
�� ��real

unfold a1 . . . an and fold a1 . . . an expand (or fold back) the given defini-
tions throughout all goals; any chained facts provided are inserted into
the goal and subject to rewriting as well.
Unfolding works in two stages: first, the given equations are used di-
rectly for rewriting; second, the equations are passed through the at-
tribute abs_def before rewriting — to ensure that definitions are fully
expanded, regardless of the actual parameters that are provided.

insert a1 . . . an inserts theorems as facts into all goals of the proof state.
Note that current facts indicated for forward chaining are ignored.

erule a1 . . . an, drule a1 . . . an, and frule a1 . . . an are similar to the basic
rule method (see §6.4.3), but apply rules by elim-resolution, destruct-
resolution, and forward-resolution, respectively [55]. The optional nat-
ural number argument (default 0) specifies additional assumption steps
to be performed here.
Note that these methods are improper ones, mainly serving for ex-
perimentation and tactic script emulation. Different modes of basic
rule application are usually expressed in Isar at the proof language
level, rather than via implicit proof state manipulations. For example,

CHAPTER 9. GENERIC TOOLS AND PACKAGES 214

a proper single-step elimination would be done using the plain rule
method, with forward chaining of current facts.

intro and elim repeatedly refine some goal by intro- or elim-resolution, after
having inserted any chained facts. Exactly the rules given as arguments
are taken into account; this allows fine-tuned decomposition of a proof
problem, in contrast to common automated tools.

fail yields an empty result sequence; it is the identity of the “|” method
combinator (cf. §6.4.1).

succeed yields a single (unchanged) result; it is the identity of the “,” method
combinator (cf. §6.4.1).

sleep s succeeds after a real-time delay of s seconds. This is occasionally
useful for demonstration and testing purposes.

tagged : attribute
untagged : attribute

THEN : attribute
unfolded : attribute

folded : attribute
abs_def : attribute
rotated : attribute

elim_format : attribute
no_vars∗ : attribute

tagged
�� ��name name

untagged
�� ��name

THEN
�� ���

� [
����nat]

����
�
�

thm

unfolded
�� ���

�folded
�� ��

�
�

thms

CHAPTER 9. GENERIC TOOLS AND PACKAGES 215

rotated
�� ���

�int

�
�

tagged name value and untagged name add and remove tags of some theo-
rem. Tags may be any list of string pairs that serve as formal comment.
The first string is considered the tag name, the second its value. Note
that untagged removes any tags of the same name.

THEN a composes rules by resolution; it resolves with the first premise of
a (an alternative position may be also specified). See also RS in [55].

unfolded a1 . . . an and folded a1 . . . an expand and fold back again the
given definitions throughout a rule.

abs_def turns an equation of the form f x y ≡ t into f ≡ λx y. t, which
ensures that simp steps always expand it. This also works for object-
logic equality.

rotated n rotate the premises of a theorem by n (default 1).

elim_format turns a destruction rule into elimination rule format, by resolv-
ing with the rule PROP A =⇒ (PROP A =⇒ PROP B) =⇒ PROP
B.
Note that the Classical Reasoner (§9.4) provides its own version of this
operation.

no_vars replaces schematic variables by free ones; this is mainly for tuning
output of pretty printed theorems.

9.2.2 Low-level equational reasoning
subst : method

hypsubst : method
split : method

CHAPTER 9. GENERIC TOOLS AND PACKAGES 216

subst
�� ���

� (
����asm

�� ��)
����

�
�

�

��
��

� (
���� nat�

�
�
�

)
����

�
�

thm

split
�� ��thms

These methods provide low-level facilities for equational reasoning that are
intended for specialized applications only. Normally, single step calculations
would be performed in a structured text (see also §6.3), while the Simplifier
methods provide the canonical way for automated normalization (see §9.3).

subst eq performs a single substitution step using rule eq, which may be
either a meta or object equality.

subst (asm) eq substitutes in an assumption.

subst (i . . . j) eq performs several substitutions in the conclusion. The
numbers i to j indicate the positions to substitute at. Positions are
ordered from the top of the term tree moving down from left to right.
For example, in (a + b) + (c + d) there are three positions where
commutativity of + is applicable: 1 refers to a + b, 2 to the whole
term, and 3 to c + d.
If the positions in the list (i . . . j) are non-overlapping (e.g. (2 3) in
(a + b) + (c + d)) you may assume all substitutions are performed
simultaneously. Otherwise the behaviour of subst is not specified.

subst (asm) (i . . . j) eq performs the substitutions in the assumptions.
The positions refer to the assumptions in order from left to right. For
example, given in a goal of the form P (a + b) =⇒ P (c + d) =⇒ . . . ,
position 1 of commutativity of + is the subterm a + b and position 2
is the subterm c + d.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 217

hypsubst performs substitution using some assumption; this only works for
equations of the form x = t where x is a free or bound variable.

split a1 . . . an performs single-step case splitting using the given rules.
Splitting is performed in the conclusion or some assumption of the
subgoal, depending of the structure of the rule.
Note that the simp method already involves repeated application of
split rules as declared in the current context, using split, for example.

9.3 The Simplifier
The Simplifier performs conditional and unconditional rewriting and uses
contextual information: rule declarations in the background theory or local
proof context are taken into account, as well as chained facts and subgoal
premises (“local assumptions”). There are several general hooks that allow
to modify the simplification strategy, or incorporate other proof tools that
solve sub-problems, produce rewrite rules on demand etc.
The rewriting strategy is always strictly bottom up, except for congruence
rules, which are applied while descending into a term. Conditions in condi-
tional rewrite rules are solved recursively before the rewrite rule is applied.
The default Simplifier setup of major object logics (HOL, HOLCF, FOL,
ZF) makes the Simplifier ready for immediate use, without engaging into the
internal structures. Thus it serves as general-purpose proof tool with the
main focus on equational reasoning, and a bit more than that.

9.3.1 Simplification methods
simp : method

simp_all : method
Pure.simp : method

Pure.simp_all : method
simp_depth_limit : attribute default 100

simp
�� ���

�simp_all
�� ��

�
�

�
�opt

�
�

�
�simpmod

�
�

CHAPTER 9. GENERIC TOOLS AND PACKAGES 218

opt

(
���� no_asm

�� ���
�no_asm_simp

�� ���no_asm_use
�� ���asm_lr
�� ��

�
�
�
�

)
����

simpmod

add
�� ���

�del
�� ���flip
�� ���only
�� ���split
�� ���

� !
�����del
�� ��

�
�
�

�cong
�� ���

�add
�� ���del
�� ��

�
�
�

�
�
�
�
�

�

:
����thms

simp invokes the Simplifier on the first subgoal, after inserting chained facts
as additional goal premises; further rule declarations may be included
via (simp add: facts). The proof method fails if the subgoal remains
unchanged after simplification.
Note that the original goal premises and chained facts are subject to
simplification themselves, while declarations via add/del merely follow
the policies of the object-logic to extract rewrite rules from theorems,
without further simplification. This may lead to slightly different be-
havior in either case, which might be required precisely like that in
some boundary situations to perform the intended simplification step!

CHAPTER 9. GENERIC TOOLS AND PACKAGES 219

Modifier flip deletes the following theorems from the simpset and adds
their symmetric version (i.e. lhs and rhs exchanged). No warning is
shown if the original theorem was not present.

The only modifier first removes all other rewrite rules, looper tactics
(including split rules), congruence rules, and then behaves like add.
Implicit solvers remain, which means that trivial rules like reflexivity
or introduction of True are available to solve the simplified subgoals,
but also non-trivial tools like linear arithmetic in HOL. The latter
may lead to some surprise of the meaning of “only” in Isabelle/HOL
compared to English!

The split modifiers add or delete rules for the Splitter (see also §9.3.6
on the looper). This works only if the Simplifier method has been
properly setup to include the Splitter (all major object logics such
HOL, HOLCF, FOL, ZF do this already). The ! option causes the split
rules to be used aggressively: after each application of a split rule in
the conclusion, the safe tactic of the classical reasoner (see §9.4.5) is
applied to the new goal. The net effect is that the goal is split into the
different cases. This option can speed up simplification of goals with
many nested conditional or case expressions significantly.
There is also a separate split method available for single-step case split-
ting. The effect of repeatedly applying (split thms) can be imitated by
“(simp only: split: thms)”.

The cong modifiers add or delete Simplifier congruence rules (see also
§9.3.2); the default is to add.

simp_all is similar to simp, but acts on all goals, working backwards from
the last to the first one as usual in Isabelle.1

Chained facts are inserted into all subgoals, before the simplification
process starts. Further rule declarations are the same as for simp.
The proof method fails if all subgoals remain unchanged after simplifi-
cation.

simp_depth_limit limits the number of recursive invocations of the Simpli-
fier during conditional rewriting.

1The order is irrelevant for goals without schematic variables, so simplification might
actually be performed in parallel here.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 220

By default the Simplifier methods above take local assumptions fully into ac-
count, using equational assumptions in the subsequent normalization process,
or simplifying assumptions themselves. Further options allow to fine-tune the
behavior of the Simplifier in this respect, corresponding to a variety of ML
tactics as follows.2

Isar method ML tactic behavior
(simp (no_asm)) simp_tac assumptions are ignored

completely
(simp (no_asm_simp)) asm_simp_tac assumptions are used in

the simplification of the
conclusion but are not
themselves simplified

(simp (no_asm_use)) full_simp_tac assumptions are simpli-
fied but are not used in
the simplification of each
other or the conclusion

(simp) asm_full_simp_tac assumptions are used in
the simplification of the
conclusion and to sim-
plify other assumptions

(simp (asm_lr)) asm_lr_simp_tac compatibility mode: an
assumption is only used
for simplifying assump-
tions which are to the
right of it

In Isabelle/Pure, proof methods simp and simp_all only know about meta-
equality ≡. Any new object-logic needs to re-define these methods via
Simplifier.method_setup in ML: Isabelle/FOL or Isabelle/HOL may serve
as blue-prints.

Examples

We consider basic algebraic simplifications in Isabelle/HOL. The rather triv-
ial goal 0 + (x + 0) = x + 0 + 0 looks like a good candidate to be solved
by a single call of simp:
lemma 0 + (x + 0) = x + 0 + 0 apply simp? oops

2Unlike the corresponding Isar proof methods, the ML tactics do not insist in changing
the goal state.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 221

The above attempt fails, because 0 and (+) in the HOL library are declared
as generic type class operations, without stating any algebraic laws yet. More
specific types are required to get access to certain standard simplifications of
the theory context, e.g. like this:
lemma fixes x :: nat shows 0 + (x + 0) = x + 0 + 0 by simp
lemma fixes x :: int shows 0 + (x + 0) = x + 0 + 0 by simp
lemma fixes x :: ′a :: monoid_add shows 0 + (x + 0) = x + 0 + 0 by simp

In many cases, assumptions of a subgoal are also needed in the simplification
process. For example:
lemma fixes x :: nat shows x = 0 =⇒ x + x = 0 by simp
lemma fixes x :: nat assumes x = 0 shows x + x = 0 apply simp oops
lemma fixes x :: nat assumes x = 0 shows x + x = 0 using assms by simp

As seen above, local assumptions that shall contribute to simplification need
to be part of the subgoal already, or indicated explicitly for use by the subse-
quent method invocation. Both too little or too much information can make
simplification fail, for different reasons.
In the next example the malicious assumption

∧
x ::nat. f x = g (f (g x)) does

not contribute to solve the problem, but makes the default simp method loop:
the rewrite rule f ?x ≡ g (f (g ?x)) extracted from the assumption does not
terminate. The Simplifier notices certain simple forms of nontermination, but
not this one. The problem can be solved nonetheless, by ignoring assumptions
via special options as explained before:
lemma (

∧
x::nat. f x = g (f (g x))) =⇒ f 0 = f 0 + 0

by (simp (no_asm))

The latter form is typical for long unstructured proof scripts, where the
control over the goal content is limited. In structured proofs it is usually
better to avoid pushing too many facts into the goal state in the first place.
Assumptions in the Isar proof context do not intrude the reasoning if not
used explicitly. This is illustrated for a toplevel statement and a local proof
body as follows:
lemma

assumes
∧

x::nat. f x = g (f (g x))
shows f 0 = f 0 + 0 by simp

notepad
begin

assume
∧

x::nat. f x = g (f (g x))
have f 0 = f 0 + 0 by simp

CHAPTER 9. GENERIC TOOLS AND PACKAGES 222

end

Because assumptions may simplify each other, there can be very subtle cases
of nontermination. For example, the regular simp method applied to P (f x)
=⇒ y = x =⇒ f x = f y =⇒ Q gives rise to the infinite reduction sequence

P (f x) f x ≡ f y7−→ P (f y) y ≡ x7−→ P (f x) f x ≡ f y7−→ · · ·

whereas applying the same to y = x =⇒ f x = f y =⇒ P (f x) =⇒ Q
terminates (without solving the goal):
lemma y = x =⇒ f x = f y =⇒ P (f x) =⇒ Q

apply simp
oops

See also §9.3.4 for options to enable Simplifier trace mode, which often helps
to diagnose problems with rewrite systems.

9.3.2 Declaring rules
simp : attribute
split : attribute
cong : attribute

print_simpset∗ : context →

simp
�� ���

�cong
�� ��

�
�

�
�add

�� ���del
�� ��

�
�
�

�

�split
�� ���

� !
�����del
�� ��

�
�
�

�

�

print_simpset
�� ���

� !
����

�
�

CHAPTER 9. GENERIC TOOLS AND PACKAGES 223

simp declares rewrite rules, by adding or deleting them from the simpset
within the theory or proof context. Rewrite rules are theorems express-
ing some form of equality, for example:
Suc ?m + ?n = ?m + Suc ?n
?P ∧ ?P ←→ ?P
?A ∪ ?B ≡ {x . x ∈ ?A ∨ x ∈ ?B}

Conditional rewrites such as ?m < ?n =⇒ ?m div ?n = 0 are also
permitted; the conditions can be arbitrary formulas.

Internally, all rewrite rules are translated into Pure equalities, theo-
rems with conclusion lhs ≡ rhs. The simpset contains a function for
extracting equalities from arbitrary theorems, which is usually installed
when the object-logic is configured initially. For example, ¬ ?x ∈ {}
could be turned into ?x ∈ {} ≡ False. Theorems that are declared as
simp and local assumptions within a goal are treated uniformly in this
respect.
The Simplifier accepts the following formats for the lhs term:

1. First-order patterns, considering the sublanguage of application of
constant operators to variable operands, without λ-abstractions or
functional variables. For example:
(?x + ?y) + ?z ≡ ?x + (?y + ?z)
f (f ?x ?y) ?z ≡ f ?x (f ?y ?z)

2. Higher-order patterns in the sense of [36]. These are terms in β-
normal form (this will always be the case unless you have done
something strange) where each occurrence of an unknown is of
the form ?F x1 . . . xn, where the x i are distinct bound variables.
For example, (∀ x . ?P x ∧ ?Q x) ≡ (∀ x . ?P x) ∧ (∀ x . ?Q x) or
its symmetric form, since the rhs is also a higher-order pattern.

3. Physical first-order patterns over raw λ-term structure without
αβη-equality; abstractions and bound variables are treated like
quasi-constant term material.
For example, the rule ?f ?x ∈ range ?f = True rewrites the term
g a ∈ range g to True, but will fail to match g (h b) ∈ range
(λx . g (h x)). However, offending subterms (in our case ?f ?x,
which is not a pattern) can be replaced by adding new variables
and conditions like this: ?y = ?f ?x =⇒ ?y ∈ range ?f = True
is acceptable as a conditional rewrite rule of the second category
since conditions can be arbitrary terms.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 224

split declares case split rules.

cong declares congruence rules to the Simplifier context.
Congruence rules are equalities of the form

. . . =⇒ f ?x1 . . . ?xn = f ?y1 . . . ?yn

This controls the simplification of the arguments of f. For example,
some arguments can be simplified under additional assumptions:

?P1 ←→ ?Q1 =⇒
(?Q1 =⇒ ?P2 ←→ ?Q2) =⇒
(?P1 −→ ?P2) ←→ (?Q1 −→ ?Q2)

Given this rule, the Simplifier assumes ?Q1 and extracts rewrite rules
from it when simplifying ?P2. Such local assumptions are effective for
rewriting formulae such as x = 0 −→ y + x = y.

The following congruence rule for bounded quantifiers also supplies
contextual information — about the bound variable:

(?A = ?B) =⇒
(
∧

x. x ∈ ?B =⇒ ?P x ←→ ?Q x) =⇒
(∀ x ∈ ?A. ?P x) ←→ (∀ x ∈ ?B. ?Q x)

This congruence rule for conditional expressions can supply contextual
information for simplifying the arms:

?p = ?q =⇒
(?q =⇒ ?a = ?c) =⇒
(¬ ?q =⇒ ?b = ?d) =⇒
(if ?p then ?a else ?b) = (if ?q then ?c else ?d)

A congruence rule can also prevent simplification of some arguments.
Here is an alternative congruence rule for conditional expressions that
conforms to non-strict functional evaluation:

?p = ?q =⇒
(if ?p then ?a else ?b) = (if ?q then ?a else ?b)

Only the first argument is simplified; the others remain unchanged.
This can make simplification much faster, but may require an extra
case split over the condition ?q to prove the goal.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 225

print_simpset prints the collection of rules declared to the Simplifier,
which is also known as “simpset” internally; the “!” option indicates
extra verbosity.
The implicit simpset of the theory context is propagated monotoni-
cally through the theory hierarchy: forming a new theory, the union
of the simpsets of its imports are taken as starting point. Also note
that definitional packages like datatype, primrec, fun routinely de-
clare Simplifier rules to the target context, while plain definition is
an exception in not declaring anything.

It is up the user to manipulate the current simpset further by explicitly
adding or deleting theorems as simplification rules, or installing other
tools via simplification procedures (§9.3.5). Good simpsets are hard
to design. Rules that obviously simplify, like ?n + 0 ≡ ?n are good
candidates for the implicit simpset, unless a special non-normalizing
behavior of certain operations is intended. More specific rules (such as
distributive laws, which duplicate subterms) should be added only for
specific proof steps. Conversely, sometimes a rule needs to be deleted
just for some part of a proof. The need of frequent additions or deletions
may indicate a poorly designed simpset.

! The union of simpsets from theory imports (as described above) is not always
a good starting point for the new theory. If some ancestors have deleted
simplification rules because they are no longer wanted, while others have
left those rules in, then the union will contain the unwanted rules, and thus
have to be deleted again in the theory body.

9.3.3 Ordered rewriting with permutative rules
A rewrite rule is permutative if the left-hand side and right-hand side are the
equal up to renaming of variables. The most common permutative rule is
commutativity: ?x + ?y = ?y + ?x. Other examples include (?x − ?y) −
?z = (?x − ?z) − ?y in arithmetic and insert ?x (insert ?y ?A) = insert
?y (insert ?x ?A) for sets. Such rules are common enough to merit special
attention.
Because ordinary rewriting loops given such rules, the Simplifier employs
a special strategy, called ordered rewriting. Permutative rules are detected
and only applied if the rewriting step decreases the redex wrt. a given term
ordering. For example, commutativity rewrites b + a to a + b, but then

CHAPTER 9. GENERIC TOOLS AND PACKAGES 226

stops, because the redex cannot be decreased further in the sense of the term
ordering.
The default is lexicographic ordering of term structure, but this could be
also changed locally for special applications via Simplifier.set_term_ord
in Isabelle/ML.

Permutative rewrite rules are declared to the Simplifier just like other rewrite
rules. Their special status is recognized automatically, and their application
is guarded by the term ordering accordingly.

Rewriting with AC operators

Ordered rewriting is particularly effective in the case of associative-
commutative operators. (Associativity by itself is not permutative.) When
dealing with an AC-operator f, keep the following points in mind:

• The associative law must always be oriented from left to right, namely
f (f x y) z = f x (f y z). The opposite orientation, if used with commu-
tativity, leads to looping in conjunction with the standard term order.

• To complete your set of rewrite rules, you must add not just as-
sociativity (A) and commutativity (C) but also a derived rule left-
commutativity (LC): f x (f y z) = f y (f x z).

Ordered rewriting with the combination of A, C, and LC sorts a term lexi-
cographically — the rewriting engine imitates bubble-sort.
experiment

fixes f :: ′a ⇒ ′a ⇒ ′a (infix ‹·› 60)
assumes assoc: (x · y) · z = x · (y · z)
assumes commute: x · y = y · x

begin

lemma left_commute: x · (y · z) = y · (x · z)
proof −

have (x · y) · z = (y · x) · z by (simp only: commute)
then show ?thesis by (simp only: assoc)

qed

lemmas AC_rules = assoc commute left_commute

Thus the Simplifier is able to establish equalities with arbitrary permutations
of subterms, by normalizing to a common standard form. For example:

CHAPTER 9. GENERIC TOOLS AND PACKAGES 227

lemma (b · c) · a = xxx
apply (simp only: AC_rules)

1. a · (b · c) = xxx

oops

lemma (b · c) · a = a · (b · c) by (simp only: AC_rules)
lemma (b · c) · a = c · (b · a) by (simp only: AC_rules)
lemma (b · c) · a = (c · b) · a by (simp only: AC_rules)

end

Martin and Nipkow [31] discuss the theory and give many examples; other
algebraic structures are amenable to ordered rewriting, such as Boolean rings.
The Boyer-Moore theorem prover [11] also employs ordered rewriting.

Re-orienting equalities

Another application of ordered rewriting uses the derived rule eq_commute:
(?a = ?b) = (?b = ?a) to reverse equations.
This is occasionally useful to re-orient local assumptions according to the
term ordering, when other built-in mechanisms of reorientation and mutual
simplification fail to apply.

9.3.4 Simplifier tracing and debugging
simp_trace : attribute default false

simp_trace_depth_limit : attribute default 1
simp_debug : attribute default false

simp_trace_new : attribute
simp_break : attribute

CHAPTER 9. GENERIC TOOLS AND PACKAGES 228

simp_trace_new
�� ���

�interactive
�� ��

�
�

�

��
��

�mode
�� ��=

���� full
�� ���

�normal
�� ��

�
�

�
�

�

��
��

�depth
�� ��=

����nat

�
�

simp_break
�� ���

�term

�
�

These attributes and configurations options control various aspects of Sim-
plifier tracing and debugging.

simp_trace makes the Simplifier output internal operations. This includes
rewrite steps (but not traces from simproc calls), but also bookkeeping
like modifications of the simpset.

simp_trace_depth_limit limits the effect of simp_trace to the given depth
of recursive Simplifier invocations (when solving conditions of rewrite
rules).

simp_debug makes the Simplifier output some extra information about in-
ternal operations. This includes any attempted invocation of simplifi-
cation procedures and the corresponding traces.

simp_trace_new controls Simplifier tracing within Isabelle/PIDE applica-
tions, notably Isabelle/jEdit [56]. This provides a hierarchical repre-
sentation of the rewriting steps performed by the Simplifier.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 229

Users can configure the behaviour by specifying breakpoints, verbosity
and enabling or disabling the interactive mode. In normal verbosity
(the default), only rule applications matching a breakpoint will be
shown to the user. In full verbosity, all rule applications will be logged.
Interactive mode interrupts the normal flow of the Simplifier and defers
the decision how to continue to the user via some GUI dialog.

simp_break declares term or theorem breakpoints for simp_trace_new as
described above. Term breakpoints are patterns which are checked
for matches on the redex of a rule application. Theorem breakpoints
trigger when the corresponding theorem is applied in a rewrite step.
For example:

declare conjI [simp_break]
declare [[simp_break ?x ∧ ?y]]

9.3.5 Simplification procedures
A simplification procedure or simproc is an ML function that produces proven
rewrite rules on demand. Simprocs are guarded by multiple patterns for
the left-hand sides of equations. The Simplifier first matches the current
redex against one of the LHS patterns; if this succeeds, the corresponding
ML function is invoked, passing the Simplifier context and redex term. The
function may choose to succeed with a specific result for the redex, or fail.
The successful result of a simproc needs to be a (possibly conditional) rewrite
rule t ≡ u that is applicable to the current redex. The rule will be applied
just as any ordinary rewrite rule. It is expected to be already in internal
form of the Pure logic, bypassing the automatic preprocessing of object-level
equivalences.

simproc_setup : local_theory → local_theory
simproc_setup : ML antiquotation

simproc : attribute

simproc_setup

�
�passive

�� ��
�
�

�
�proc_kind

�
�

name patterns =
����embedded

CHAPTER 9. GENERIC TOOLS AND PACKAGES 230

simproc_setup_id

simproc_setup �
�identifier

�� ��thms

�
�

proc_kind

congproc
�� ���

�weak_congproc
�� ��

�
�

patterns

(
���� term�

� |
����

�
�

)
����

simproc_setup
�� ��simproc_setup

simproc
�� �� �

�add
�� ��:

����
�
�

�

�del
�� ��:

����

�

�

name�
�

�
�

Command simproc_setup defines a named simplification procedure that
is invoked by the Simplifier whenever any of the given term patterns
match the current redex. The implementation, which is provided as em-
bedded ML source, needs to be of type morphism -> Proof.context
-> cterm -> thm option, where the cterm represents the current re-
dex r and the result is supposed to be SOME proven rewrite rule r ≡ r ′

(or a generalized version); NONE indicates failure. The Proof.context
argument holds the full context of the current Simplifier invocation.
The morphism tells how to move from the abstract context of the orig-
inal definition into the concrete context of applications. This is only
relevant for simprocs that are defined “in” a local theory context (e.g.
locale with later interpretation).

CHAPTER 9. GENERIC TOOLS AND PACKAGES 231

By default, the simproc is declared to the current Simplifier context
and thus active. The keyword passive avoids that: it merely defines a
simproc that can be activated in a different context later on.
Regular simprocs produce rewrite rules on the fly, but it is also
possible to congruence rules via the proc_kind keywords: congproc
or weak_congproc. See also ~~/src/HOL/Imperative_HOL/ex/
Congproc_Ex.thy for further explanations and examples.

ML antiquotation simproc_setup is like command simproc_setup, with
slightly extended syntax following simproc_setup_id. It allows to in-
troduce a new simproc conveniently within an ML module, and refer
directly to its ML value. For example, see various uses in ~~/src/HOL/
Tools/record.ML.
The optional identifier specifies characteristic theorems to distinguish
simproc instances after application of morphisms, e.g. locale with mul-
tiple interpretation. See also the minimal example below.

Attributes [simproc add: name] and [simproc del: name] add or delete named
simprocs to the current Simplifier context. The default is to add a
simproc. Note that simproc_setup already adds the new simproc by
default, unless it specified as passive.

Examples

The following simplification procedure for (?u::unit) = () in HOL per-
forms fine-grained control over rule application, beyond higher-order pattern
matching. Declaring unit_eq as simp directly would make the Simplifier
loop! Note that a version of this simplification procedure is already active in
Isabelle/HOL.
simproc_setup unit ("x::unit") =

‹K (K (fn ct =>
if HOLogic.is_unit (Thm.term_of ct) then NONE
else SOME (mk_meta_eq @{thm unit_eq})))›

Since the Simplifier applies simplification procedures frequently, it is impor-
tant to make the failure check in ML reasonably fast.

The subsequent example shows how to define a local simproc with extra
identifier to distinguish its instances after interpretation:
locale loc = fixes x y :: ′a assumes eq: x = y
begin

CHAPTER 9. GENERIC TOOLS AND PACKAGES 232

ML ‹
simproc_setup ‹proc (x) =

‹fn phi => fn _ => fn _ => SOME (Morphism.thm phi @{thm eq})›
identifier loc_axioms›

›

end

9.3.6 Configurable Simplifier strategies
The core term-rewriting engine of the Simplifier is normally used in com-
bination with some add-on components that modify the strategy and allow
to integrate other non-Simplifier proof tools. These may be reconfigured in
ML as explained below. Even if the default strategies of object-logics like
Isabelle/HOL are used unchanged, it helps to understand how the standard
Simplifier strategies work.

The subgoaler

Simplifier.set_subgoaler: (Proof.context -> int -> tactic) ->
Proof.context -> Proof.context

Simplifier.prems_of: Proof.context -> thm list

The subgoaler is the tactic used to solve subgoals arising out of conditional
rewrite rules or congruence rules. The default should be simplification itself.
In rare situations, this strategy may need to be changed. For example, if the
premise of a conditional rule is an instance of its conclusion, as in Suc ?m <
?n =⇒ ?m < ?n, the default strategy could loop.

Simplifier.set_subgoaler tac ctxt sets the subgoaler of the context to
tac. The tactic will be applied to the context of the running Simplifier
instance.

Simplifier.prems_of ctxt retrieves the current set of premises from the
context. This may be non-empty only if the Simplifier has been told
to utilize local assumptions in the first place (cf. the options in §9.3.1).

As an example, consider the following alternative subgoaler:
ML_val ‹

fun subgoaler_tac ctxt =
assume_tac ctxt ORELSE’

CHAPTER 9. GENERIC TOOLS AND PACKAGES 233

resolve_tac ctxt (Simplifier.prems_of ctxt) ORELSE’
asm_simp_tac ctxt

›

This tactic first tries to solve the subgoal by assumption or by resolving with
with one of the premises, calling simplification only if that fails.

The solver

type solver
Simplifier.mk_solver: string ->

(Proof.context -> int -> tactic) -> solver
infix setSolver: Proof.context * solver -> Proof.context
infix addSolver: Proof.context * solver -> Proof.context
infix setSSolver: Proof.context * solver -> Proof.context
infix addSSolver: Proof.context * solver -> Proof.context

A solver is a tactic that attempts to solve a subgoal after simplification. Its
core functionality is to prove trivial subgoals such as True and t = t, but
object-logics might be more ambitious. For example, Isabelle/HOL performs
a restricted version of linear arithmetic here.
Solvers are packaged up in abstract type solver, with Simplifier.mk_solver
as the only operation to create a solver.

Rewriting does not instantiate unknowns. For example, rewriting alone can-
not prove a ∈ ?A since this requires instantiating ?A. The solver, however, is
an arbitrary tactic and may instantiate unknowns as it pleases. This is the
only way the Simplifier can handle a conditional rewrite rule whose condi-
tion contains extra variables. When a simplification tactic is to be combined
with other provers, especially with the Classical Reasoner, it is important
whether it can be considered safe or not. For this reason a simpset contains
two solvers: safe and unsafe.
The standard simplification strategy solely uses the unsafe solver, which is
appropriate in most cases. For special applications where the simplification
process is not allowed to instantiate unknowns within the goal, simplification
starts with the safe solver, but may still apply the ordinary unsafe one in
nested simplifications for conditional rules or congruences. Note that in this
way the overall tactic is not totally safe: it may instantiate unknowns that
appear also in other subgoals.

Simplifier.mk_solver name tac turns tac into a solver; the name is only
attached as a comment and has no further significance.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 234

ctxt setSSolver solver installs solver as the safe solver of ctxt.

ctxt addSSolver solver adds solver as an additional safe solver; it will be
tried after the solvers which had already been present in ctxt.

ctxt setSolver solver installs solver as the unsafe solver of ctxt.

ctxt addSolver solver adds solver as an additional unsafe solver; it will be
tried after the solvers which had already been present in ctxt.

The solver tactic is invoked with the context of the running Simplifier. Fur-
ther operations may be used to retrieve relevant information, such as the list
of local Simplifier premises via Simplifier.prems_of — this list may be
non-empty only if the Simplifier runs in a mode that utilizes local assump-
tions (see also §9.3.1). The solver is also presented the full goal including its
assumptions in any case. Thus it can use these (e.g. by calling assume_tac),
even if the Simplifier proper happens to ignore local premises at the moment.

As explained before, the subgoaler is also used to solve the premises of con-
gruence rules. These are usually of the form s = ?x, where s needs to be
simplified and ?x needs to be instantiated with the result. Typically, the
subgoaler will invoke the Simplifier at some point, which will eventually call
the solver. For this reason, solver tactics must be prepared to solve goals of
the form t = ?x, usually by reflexivity. In particular, reflexivity should be
tried before any of the fancy automated proof tools.
It may even happen that due to simplification the subgoal is no longer an
equality. For example, False ←→ ?Q could be rewritten to ¬ ?Q. To cover
this case, the solver could try resolving with the theorem ¬ False of the
object-logic.

! If a premise of a congruence rule cannot be proved, then the congruence is
ignored. This should only happen if the rule is conditional — that is, contains

premises not of the form t = ?x. Otherwise it indicates that some congruence rule,
or possibly the subgoaler or solver, is faulty.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 235

The looper

infix setloop: Proof.context *
(Proof.context -> int -> tactic) -> Proof.context

infix addloop: Proof.context *
(string * (Proof.context -> int -> tactic))
-> Proof.context

infix delloop: Proof.context * string -> Proof.context
Splitter.add_split: thm -> Proof.context -> Proof.context
Splitter.add_split: thm -> Proof.context -> Proof.context
Splitter.add_split_bang:

thm -> Proof.context -> Proof.context
Splitter.del_split: thm -> Proof.context -> Proof.context

The looper is a list of tactics that are applied after simplification, in case
the solver failed to solve the simplified goal. If the looper succeeds, the
simplification process is started all over again. Each of the subgoals generated
by the looper is attacked in turn, in reverse order.
A typical looper is case splitting: the expansion of a conditional. Another
possibility is to apply an elimination rule on the assumptions. More adven-
turous loopers could start an induction.

ctxt setloop tac installs tac as the only looper tactic of ctxt.

ctxt addloop (name, tac) adds tac as an additional looper tactic with name
name, which is significant for managing the collection of loopers. The
tactic will be tried after the looper tactics that had already been present
in ctxt.

ctxt delloop name deletes the looper tactic that was associated with name
from ctxt.

Splitter.add_split thm ctxt adds split tactic for thm as additional looper
tactic of ctxt (overwriting previous split tactic for the same constant).

Splitter.add_split_bang thm ctxt adds aggressive (see §9.3.1) split tactic
for thm as additional looper tactic of ctxt (overwriting previous split
tactic for the same constant).

Splitter.del_split thm ctxt deletes the split tactic corresponding to thm
from the looper tactics of ctxt.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 236

The splitter replaces applications of a given function; the right-hand side of
the replacement can be anything. For example, here is a splitting rule for
conditional expressions:

?P (if ?Q ?x ?y) ←→ (?Q −→ ?P ?x) ∧ (¬ ?Q −→ ?P ?y)

Another example is the elimination operator for Cartesian products (which
happens to be called case_prod in Isabelle/HOL:

?P (case_prod ?f ?p) ←→ (∀ a b. ?p = (a, b) −→ ?P (f a b))

For technical reasons, there is a distinction between case splitting in the
conclusion and in the premises of a subgoal. The former is done by
Splitter.split_tac with rules like if_split or option.split, which do not
split the subgoal, while the latter is done by Splitter.split_asm_tac with
rules like if_split_asm or option.split_asm, which split the subgoal. The
function Splitter.add_split automatically takes care of which tactic to
call, analyzing the form of the rules given as argument; it is the same op-
eration behind split attribute or method modifier syntax in the Isar source
language.
Case splits should be allowed only when necessary; they are expensive and
hard to control. Case-splitting on if-expressions in the conclusion is usually
beneficial, so it is enabled by default in Isabelle/HOL and Isabelle/FOL/ZF.

! With Splitter.split_asm_tac as looper component, the Simplifier may split
subgoals! This might cause unexpected problems in tactic expressions that

silently assume 0 or 1 subgoals after simplification.

9.3.7 Forward simplification
simplified : attribute

simplified
�� ���

�opt

�
�

�
�thms

�
�

CHAPTER 9. GENERIC TOOLS AND PACKAGES 237

opt

(
���� no_asm

�� ���
�no_asm_simp

�� ���no_asm_use
�� ��

�
�
�

)
����

simplified a1 . . . an causes a theorem to be simplified, either by exactly
the specified rules a1, . . . , an, or the implicit Simplifier context if no
arguments are given. The result is fully simplified by default, including
assumptions and conclusion; the options no_asm etc. tune the Simpli-
fier in the same way as the for the simp method.
Note that forward simplification restricts the Simplifier to its most basic
operation of term rewriting; solver and looper tactics (§9.3.6) are not
involved here. The simplified attribute should be only rarely required
under normal circumstances.

9.4 The Classical Reasoner
9.4.1 Basic concepts
Although Isabelle is generic, many users will be working in some extension
of classical first-order logic. Isabelle/ZF is built upon theory FOL, while
Isabelle/HOL conceptually contains first-order logic as a fragment. Theorem-
proving in predicate logic is undecidable, but many automated strategies have
been developed to assist in this task.
Isabelle’s classical reasoner is a generic package that accepts certain infor-
mation about a logic and delivers a suite of automatic proof tools, based on
rules that are classified and declared in the context. These proof procedures
are slow and simplistic compared with high-end automated theorem provers,
but they can save considerable time and effort in practice. They can prove
theorems such as Pelletier’s [48] problems 40 and 41 in a few milliseconds
(including full proof reconstruction):
lemma (∃ y. ∀ x. F x y ←→ F x x) −→ ¬ (∀ x. ∃ y. ∀ z. F z y ←→ ¬ F z x)

by blast

lemma (∀ z. ∃ y. ∀ x. f x y ←→ f x z ∧ ¬ f x x) −→ ¬ (∃ z. ∀ x. f x z)
by blast

CHAPTER 9. GENERIC TOOLS AND PACKAGES 238

The proof tools are generic. They are not restricted to first-order logic, and
have been heavily used in the development of the Isabelle/HOL library and
applications. The tactics can be traced, and their components can be called
directly; in this manner, any proof can be viewed interactively.

The sequent calculus

Isabelle supports natural deduction, which is easy to use for interactive proof.
But natural deduction does not easily lend itself to automation, and has a
bias towards intuitionism. For certain proofs in classical logic, it can not be
called natural. The sequent calculus, a generalization of natural deduction,
is easier to automate.
A sequent has the form Γ ` ∆, where Γ and ∆ are sets of formulae.3 The
sequent P1, . . . , Pm ` Q1, . . . , Qn is valid if P1 ∧ . . . ∧ Pm implies Q1 ∨
. . . ∨ Qn. Thus P1, . . . , Pm represent assumptions, each of which is true,
while Q1, . . . , Qn represent alternative goals. A sequent is basic if its left
and right sides have a common formula, as in P, Q ` Q, R; basic sequents
are trivially valid.
Sequent rules are classified as right or left, indicating which side of the `
symbol they operate on. Rules that operate on the right side are analogous
to natural deduction’s introduction rules, and left rules are analogous to
elimination rules. The sequent calculus analogue of (−→I) is the rule

P, Γ ` ∆, Q
Γ ` ∆, P −→ Q (−→R)

Applying the rule backwards, this breaks down some implication on the right
side of a sequent; Γ and ∆ stand for the sets of formulae that are unaffected
by the inference. The analogue of the pair (∨I1) and (∨I2) is the single rule

Γ ` ∆, P, Q
Γ ` ∆, P ∨ Q (∨R)

This breaks down some disjunction on the right side, replacing it by both
disjuncts. Thus, the sequent calculus is a kind of multiple-conclusion logic.
To illustrate the use of multiple formulae on the right, let us prove the clas-
sical theorem (P −→ Q) ∨ (Q −→ P). Working backwards, we reduce this

3For first-order logic, sequents can equivalently be made from lists or multisets of
formulae.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 239

formula to a basic sequent:

P, Q ` Q, P
P ` Q, (Q −→ P)

(−→R)

` (P −→ Q), (Q −→ P)
(−→R)

` (P −→ Q) ∨ (Q −→ P)
(∨R)

This example is typical of the sequent calculus: start with the desired the-
orem and apply rules backwards in a fairly arbitrary manner. This yields
a surprisingly effective proof procedure. Quantifiers add only few compli-
cations, since Isabelle handles parameters and schematic variables. See [47,
Chapter 10] for further discussion.

Simulating sequents by natural deduction

Isabelle can represent sequents directly, as in the object-logic LK. But natural
deduction is easier to work with, and most object-logics employ it. Fortu-
nately, we can simulate the sequent P1, . . . , Pm ` Q1, . . . , Qn by the Isabelle
formula P1 =⇒ . . . =⇒ Pm =⇒ ¬ Q2 =⇒ ... =⇒ ¬ Qn =⇒ Q1 where the
order of the assumptions and the choice of Q1 are arbitrary. Elim-resolution
plays a key role in simulating sequent proofs.
We can easily handle reasoning on the left. Elim-resolution with the rules
(∨E), (⊥E) and (∃E) achieves a similar effect as the corresponding sequent
rules. For the other connectives, we use sequent-style elimination rules in-
stead of destruction rules such as (∧E1, 2) and (∀E). But note that the rule
(¬L) has no effect under our representation of sequents!

Γ ` ∆, P
¬ P, Γ ` ∆

(¬L)

What about reasoning on the right? Introduction rules can only affect the
formula in the conclusion, namely Q1. The other right-side formulae are
represented as negated assumptions, ¬ Q2, . . . , ¬ Qn. In order to operate
on one of these, it must first be exchanged with Q1. Elim-resolution with the
swap rule has this effect: ¬ P =⇒ (¬ R =⇒ P) =⇒ R
To ensure that swaps occur only when necessary, each introduction rule is
converted into a swapped form: it is resolved with the second premise of
(swap). The swapped form of (∧I), which might be called (¬∧E), is

¬ (P ∧ Q) =⇒ (¬ R =⇒ P) =⇒ (¬ R =⇒ Q) =⇒ R

Similarly, the swapped form of (−→I) is

CHAPTER 9. GENERIC TOOLS AND PACKAGES 240

¬ (P −→ Q) =⇒ (¬ R =⇒ P =⇒ Q) =⇒ R

Swapped introduction rules are applied using elim-resolution, which deletes
the negated formula. Our representation of sequents also requires the use of
ordinary introduction rules. If we had no regard for readability of intermedi-
ate goal states, we could treat the right side more uniformly by representing
sequents as

P1 =⇒ . . . =⇒ Pm =⇒ ¬ Q1 =⇒ . . . =⇒ ¬ Qn =⇒ ⊥

Extra rules for the sequent calculus

As mentioned, destruction rules such as (∧E1, 2) and (∀E) must be replaced
by sequent-style elimination rules. In addition, we need rules to embody the
classical equivalence between P −→ Q and ¬ P ∨ Q. The introduction rules
(∨I1, 2) are replaced by a rule that simulates (∨R):

(¬ Q =⇒ P) =⇒ P ∨ Q

The destruction rule (−→E) is replaced by

(P −→ Q) =⇒ (¬ P =⇒ R) =⇒ (Q =⇒ R) =⇒ R

Quantifier replication also requires special rules. In classical logic, ∃ x . P x
is equivalent to ¬ (∀ x . ¬ P x); the rules (∃R) and (∀L) are dual:

Γ ` ∆, ∃ x . P x , P t
Γ ` ∆, ∃ x . P x (∃R)

P t, ∀ x . P x , Γ ` ∆

∀ x . P x , Γ ` ∆
(∀L)

Thus both kinds of quantifier may be replicated. Theorems requiring multiple
uses of a universal formula are easy to invent; consider

(∀ x. P x −→ P (f x)) ∧ P a −→ P (f n a)

for any n > 1. Natural examples of the multiple use of an existential formula
are rare; a standard one is ∃ x . ∀ y. P x −→ P y.
Forgoing quantifier replication loses completeness, but gains decidability,
since the search space becomes finite. Many useful theorems can be proved
without replication, and the search generally delivers its verdict in a rea-
sonable time. To adopt this approach, represent the sequent rules (∃R),
(∃L) and (∀R) by (∃ I), (∃E) and (∀ I), respectively, and put (∀E) into
elimination form:

CHAPTER 9. GENERIC TOOLS AND PACKAGES 241

∀ x. P x =⇒ (P t =⇒ Q) =⇒ Q

Elim-resolution with this rule will delete the universal formula after a single
use. To replicate universal quantifiers, replace the rule by

∀ x. P x =⇒ (P t =⇒ ∀ x. P x =⇒ Q) =⇒ Q

To replicate existential quantifiers, replace (∃ I) by

(¬ (∃ x. P x) =⇒ P t) =⇒ ∃ x. P x

All introduction rules mentioned above are also useful in swapped form.
Replication makes the search space infinite; we must apply the rules with
care. The classical reasoner distinguishes between safe and unsafe rules,
applying the latter only when there is no alternative. Depth-first search may
well go down a blind alley; best-first search is better behaved in an infinite
search space. However, quantifier replication is too expensive to prove any
but the simplest theorems.

9.4.2 Rule declarations
The proof tools of the Classical Reasoner depend on collections of rules de-
clared in the context, which are classified as introduction, elimination or
destruction and as safe or unsafe. In general, safe rules can be attempted
blindly, while unsafe rules must be used with care. A safe rule must never
reduce a provable goal to an unprovable set of subgoals.
The rule P =⇒ P ∨ Q is unsafe because it reduces P ∨ Q to P, which might
turn out as premature choice of an unprovable subgoal. Any rule whose
premises contain new unknowns is unsafe. The elimination rule ∀ x . P x =⇒
(P t =⇒ Q) =⇒ Q is unsafe, since it is applied via elim-resolution, which
discards the assumption ∀ x . P x and replaces it by the weaker assumption
P t. The rule P t =⇒ ∃ x . P x is unsafe for similar reasons. The quantifier
duplication rule ∀ x . P x =⇒ (P t =⇒ ∀ x . P x =⇒ Q) =⇒ Q is unsafe in a
different sense: since it keeps the assumption ∀ x . P x, it is prone to looping.
In classical first-order logic, all rules are safe except those mentioned above.
The safe / unsafe distinction is vague, and may be regarded merely as a
way of giving some rules priority over others. One could argue that (∨E) is
unsafe, because repeated application of it could generate exponentially many
subgoals. Induction rules are unsafe because inductive proofs are difficult
to set up automatically. Any inference that instantiates an unknown in the
proof state is unsafe — thus matching must be used, rather than unification.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 242

Even proof by assumption is unsafe if it instantiates unknowns shared with
other subgoals.

print_claset∗ : context →
intro : attribute
elim : attribute
dest : attribute
rule : attribute

iff : attribute
swapped : attribute

intro
�� ���

�elim
�� ���dest
�� ��

�
�
�

!
�����

�
� ?

����

�
�
�

�
�nat

�
�

rule
�� ��del

�� ��
iff

�� �� �
�add

�� ��
�
�

�
� ?

����
�
�

�

�del
�� ��

�

�
print_claset prints the collection of rules declared to the Classical Rea-

soner, i.e. the claset within the context.

intro, elim, and dest declare introduction, elimination, and destruction rules,
respectively. By default, rules are considered as unsafe (i.e. not applied
blindly without backtracking), while “!” classifies as safe. Rule decla-
rations marked by “?” coincide with those of Isabelle/Pure, cf. §6.4.3
(i.e. are only applied in single steps of the rule method). The optional
natural number specifies an explicit weight argument, which is ignored
by the automated reasoning tools, but determines the search order of
single rule steps.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 243

Introduction rules are those that can be applied using ordinary res-
olution. Their swapped forms are generated internally, which will be
applied using elim-resolution. Elimination rules are applied using elim-
resolution. Rules are sorted by the number of new subgoals they will
yield; rules that generate the fewest subgoals will be tried first. Oth-
erwise, later declarations take precedence over earlier ones.
Rules already present in the context with the same classification are
ignored. A warning is printed if the rule has already been added with
some other classification, but the rule is added anyway as requested.

rule del deletes all occurrences of a rule from the classical context, regard-
less of its classification as introduction / elimination / destruction and
safe / unsafe.

iff declares logical equivalences to the Simplifier and the Classical rea-
soner at the same time. Non-conditional rules result in a safe intro-
duction and elimination pair; conditional ones are considered unsafe.
Rules with negative conclusion are automatically inverted (using ¬-
elimination internally).
The “?” version of iff declares rules to the Isabelle/Pure context only,
and omits the Simplifier declaration.

swapped turns an introduction rule into an elimination, by resolving with
the classical swap principle ¬ P =⇒ (¬ R =⇒ P) =⇒ R in the second
position. This is mainly for illustrative purposes: the Classical Reasoner
already swaps rules internally as explained above.

9.4.3 Structured methods
rule : method

contradiction : method

rule
�� ���

�thms

�
�

rule as offered by the Classical Reasoner is a refinement over the Pure one
(see §6.4.3). Both versions work the same, but the classical version
observes the classical rule context in addition to that of Isabelle/Pure.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 244

Common object logics (HOL, ZF, etc.) declare a rich collection of
classical rules (even if these would qualify as intuitionistic ones), but
only few declarations to the rule context of Isabelle/Pure (§6.4.3).

contradiction solves some goal by contradiction, deriving any result from
both ¬ A and A. Chained facts, which are guaranteed to participate,
may appear in either order.

9.4.4 Fully automated methods
blast : method
auto : method
force : method
fast : method
slow : method
best : method

fastforce : method
slowsimp : method
bestsimp : method

deepen : method

blast
�� ���

�nat

�
�

�
�clamod

�
�

auto
�� ���

�nat nat

�
�

�
�clasimpmod

�
�

force
�� ���

�clasimpmod

�
�

fast
�� ���

�slow
�� ���best
�� ��

�
�
�

�
�clamod

�
�

CHAPTER 9. GENERIC TOOLS AND PACKAGES 245

fastforce
�� ���

�slowsimp
�� ���bestsimp
�� ��

�
�
�

�
�clasimpmod

�
�

deepen
�� ���

�nat

�
�

�
�clamod

�
�

clamod

intro
�� ���

�elim
�� ���dest
�� ��

�
�
�

!
�����

�
� ?

����

�
�
�

�

�del
�� ��

�

�

:
����thms

CHAPTER 9. GENERIC TOOLS AND PACKAGES 246

clasimpmod

simp
�� ���

�add
�� ���del
�� ���only
�� ��

�
�
�
�

�

�cong
�� ���

�add
�� ���del
�� ��

�
�
�

�split
�� ���

� !
�����del
�� ��

�
�
�

�iff
�� �� �

�add
�� ��

�
�

�
� ?

����
�
�

�

�del
�� ��

�

�
� intro

�� ���
�elim

�� ���dest
�� ��

�
�
�

!
�����

�
� ?

����

�
�
�

�

�del
�� ��

�

�

�

�

�

�

�

:
����thms

blast is a separate classical tableau prover that uses the same classical rule
declarations as explained before.
Proof search is coded directly in ML using special data structures. A
successful proof is then reconstructed using regular Isabelle inferences.
It is faster and more powerful than the other classical reasoning tools,

CHAPTER 9. GENERIC TOOLS AND PACKAGES 247

but has major limitations too.

• It does not use the classical wrapper tacticals, such as the inte-
gration with the Simplifier of fastforce.

• It does not perform higher-order unification, as needed by the
rule ?f ?x ∈ range ?f in HOL. There are often alternatives to
such rules, for example ?b = ?f ?x =⇒ ?b ∈ range ?f.

• Function variables may only be applied to parameters of the sub-
goal. (This restriction arises because the prover does not use
higher-order unification.) If other function variables are present
then the prover will fail with the message
Function unknown’s argument not a bound variable

• Its proof strategy is more general than fast but can be slower. If
blast fails or seems to be running forever, try fast and the other
proof tools described below.

The optional integer argument specifies a bound for the number of
unsafe steps used in a proof. By default, blast starts with a bound of
0 and increases it successively to 20. In contrast, (blast lim) tries to
prove the goal using a search bound of lim. Sometimes a slow proof
using blast can be made much faster by supplying the successful search
bound to this proof method instead.

auto combines classical reasoning with simplification. It is intended for sit-
uations where there are a lot of mostly trivial subgoals; it proves all the
easy ones, leaving the ones it cannot prove. Occasionally, attempting
to prove the hard ones may take a long time.
The optional depth arguments in (auto m n) refer to its builtin classical
reasoning procedures: m (default 4) is for blast, which is tried first, and
n (default 2) is for a slower but more general alternative that also takes
wrappers into account.

force is intended to prove the first subgoal completely, using many fancy
proof tools and performing a rather exhaustive search. As a result,
proof attempts may take rather long or diverge easily.

fast, best, slow attempt to prove the first subgoal using sequent-style rea-
soning as explained before. Unlike blast, they construct proofs directly
in Isabelle.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 248

There is a difference in search strategy and back-tracking: fast uses
depth-first search and best uses best-first search (guided by a heuristic
function: normally the total size of the proof state).
Method slow is like fast, but conducts a broader search: it may, when
backtracking from a failed proof attempt, undo even the step of proving
a subgoal by assumption.

fastforce, slowsimp, bestsimp are like fast, slow, best, respectively, but use
the Simplifier as additional wrapper. The name fastforce, reflects the
behaviour of this popular method better without requiring an under-
standing of its implementation.

deepen works by exhaustive search up to a certain depth. The start depth is
4 (unless specified explicitly), and the depth is increased iteratively up
to 10. Unsafe rules are modified to preserve the formula they act on,
so that it be used repeatedly. This method can prove more goals than
fast, but is much slower, for example if the assumptions have many
universal quantifiers.

Any of the above methods support additional modifiers of the context of
classical (and simplifier) rules, but the ones related to the Simplifier are
explicitly prefixed by simp here. The semantics of these ad-hoc rule declara-
tions is analogous to the attributes given before. Facts provided by forward
chaining are inserted into the goal before commencing proof search.

9.4.5 Partially automated methods
These proof methods may help in situations when the fully-automated tools
fail. The result is a simpler subgoal that can be tackled by other means, such
as by manual instantiation of quantifiers.

safe : method
clarify : method

clarsimp : method

safe
�� ���

�clarify
�� ��

�
�

�
�clamod

�
�

CHAPTER 9. GENERIC TOOLS AND PACKAGES 249

clarsimp
�� ���

�clasimpmod

�
�

safe repeatedly performs safe steps on all subgoals. It is deterministic, with
at most one outcome.

clarify performs a series of safe steps without splitting subgoals; see also
clarify_step.

clarsimp acts like clarify, but also does simplification. Note that if the
Simplifier context includes a splitter for the premises, the subgoal may
still be split.

9.4.6 Single-step tactics
safe_step : method
inst_step : method

step : method
slow_step : method

clarify_step : method

These are the primitive tactics behind the automated proof methods of the
Classical Reasoner. By calling them yourself, you can execute these proce-
dures one step at a time.

safe_step performs a safe step on the first subgoal. The safe wrapper tac-
ticals are applied to a tactic that may include proof by assumption or
Modus Ponens (taking care not to instantiate unknowns), or substitu-
tion.

inst_step is like safe_step, but allows unknowns to be instantiated.

step is the basic step of the proof procedure, it operates on the first subgoal.
The unsafe wrapper tacticals are applied to a tactic that tries safe,
inst_step, or applies an unsafe rule from the context.

slow_step resembles step, but allows backtracking between using safe rules
with instantiation (inst_step) and using unsafe rules. The resulting
search space is larger.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 250

clarify_step performs a safe step on the first subgoal; no splitting step is
applied. For example, the subgoal A ∧ B is left as a conjunction. Proof
by assumption, Modus Ponens, etc., may be performed provided they
do not instantiate unknowns. Assumptions of the form x = t may be
eliminated. The safe wrapper tactical is applied.

9.4.7 Modifying the search step
type wrapper = (int -> tactic) -> (int -> tactic)
infix addSWrapper: Proof.context *

(string * (Proof.context -> wrapper)) -> Proof.context
infix addSbefore: Proof.context *

(string * (Proof.context -> int -> tactic)) -> Proof.context
infix addSafter: Proof.context *

(string * (Proof.context -> int -> tactic)) -> Proof.context
infix delSWrapper: Proof.context * string -> Proof.context
infix addWrapper: Proof.context *

(string * (Proof.context -> wrapper)) -> Proof.context
infix addbefore: Proof.context *

(string * (Proof.context -> int -> tactic)) -> Proof.context
infix addafter: Proof.context *

(string * (Proof.context -> int -> tactic)) -> Proof.context
infix delWrapper: Proof.context * string -> Proof.context
addSss: Proof.context -> Proof.context
addss: Proof.context -> Proof.context

The proof strategy of the Classical Reasoner is simple. Perform as many safe
inferences as possible; or else, apply certain safe rules, allowing instantiation
of unknowns; or else, apply an unsafe rule. The tactics also eliminate as-
sumptions of the form x = t by substitution if they have been set up to do
so. They may perform a form of Modus Ponens: if there are assumptions P
−→ Q and P, then replace P −→ Q by Q.
The classical reasoning tools — except blast — allow to modify this basic
proof strategy by applying two lists of arbitrary wrapper tacticals to it. The
first wrapper list, which is considered to contain safe wrappers only, affects
safe_step and all the tactics that call it. The second one, which may contain
unsafe wrappers, affects the unsafe parts of step, slow_step, and the tactics
that call them. A wrapper transforms each step of the search, for example by
attempting other tactics before or after the original step tactic. All members
of a wrapper list are applied in turn to the respective step tactic.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 251

Initially the two wrapper lists are empty, which means no modification of
the step tactics. Safe and unsafe wrappers are added to the context with the
functions given below, supplying them with wrapper names. These names
may be used to selectively delete wrappers.

ctxt addSWrapper (name, wrapper) adds a new wrapper, which should yield
a safe tactic, to modify the existing safe step tactic.

ctxt addSbefore (name, tac) adds the given tactic as a safe wrapper, such
that it is tried before each safe step of the search.

ctxt addSafter (name, tac) adds the given tactic as a safe wrapper, such
that it is tried when a safe step of the search would fail.

ctxt delSWrapper name deletes the safe wrapper with the given name.

ctxt addWrapper (name, wrapper) adds a new wrapper to modify the exist-
ing (unsafe) step tactic.

ctxt addbefore (name, tac) adds the given tactic as an unsafe wrapper, such
that it its result is concatenated before the result of each unsafe step.

ctxt addafter (name, tac) adds the given tactic as an unsafe wrapper, such
that it its result is concatenated after the result of each unsafe step.

ctxt delWrapper name deletes the unsafe wrapper with the given name.

addSss adds the simpset of the context to its classical set. The assumptions
and goal will be simplified, in a rather safe way, after each safe step of
the search.

addss adds the simpset of the context to its classical set. The assumptions
and goal will be simplified, before the each unsafe step of the search.

9.5 Object-logic setup
judgment : theory → theory

atomize : method
atomize : attribute

rule_format : attribute
rulify : attribute

CHAPTER 9. GENERIC TOOLS AND PACKAGES 252

The very starting point for any Isabelle object-logic is a “truth judgment”
that links object-level statements to the meta-logic (with its minimal lan-
guage of prop that covers universal quantification

∧
and implication =⇒).

Common object-logics are sufficiently expressive to internalize rule state-
ments over

∧
and =⇒ within their own language. This is useful in certain

situations where a rule needs to be viewed as an atomic statement from the
meta-level perspective, e.g.

∧
x . x ∈ A =⇒ P x versus ∀ x ∈ A. P x.

From the following language elements, only the atomize method and
rule_format attribute are occasionally required by end-users, the rest is for
those who need to setup their own object-logic. In the latter case exist-
ing formulations of Isabelle/FOL or Isabelle/HOL may be taken as realistic
examples.
Generic tools may refer to the information provided by object-logic declara-
tions internally.

judgment
�� ��name ::

����type �
�mixfix

�
�

atomize
�� ���

� (
����full

�� ��)
����

�
�

rule_format
�� ���

� (
����noasm

�� ��)
����

�
�

judgment c :: σ (mx) declares constant c as the truth judgment of the
current object-logic. Its type σ should specify a coercion of the cat-
egory of object-level propositions to prop of the Pure meta-logic; the
mixfix annotation (mx) would typically just link the object language
(internally of syntactic category logic) with that of prop. Only one
judgment declaration may be given in any theory development.

atomize (as a method) rewrites any non-atomic premises of a sub-goal, us-
ing the meta-level equations declared via atomize (as an attribute)
beforehand. As a result, heavily nested goals become amenable to
fundamental operations such as resolution (cf. the rule method). Giv-
ing the “(full)” option here means to turn the whole subgoal into an

CHAPTER 9. GENERIC TOOLS AND PACKAGES 253

object-statement (if possible), including the outermost parameters and
assumptions as well.
A typical collection of atomize rules for a particular object-logic would
provide an internalization for each of the connectives of

∧
, =⇒, and ≡.

Meta-level conjunction should be covered as well (this is particularly
important for locales, see §5.7).

rule_format rewrites a theorem by the equalities declared as rulify rules
in the current object-logic. By default, the result is fully normalized,
including assumptions and conclusions at any depth. The (no_asm)
option restricts the transformation to the conclusion of a rule.
In common object-logics (HOL, FOL, ZF), the effect of rule_format
is to replace (bounded) universal quantification (∀) and implication
(−→) by the corresponding rule statements over

∧
and =⇒.

9.6 Tracing higher-order unification
unify_trace : attribute default false

unify_trace_simp : attribute default false
unify_trace_types : attribute default false

unify_trace_bound : attribute default 50
unify_search_bound : attribute default 60

Higher-order unification works well in most practical situations, but some-
times needs extra care to identify problems. These tracing options may help.

unify_trace controls whether unify trace messages will be printed (con-
trolled via more fine-grained tracing options below).

unify_trace_simp controls tracing of the simplification phase of higher-
order unification.

unify_trace_types controls tracing of potential incompleteness, when uni-
fication is not considering all possible instantiations of schematic type
variables.

unify_trace_bound determines the depth where unification starts to print
tracing information once it reaches depth; 0 for full tracing. At the
default value, tracing information is almost never printed in practice.

CHAPTER 9. GENERIC TOOLS AND PACKAGES 254

unify_search_bound prevents unification from searching past the given
depth. Because of this bound, higher-order unification cannot return
an infinite sequence, though it can return an exponentially long one.
The search rarely approaches the default value in practice. If the search
is cut off, unification prints a warning “Unification bound exceeded”.

! Options for unification cannot be modified in a local context. Only the global
theory content is taken into account.

Part III

Isabelle/HOL

255

Chapter 10

Higher-Order Logic

Isabelle/HOL is based on Higher-Order Logic, a polymorphic version of
Church’s Simple Theory of Types. HOL can be best understood as a simply-
typed version of classical set theory. The logic was first implemented in
Gordon’s HOL system [20]. It extends Church’s original logic [14] by explicit
type variables (naive polymorphism) and a sound axiomatization scheme for
new types based on subsets of existing types.
Andrews’s book [1] is a full description of the original Church-style higher-
order logic, with proofs of correctness and completeness wrt. certain set-
theoretic interpretations. The particular extensions of Gordon-style HOL
are explained semantically in two chapters of the 1993 HOL book [50].
Experience with HOL over decades has demonstrated that higher-order logic
is widely applicable in many areas of mathematics and computer science. In
a sense, Higher-Order Logic is simpler than First-Order Logic, because there
are fewer restrictions and special cases. Note that HOL is weaker than FOL
with axioms for ZF set theory, which is traditionally considered the standard
foundation of regular mathematics, but for most applications this does not
matter. If you prefer ML to Lisp, you will probably prefer HOL to ZF.

The syntax of HOL follows λ-calculus and functional programming. Function
application is curried. To apply the function f of type τ 1 ⇒ τ 2 ⇒ τ 3 to the
arguments a and b in HOL, you simply write f a b (as in ML or Haskell).
There is no “apply” operator; the existing application of the Pure λ-calculus
is re-used. Note that in HOL f (a, b) means “f applied to the pair (a, b)
(which is notation for Pair a b). The latter typically introduces extra formal
efforts that can be avoided by currying functions by default. Explicit tuples
are as infrequent in HOL formalizations as in good ML or Haskell programs.

Isabelle/HOL has a distinct feel, compared to other object-logics like
Isabelle/ZF. It identifies object-level types with meta-level types, taking ad-
vantage of the default type-inference mechanism of Isabelle/Pure. HOL fully
identifies object-level functions with meta-level functions, with native ab-
straction and application.

256

CHAPTER 10. HIGHER-ORDER LOGIC 257

These identifications allow Isabelle to support HOL particularly nicely, but
they also mean that HOL requires some sophistication from the user. In par-
ticular, an understanding of Hindley-Milner type-inference with type-classes,
which are both used extensively in the standard libraries and applications.

Chapter 11

Derived specification elements

11.1 Inductive and coinductive definitions
inductive : local_theory → local_theory

inductive_set : local_theory → local_theory
coinductive : local_theory → local_theory

coinductive_set : local_theory → local_theory
print_inductives∗ : context →

mono : attribute

An inductive definition specifies the least predicate or set R closed under
given rules: applying a rule to elements of R yields a result within R. For
example, a structural operational semantics is an inductive definition of an
evaluation relation.
Dually, a coinductive definition specifies the greatest predicate or set R that
is consistent with given rules: every element of R can be seen as arising by
applying a rule to elements of R. An important example is using bisimulation
relations to formalise equivalence of processes and infinite data structures.
Both inductive and coinductive definitions are based on the Knaster-Tarski
fixed-point theorem for complete lattices. The collection of introduction rules
given by the user determines a functor on subsets of set-theoretic relations.
The required monotonicity of the recursion scheme is proven as a prerequisite
to the fixed-point definition and the resulting consequences. This works by
pushing inclusion through logical connectives and any other operator that
might be wrapped around recursive occurrences of the defined relation: there
must be a monotonicity theorem of the form A ≤ B =⇒ M A ≤ M B, for
each premise M R t in an introduction rule. The default rule declarations
of Isabelle/HOL already take care of most common situations.

258

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 259

inductive
�� ���

�inductive_set
�� ���coinductive
�� ���coinductive_set
�� ��

�
�
�
�

vars for_fixes �

��
��

�where
�� ��multi_specs

�
�

�
�monos

�� ��thms

�
�

print_inductives
�� ���

� !
����

�
�

mono
�� ���

�add
�� ���del
�� ��

�
�
�

inductive and coinductive define (co)inductive predicates from the intro-
duction rules.
The propositions given as clauses in the where part are either rules
of the usual

∧
/=⇒ format (with arbitrary nesting), or equalities us-

ing ≡. The latter specifies extra-logical abbreviations in the sense of
abbreviation. Introducing abstract syntax simultaneously with the
actual introduction rules is occasionally useful for complex specifica-
tions.
The optional for part contains a list of parameters of the (co)inductive
predicates that remain fixed throughout the definition, in contrast to
arguments of the relation that may vary in each occurrence within the
given clauses.
The optional monos declaration contains additional monotonicity the-
orems, which are required for each operator applied to a recursive set
in the introduction rules.

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 260

inductive_set and coinductive_set are wrappers for to the previous
commands for native HOL predicates. This allows to define (co)induc-
tive sets, where multiple arguments are simulated via tuples.

print_inductives prints (co)inductive definitions and monotonicity rules;
the “!” option indicates extra verbosity.

mono declares monotonicity rules in the context. These rule are involved
in the automated monotonicity proof of the above inductive and coin-
ductive definitions.

11.1.1 Derived rules
A (co)inductive definition of R provides the following main theorems:

R.intros is the list of introduction rules as proven theorems, for the recursive
predicates (or sets). The rules are also available individually, using the
names given them in the theory file;

R.cases is the case analysis (or elimination) rule;

R.induct or R.coinduct is the (co)induction rule;

R.simps is the equation unrolling the fixpoint of the predicate one step.

When several predicates R1, . . . , Rn are defined simultaneously, the list of
introduction rules is called R1_. . ._Rn.intros, the case analysis rules are
called R1.cases, . . . , Rn.cases, and the list of mutual induction rules is called
R1_. . ._Rn.inducts.

11.1.2 Monotonicity theorems
The context maintains a default set of theorems that are used in mono-
tonicity proofs. New rules can be declared via the mono attribute. See the
main Isabelle/HOL sources for some examples. The general format of such
monotonicity theorems is as follows:

• Theorems of the form A ≤ B =⇒ M A ≤ M B, for proving mono-
tonicity of inductive definitions whose introduction rules have premises
involving terms such as M R t.

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 261

• Monotonicity theorems for logical operators, which are of the general
form (. . . −→ . . .) =⇒ . . . (. . . −→ . . .) =⇒ . . . −→ For example,
in the case of the operator ∨, the corresponding theorem is

P1 −→ Q1 P2 −→ Q2

P1 ∨ P2 −→ Q1 ∨ Q2

• De Morgan style equations for reasoning about the “polarity” of ex-
pressions, e.g.

¬ ¬ P ←→ P ¬ (P ∧ Q) ←→ ¬ P ∨ ¬ Q

• Equations for reducing complex operators to more primitive ones whose
monotonicity can easily be proved, e.g.

(P −→ Q) ←→ ¬ P ∨ Q Ball A P ≡ ∀ x . x ∈ A −→ P x

Examples

The finite powerset operator can be defined inductively like this:
inductive_set Fin :: ′a set ⇒ ′a set set for A :: ′a set
where

empty: {} ∈ Fin A
| insert: a ∈ A =⇒ B ∈ Fin A =⇒ insert a B ∈ Fin A

The accessible part of a relation is defined as follows:
inductive acc :: (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ bool

for r :: ′a ⇒ ′a ⇒ bool (infix ‹≺› 50)
where acc: (

∧
y. y ≺ x =⇒ acc r y) =⇒ acc r x

Common logical connectives can be easily characterized as non-recursive in-
ductive definitions with parameters, but without arguments.
inductive AND for A B :: bool
where A =⇒ B =⇒ AND A B

inductive OR for A B :: bool
where A =⇒ OR A B
| B =⇒ OR A B

inductive EXISTS for B :: ′a ⇒ bool
where B a =⇒ EXISTS B

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 262

Here the cases or induct rules produced by the inductive package coincide
with the expected elimination rules for Natural Deduction. Already in the
original article by Gerhard Gentzen [18] there is a hint that each connec-
tive can be characterized by its introductions, and the elimination can be
constructed systematically.

11.2 Recursive functions
primrec : local_theory → local_theory

fun : local_theory → local_theory
function : local_theory → proof (prove)

termination : local_theory → proof (prove)
fun_cases : local_theory → local_theory

primrec
�� ��specification

fun
�� ���

�function
�� ��

�
�

�
�opts

�
�

specification

opts

(
���� sequential

�� ���
�domintros

�� ��
�
�

�

� ,
����

�

�

)
����

termination
�� ���

�term

�
�

fun_cases
�� �� �

�thmdecl

�
�

prop�

� and
�� ��

�

�

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 263

primrec defines primitive recursive functions over datatypes (see also
datatype). The given equations specify reduction rules that are pro-
duced by instantiating the generic combinator for primitive recursion
that is available for each datatype.
Each equation needs to be of the form:

f x1 . . . xm (C y1 . . . yk) z1 . . . zn = rhs

such that C is a datatype constructor, rhs contains only the free vari-
ables on the left-hand side (or from the context), and all recursive
occurrences of f in rhs are of the form f . . . yi . . . for some i. At most
one reduction rule for each constructor can be given. The order does
not matter. For missing constructors, the function is defined to return
a default value, but this equation is made difficult to access for users.
The reduction rules are declared as simp by default, which enables
standard proof methods like simp and auto to normalize expressions of f
applied to datatype constructions, by simulating symbolic computation
via rewriting.

function defines functions by general wellfounded recursion. A detailed de-
scription with examples can be found in [25]. The function is specified
by a set of (possibly conditional) recursive equations with arbitrary
pattern matching. The command generates proof obligations for the
completeness and the compatibility of patterns.
The defined function is considered partial, and the resulting simplifica-
tion rules (named f .psimps) and induction rule (named f .pinduct) are
guarded by a generated domain predicate f_dom. The termination
command can then be used to establish that the function is total.

fun is a shorthand notation for “function (sequential)”, followed by au-
tomated proof attempts regarding pattern matching and termination.
See [25] for further details.

termination f commences a termination proof for the previously defined
function f. If this is omitted, the command refers to the most recent
function definition. After the proof is closed, the recursive equations
and the induction principle is established.

fun_cases generates specialized elimination rules for function equations.
It expects one or more function equations and produces rules that
eliminate the given equalities, following the cases given in the function
definition.

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 264

Recursive definitions introduced by the function command accommodate
reasoning by induction (cf. induct): rule f .induct refers to a specific induction
rule, with parameters named according to the user-specified equations. Cases
are numbered starting from 1. For primrec, the induction principle coincides
with structural recursion on the datatype where the recursion is carried out.
The equations provided by these packages may be referred later as theo-
rem list f .simps, where f is the (collective) name of the functions defined.
Individual equations may be named explicitly as well.
The function command accepts the following options.

sequential enables a preprocessor which disambiguates overlapping patterns
by making them mutually disjoint. Earlier equations take precedence
over later ones. This allows to give the specification in a format very
similar to functional programming. Note that the resulting simplifica-
tion and induction rules correspond to the transformed specification,
not the one given originally. This usually means that each equation
given by the user may result in several theorems. Also note that this
automatic transformation only works for ML-style datatype patterns.

domintros enables the automated generation of introduction rules for the
domain predicate. While mostly not needed, they can be helpful in
some proofs about partial functions.

Example: evaluation of expressions

Subsequently, we define mutual datatypes for arithmetic and boolean ex-
pressions, and use primrec for evaluation functions that follow the same
recursive structure.
datatype ′a aexp =

IF ′a bexp ′a aexp ′a aexp
| Sum ′a aexp ′a aexp
| Diff ′a aexp ′a aexp
| Var ′a
| Num nat

and ′a bexp =
Less ′a aexp ′a aexp
| And ′a bexp ′a bexp
| Neg ′a bexp

Evaluation of arithmetic and boolean expressions

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 265

primrec evala :: (′a ⇒ nat) ⇒ ′a aexp ⇒ nat
and evalb :: (′a ⇒ nat) ⇒ ′a bexp ⇒ bool

where
evala env (IF b a1 a2) = (if evalb env b then evala env a1 else evala env a2)
| evala env (Sum a1 a2) = evala env a1 + evala env a2
| evala env (Diff a1 a2) = evala env a1 − evala env a2
| evala env (Var v) = env v
| evala env (Num n) = n
| evalb env (Less a1 a2) = (evala env a1 < evala env a2)
| evalb env (And b1 b2) = (evalb env b1 ∧ evalb env b2)
| evalb env (Neg b) = (¬ evalb env b)

Since the value of an expression depends on the value of its variables, the
functions evala and evalb take an additional parameter, an environment that
maps variables to their values.

Substitution on expressions can be defined similarly. The mapping f of type
′a ⇒ ′a aexp given as a parameter is lifted canonically on the types ′a aexp
and ′a bexp, respectively.
primrec substa :: (′a ⇒ ′b aexp) ⇒ ′a aexp ⇒ ′b aexp

and substb :: (′a ⇒ ′b aexp) ⇒ ′a bexp ⇒ ′b bexp
where

substa f (IF b a1 a2) = IF (substb f b) (substa f a1) (substa f a2)
| substa f (Sum a1 a2) = Sum (substa f a1) (substa f a2)
| substa f (Diff a1 a2) = Diff (substa f a1) (substa f a2)
| substa f (Var v) = f v
| substa f (Num n) = Num n
| substb f (Less a1 a2) = Less (substa f a1) (substa f a2)
| substb f (And b1 b2) = And (substb f b1) (substb f b2)
| substb f (Neg b) = Neg (substb f b)

In textbooks about semantics one often finds substitution theorems, which
express the relationship between substitution and evaluation. For ′a aexp
and ′a bexp, we can prove such a theorem by mutual induction, followed by
simplification.
lemma subst_one:

evala env (substa (Var (v := a ′)) a) = evala (env (v := evala env a ′)) a
evalb env (substb (Var (v := a ′)) b) = evalb (env (v := evala env a ′)) b
by (induct a and b) simp_all

lemma subst_all:
evala env (substa s a) = evala (λx. evala env (s x)) a
evalb env (substb s b) = evalb (λx. evala env (s x)) b

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 266

by (induct a and b) simp_all

Example: a substitution function for terms

Functions on datatypes with nested recursion are also defined by mutual
primitive recursion.
datatype (′a, ′b) term = Var ′a | App ′b (′a, ′b) term list

A substitution function on type (′a, ′b) term can be defined as follows, by
working simultaneously on (′a, ′b) term list:
primrec subst_term :: (′a ⇒ (′a, ′b) term) ⇒ (′a, ′b) term ⇒ (′a, ′b) term and

subst_term_list :: (′a ⇒ (′a, ′b) term) ⇒ (′a, ′b) term list ⇒ (′a, ′b) term list
where

subst_term f (Var a) = f a
| subst_term f (App b ts) = App b (subst_term_list f ts)
| subst_term_list f [] = []
| subst_term_list f (t # ts) = subst_term f t # subst_term_list f ts

The recursion scheme follows the structure of the unfolded definition of type
(′a, ′b) term. To prove properties of this substitution function, mutual in-
duction is needed:
lemma subst_term (subst_term f 1 ◦ f 2) t =

subst_term f 1 (subst_term f 2 t) and
subst_term_list (subst_term f 1 ◦ f 2) ts =

subst_term_list f 1 (subst_term_list f 2 ts)
by (induct t and ts rule: subst_term.induct subst_term_list.induct) simp_all

Example: a map function for infinitely branching trees

Defining functions on infinitely branching datatypes by primitive recursion
is just as easy.
datatype ′a tree = Atom ′a | Branch nat ⇒ ′a tree

primrec map_tree :: (′a ⇒ ′b) ⇒ ′a tree ⇒ ′b tree
where

map_tree f (Atom a) = Atom (f a)
| map_tree f (Branch ts) = Branch (λx. map_tree f (ts x))

Note that all occurrences of functions such as ts above must be applied to
an argument. In particular, map_tree f ◦ ts is not allowed here.

Here is a simple composition lemma for map_tree:

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 267

lemma map_tree g (map_tree f t) = map_tree (g ◦ f) t
by (induct t) simp_all

11.2.1 Proof methods related to recursive definitions
pat_completeness : method

relation : method
lexicographic_order : method

size_change : method
termination_simp : attribute
induction_schema : method

relation
�� ��term

lexicographic_order
�� ���

�clasimpmod

�
�

size_change
�� ��orders �

�clasimpmod

�
�

induction_schema
�� ��

orders

�
� max

�� ���
�min

�� ���ms
����

�
�
�

�
�

pat_completeness is a specialized method to solve goals regarding the com-
pleteness of pattern matching, as required by the function package
(cf. [25]).

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 268

relation R introduces a termination proof using the relation R. The resulting
proof state will contain goals expressing that R is wellfounded, and that
the arguments of recursive calls decrease with respect to R. Usually,
this method is used as the initial proof step of manual termination
proofs.

lexicographic_order attempts a fully automated termination proof by
searching for a lexicographic combination of size measures on the ar-
guments of the function. The method accepts the same arguments as
the auto method, which it uses internally to prove local descents. The
clasimpmod modifiers are accepted (as for auto).
In case of failure, extensive information is printed, which can help to
analyse the situation (cf. [25]).

size_change also works on termination goals, using a variation of the size-
change principle, together with a graph decomposition technique (see
[26] for details). Three kinds of orders are used internally: max, min,
and ms (multiset), which is only available when the theory Multiset is
loaded. When no order kinds are given, they are tried in order. The
search for a termination proof uses SAT solving internally.
For local descent proofs, the clasimpmod modifiers are accepted (as for
auto).

termination_simp declares extra rules for the simplifier, when invoked in
termination proofs. This can be useful, e.g., for special rules involving
size estimations.

induction_schema derives user-specified induction rules from well-founded
induction and completeness of patterns. This factors out some
operations that are done internally by the function package and
makes them available separately. See ~~/src/HOL/Examples/
Induction_Schema.thy for examples.

11.2.2 Functions with explicit partiality
partial_function : local_theory → local_theory

partial_function_mono : attribute

partial_function
�� ��(

����name)
����specification

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 269

partial_function (mode) defines recursive functions based on fixpoints in
complete partial orders. No termination proof is required from the user
or constructed internally. Instead, the possibility of non-termination
is modelled explicitly in the result type, which contains an explicit
bottom element.
Pattern matching and mutual recursion are currently not supported.
Thus, the specification consists of a single function described by a single
recursive equation.
There are no fixed syntactic restrictions on the body of the function,
but the induced functional must be provably monotonic wrt. the un-
derlying order. The monotonicity proof is performed internally, and
the definition is rejected when it fails. The proof can be influenced by
declaring hints using the partial_function_mono attribute.
The mandatory mode argument specifies the mode of operation of the
command, which directly corresponds to a complete partial order on
the result type. By default, the following modes are defined:

option defines functions that map into the option type. Here, the value
None is used to model a non-terminating computation. Mono-
tonicity requires that if None is returned by a recursive call, then
the overall result must also be None. This is best achieved through
the use of the monadic operator Option.bind.

tailrec defines functions with an arbitrary result type and uses the
slightly degenerated partial order where undefined is the bottom
element. Now, monotonicity requires that if undefined is returned
by a recursive call, then the overall result must also be undefined.
In practice, this is only satisfied when each recursive call is a tail
call, whose result is directly returned. Thus, this mode of opera-
tion allows the definition of arbitrary tail-recursive functions.

Experienced users may define new modes by instantiating the locale
partial_function_definitions appropriately.

partial_function_mono declares rules for use in the internal monotonicity
proofs of partial function definitions.

11.2.3 Old-style recursive function definitions (TFL)
recdef : theory → theory)

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 270

The old TFL command recdef for defining recursive is mostly obsolete;
function or fun should be used instead.

recdef
�� ���

� (
����permissive

�� ��)
����

�
�

�

��
�name term prop�

�
�
�

�
�hints

�
�

hints

(
����hints

�� ���
�recdefmod

�
�

)
����

recdefmod

recdef_simp
�� ���

�recdef_cong
�� ���recdef_wf
�� ��

�
�
�

�
�add

�� ���del
�� ��

�
�
�

:
����thms�

�clasimpmod

�

�
recdef defines general well-founded recursive functions (using the TFL

package). The “(permissive)” option tells TFL to recover from
failed proof attempts, returning unfinished results. The recdef_simp,
recdef_cong, and recdef_wf hints refer to auxiliary rules to be used in
the internal automated proof process of TFL. Additional clasimpmod
declarations may be given to tune the context of the Simplifier (cf.
§9.3) and Classical reasoner (cf. §9.4).

Hints for recdef may be also declared globally, using the following attributes.

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 271

recdef_simp : attribute
recdef_cong : attribute

recdef_wf : attribute

recdef_simp
�� ���

�recdef_cong
�� ���recdef_wf
�� ��

�
�
�

�
�add

�� ���del
�� ��

�
�
�

11.3 Definition by specification
specification : theory → proof (prove)

specification
�� ��(

���� decl�
�

�
�

)
�����

��
� �

�thmdecl

�
�

prop�

�

�

�
decl

�
�name :

����
�
�

term �
� (

����overloaded
�� ��)

����
�
�

specification decls ϕ sets up a goal stating the existence of terms with
the properties specified to hold for the constants given in decls. After

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 272

finishing the proof, the theory will be augmented with definitions for
the given constants, as well as with theorems stating the properties for
these constants.
decl declares a constant to be defined by the specification given. The
definition for the constant c is bound to the name c_def unless a
theorem name is given in the declaration. Overloaded constants should
be declared as such.

11.4 Old-style datatypes
old_rep_datatype : theory → proof (prove)

old_rep_datatype
�� ���

� (
���� name�

�
�
�

)
����

�
�

term�
�

�
�

spec

typespec_sorts �
�mixfix

�
�

=
���� cons�

� |
����

�
�

cons

name �
�type

�
�

�
�mixfix

�
�

old_rep_datatype represents existing types as old-style datatypes.

These commands are mostly obsolete; datatype should be used instead.
See [8] for more details on datatypes. Apart from proper proof methods for
case analysis and induction, there are also emulations of ML tactics case_tac
and induct_tac available, see §12.9; these admit to refer directly to the in-
ternal structure of subgoals (including internally bound parameters).

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 273

Examples

We define a type of finite sequences, with slightly different names than the
existing ′a list that is already in Main:
datatype ′a seq = Empty | Seq ′a ′a seq

We can now prove some simple lemma by structural induction:
lemma Seq x xs 6= xs
proof (induct xs arbitrary: x)

case Empty

This case can be proved using the simplifier: the freeness properties of the datatype
are already declared as simp rules.

show Seq x Empty 6= Empty
by simp

next
case (Seq y ys)

The step case is proved similarly.

show Seq x (Seq y ys) 6= Seq y ys
using ‹Seq y ys 6= ys› by simp

qed

Here is a more succinct version of the same proof:
lemma Seq x xs 6= xs

by (induct xs arbitrary: x) simp_all

11.5 Records
In principle, records merely generalize the concept of tuples, where com-
ponents may be addressed by labels instead of just position. The logical
infrastructure of records in Isabelle/HOL is slightly more advanced, though,
supporting truly extensible record schemes. This admits operations that are
polymorphic with respect to record extension, yielding “object-oriented” ef-
fects like (single) inheritance. See also [35] for more details on object-oriented
verification and record subtyping in HOL.

11.5.1 Basic concepts
Isabelle/HOL supports both fixed and schematic records at the level of terms
and types. The notation is as follows:

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 274

record terms record types
fixed (|x = a, y = b|) (|x :: A, y :: B|)
schematic (|x = a, y = b, . . . = m|) (|x :: A, y :: B, . . . :: M |)

The ASCII representation of (|x = a|) is (| x = a |).
A fixed record (|x = a, y = b|) has field x of value a and field y of value b.
The corresponding type is (|x :: A, y :: B|), assuming that a :: A and b :: B.
A record scheme like (|x = a, y = b, . . . = m|) contains fields x and y as
before, but also possibly further fields as indicated by the “. . . ” notation
(which is actually part of the syntax). The improper field “. . . ” of a record
scheme is called the more part. Logically it is just a free variable, which is
occasionally referred to as “row variable” in the literature. The more part
of a record scheme may be instantiated by zero or more further components.
For example, the previous scheme may get instantiated to (|x = a, y = b, z
= c, . . . = m ′|), where m ′ refers to a different more part. Fixed records are
special instances of record schemes, where “. . . ” is properly terminated by
the () :: unit element. In fact, (|x = a, y = b|) is just an abbreviation for (|x
= a, y = b, . . . = ()|).

Two key observations make extensible records in a simply typed language
like HOL work out:

1. the more part is internalized, as a free term or type variable,

2. field names are externalized, they cannot be accessed within the logic
as first-class values.

In Isabelle/HOL record types have to be defined explicitly, fixing their field
names and types, and their (optional) parent record. Afterwards, records may
be formed using above syntax, while obeying the canonical order of fields as
given by their declaration. The record package provides several standard
operations like selectors and updates. The common setup for various generic
proof tools enable succinct reasoning patterns. See also the Isabelle/HOL
tutorial [38] for further instructions on using records in practice.

11.5.2 Record specifications
record : theory → theory

print_record : context →

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 275

record
�� ���

�overloaded

�
�

typespec_sorts =
�����

��
��

�type +
����

�
�

constdecl�
�

�
�

constdecl

name ::
����type �

�mixfix

�
�

print_record
�� ���

�modes

�
�

typespec_sorts

modes

(
���� name�

�
�
�

)
����

record (α1, . . . , αm) t = τ + c1 :: σ1 . . . cn :: σn defines extensible record
type (α1, . . . , αm) t, derived from the optional parent record τ by
adding new field components ci :: σi etc.
The type variables of τ and σi need to be covered by the (distinct)
parameters α1, . . . , αm. Type constructor t has to be new, while τ
needs to specify an instance of an existing record type. At least one
new field ci has to be specified. Basically, field names need to belong
to a unique record. This is not a real restriction in practice, since fields
are qualified by the record name internally.
The parent record specification τ is optional; if omitted t becomes
a root record. The hierarchy of all records declared within a theory
context forms a forest structure, i.e. a set of trees starting with a root
record each. There is no way to merge multiple parent records!

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 276

For convenience, (α1, . . . , αm) t is made a type abbreviation for the
fixed record type (|c1 :: σ1, . . . , cn :: σn|), likewise is (α1, . . . , αm, ζ)
t_scheme made an abbreviation for (|c1 :: σ1, . . . , cn :: σn, . . . :: ζ|).

print_record (α1, . . . , αm) t prints the definition of record (α1, . . . , αm) t.
Optionally modes can be specified, which are appended to the current
print mode; see §8.1.3.

11.5.3 Record operations
Any record definition of the form presented above produces certain standard
operations. Selectors and updates are provided for any field, including the
improper one “more”. There are also cumulative record constructor functions.
To simplify the presentation below, we assume for now that (α1, . . . , αm) t
is a root record with fields c1 :: σ1, . . . , cn :: σn.

Selectors and updates are available for any field (including “more”):

ci :: (|c :: σ, . . . :: ζ|) ⇒ σi
ci_update :: (σi ⇒ σi) ⇒ (|c :: σ, . . . :: ζ|) ⇒ (|c :: σ, . . . :: ζ|)

There is special syntax for application of updates: r(|x := a|) abbreviates term
x_update (λ_. a) r. Further notation for repeated updates is also available:
r(|x := a|)(|y := b|)(|z := c|) may be written r(|x := a, y := b, z := c|). Note
that because of postfix notation the order of fields shown here is reverse than
in the actual term. Since repeated updates are just function applications,
fields may be freely permuted in (|x := a, y := b, z := c|), as far as logical
equality is concerned. Thus commutativity of independent updates can be
proven within the logic for any two fields, but not as a general theorem.

The make operation provides a cumulative record constructor function:

t.make :: σ1 ⇒ . . . σn ⇒ (|c :: σ|)

We now reconsider the case of non-root records, which are derived of some
parent. In general, the latter may depend on another parent as well, resulting
in a list of ancestor records. Appending the lists of fields of all ancestors

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 277

results in a certain field prefix. The record package automatically takes care
of this by lifting operations over this context of ancestor fields. Assuming
that (α1, . . . , αm) t has ancestor fields b1 :: %1, . . . , bk :: %k , the above record
operations will get the following types:

ci :: (|b :: %, c :: σ, . . . :: ζ|) ⇒ σi
ci_update :: (σi ⇒ σi) ⇒ (|b :: %, c :: σ, . . . :: ζ|) ⇒ (|b :: %, c :: σ, . . . :: ζ|)
t.make :: %1 ⇒ . . . %k ⇒ σ1 ⇒ . . . σn ⇒ (|b :: %, c :: σ|)

Some further operations address the extension aspect of a derived record
scheme specifically: t.fields produces a record fragment consisting of exactly
the new fields introduced here (the result may serve as a more part elsewhere);
t.extend takes a fixed record and adds a given more part; t.truncate restricts
a record scheme to a fixed record.
t.fields :: σ1 ⇒ . . . σn ⇒ (|c :: σ|)
t.extend :: (|b :: %, c :: σ|) ⇒ ζ ⇒ (|b :: %, c :: σ, . . . :: ζ|)
t.truncate :: (|b :: %, c :: σ, . . . :: ζ|) ⇒ (|b :: %, c :: σ|)

Note that t.make and t.fields coincide for root records.

11.5.4 Derived rules and proof tools
The record package proves several results internally, declaring these facts to
appropriate proof tools. This enables users to reason about record structures
quite conveniently. Assume that t is a record type as specified above.

1. Standard conversions for selectors or updates applied to record con-
structor terms are made part of the default Simplifier context; thus
proofs by reduction of basic operations merely require the simp method
without further arguments. These rules are available as t.simps, too.

2. Selectors applied to updated records are automatically reduced by an
internal simplification procedure, which is also part of the standard
Simplifier setup.

3. Inject equations of a form analogous to (x , y) = (x ′, y ′) ≡ x = x ′ ∧ y
= y ′ are declared to the Simplifier and Classical Reasoner as iff rules.
These rules are available as t.iffs.

4. The introduction rule for record equality analogous to x r = x r ′ =⇒
y r = y r ′ . . . =⇒ r = r ′ is declared to the Simplifier, and as the basic
rule context as “intro?”. The rule is called t.equality.

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 278

5. Representations of arbitrary record expressions as canonical construc-
tor terms are provided both in cases and induct format (cf. the generic
proof methods of the same name, §6.5). Several variations are available,
for fixed records, record schemes, more parts etc.
The generic proof methods are sufficiently smart to pick the most sen-
sible rule according to the type of the indicated record expression: users
just need to apply something like “(cases r)” to a certain proof prob-
lem.

6. The derived record operations t.make, t.fields, t.extend, t.truncate are
not treated automatically, but usually need to be expanded by hand,
using the collective fact t.defs.

Examples

See ~~/src/HOL/Examples/Records.thy, for example.

11.6 Semantic subtype definitions
typedef : local_theory → proof (prove)

A type definition identifies a new type with a non-empty subset of an existing
type. More precisely, the new type is defined by exhibiting an existing type
τ , a set A :: τ set, and proving ∃ x . x ∈ A. Thus A is a non-empty subset of
τ , and the new type denotes this subset. New functions are postulated that
establish an isomorphism between the new type and the subset. In general,
the type τ may involve type variables α1, . . . , αn which means that the type
definition produces a type constructor (α1, . . . , αn) t depending on those
type arguments.

typedef
�� ���

�overloaded

�
�

abs_type =
����rep_set

overloaded

(
����overloaded

�� ��)
����

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 279

abs_type

typespec_sorts �
�mixfix

�
�

rep_set

term �
�morphisms

�� ��name name

�
�

To understand the concept of type definition better, we need to recount its
somewhat complex history. The HOL logic goes back to the “Simple Theory
of Types” (STT) of A. Church [14], which is further explained in the book by
P. Andrews [1]. The overview article by W. Farmer [16] points out the “seven
virtues” of this relatively simple family of logics. STT has only ground types,
without polymorphism and without type definitions.

M. Gordon [19] augmented Church’s STT by adding schematic polymorphism
(type variables and type constructors) and a facility to introduce new types
as semantic subtypes from existing types. This genuine extension of the logic
was explained semantically by A. Pitts in the book of the original Cambridge
HOL88 system [50]. Type definitions work in this setting, because the general
model-theory of STT is restricted to models that ensure that the universe of
type interpretations is closed by forming subsets (via predicates taken from
the logic).

Isabelle/HOL goes beyond Gordon-style HOL by admitting overloaded con-
stant definitions [57, 23], which are actually a concept of Isabelle/Pure and do
not depend on particular set-theoretic semantics of HOL. Over many years,
there was no formal checking of semantic type definitions in Isabelle/HOL
versus syntactic constant definitions in Isabelle/Pure. So the typedef com-
mand was described as “axiomatic” in the sense of §5.5, only with some local
checks of the given type and its representing set.
Recent clarification of overloading in the HOL logic proper [28] demon-
strates how the dissimilar concepts of constant definitions versus type def-
initions may be understood uniformly. This requires an interpretation
of Isabelle/HOL that substantially reforms the set-theoretic model of A.
Pitts [50], by taking a schematic view on polymorphism and interpreting
only ground types in the set-theoretic sense of HOL88. Moreover, type-
constructors may be explicitly overloaded, e.g. by making the subset depend

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 280

on type-class parameters (cf. §5.8). This is semantically like a dependent
type: the meaning relies on the operations provided by different type-class
instances.

typedef (α1, . . . , αn) t = A defines a new type (α1, . . . , αn) t from the set
A over an existing type. The set A may contain type variables α1, . . . ,
αn as specified on the LHS, but no term variables. Non-emptiness of A
needs to be proven on the spot, in order to turn the internal conditional
characterization into usable theorems.
The “(overloaded)” option allows the typedef specification to depend
on constants that are not (yet) specified and thus left open as param-
eters, e.g. type-class parameters.
Within a local theory specification, the newly introduced type con-
structor cannot depend on parameters or assumptions of the context:
this is syntactically impossible in HOL. The non-emptiness proof may
formally depend on local assumptions, but this has little practical rel-
evance.
For typedef t = A the newly introduced type t is accompanied by
a pair of morphisms to relate it to the representing set over the old
type. By default, the injection from type to set is called Rep_t and its
inverse Abs_t: An explicit morphisms specification allows to provide
alternative names.
The logical characterization of typedef uses the predicate of locale
type_definition that is defined in Isabelle/HOL. Various basic conse-
quences of that are instantiated accordingly, re-using the locale facts
with names derived from the new type constructor. Thus the generic
theorem type_definition.Rep is turned into the specific Rep_t, for ex-
ample.
Theorems type_definition.Rep, type_definition.Rep_inverse, and
type_definition.Abs_inverse provide the most basic characterization as
a corresponding injection/surjection pair (in both directions). The de-
rived rules type_definition.Rep_inject and type_definition.Abs_inject
provide a more convenient version of injectivity, suitable for automated
proof tools (e.g. in declarations involving simp or iff). Furthermore,
the rules type_definition.Rep_cases / type_definition.Rep_induct,
and type_definition.Abs_cases / type_definition.Abs_induct provide
alternative views on surjectivity. These rules are already declared as
set or type rules for the generic cases and induct methods, respectively.

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 281

Examples

The following trivial example pulls a three-element type into existence within
the formal logical environment of Isabelle/HOL.
typedef three = {(True, True), (True, False), (False, True)}

by blast

definition One = Abs_three (True, True)
definition Two = Abs_three (True, False)
definition Three = Abs_three (False, True)

lemma three_distinct: One 6= Two One 6= Three Two 6= Three
by (simp_all add: One_def Two_def Three_def Abs_three_inject)

lemma three_cases:
fixes x :: three obtains x = One | x = Two | x = Three
by (cases x) (auto simp: One_def Two_def Three_def Abs_three_inject)

Note that such trivial constructions are better done with derived specification
mechanisms such as datatype:
datatype three = One | Two | Three

This avoids re-doing basic definitions and proofs from the primitive typedef
above.

11.7 Functorial structure of types
functor : local_theory → proof (prove)

functor
�� ���

�name :
����

�
�

term

functor prefix : m allows to prove and register properties about the functo-
rial structure of type constructors. These properties then can be used
by other packages to deal with those type constructors in certain type
constructions. Characteristic theorems are noted in the current local
theory. By default, they are prefixed with the base name of the type
constructor, an explicit prefix can be given alternatively.

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 282

The given term m is considered as mapper for the corresponding type
constructor and must conform to the following type pattern:

m :: σ1 ⇒ . . . σk ⇒ (αn) t ⇒ (βn) t

where t is the type constructor, αn and βn are distinct type variables
free in the local theory and σ1, . . . , σk is a subsequence of α1 ⇒ β1,
β1 ⇒ α1, . . . , αn ⇒ βn, βn ⇒ αn.

11.8 Quotient types with lifting and transfer
The quotient package defines a new quotient type given a raw type and a
partial equivalence relation (§11.8.1). The package also historically includes
automation for transporting definitions and theorems (§11.8.4), but most
of this automation was superseded by the Lifting (§11.8.2) and Transfer
(§11.8.3) packages.

11.8.1 Quotient type definition
quotient_type : local_theory → proof (prove)

quotient_type
�� ���

�overloaded

�
�

�

��
�typespec �

�mixfix

�
�

=
����quot_type �

��
��

�quot_morphisms

�
�

�
�quot_parametric

�
�

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 283

quot_type

type /
�����

�partial
�� ��:

����
�
�

term

quot_morphisms

morphisms
�� ��name name

quot_parametric

parametric
�� ��thm

quotient_type defines a new quotient type τ . The injection from a
quotient type to a raw type is called rep_τ , its inverse abs_τ un-
less explicit morphisms specification provides alternative names.
quotient_type requires the user to prove that the relation is an equiv-
alence relation (predicate equivp), unless the user specifies explicitly
partial in which case the obligation is part_equivp. A quotient de-
fined with partial is weaker in the sense that less things can be proved
automatically.
The command internally proves a Quotient theorem and sets up the
Lifting package by the command setup_lifting. Thus the Lifting
and Transfer packages can be used also with quotient types defined by
quotient_type without any extra set-up. The parametricity theorem
for the equivalence relation R can be provided as an extra argument
of the command and is passed to the corresponding internal call of
setup_lifting. This theorem allows the Lifting package to generate a
stronger transfer rule for equality.

11.8.2 Lifting package
The Lifting package allows users to lift terms of the raw type to the abstract
type, which is a necessary step in building a library for an abstract type.
Lifting defines a new constant by combining coercion functions (Abs and Rep)
with the raw term. It also proves an appropriate transfer rule for the Transfer
(§11.8.3) package and, if possible, an equation for the code generator.
The Lifting package provides two main commands: setup_lifting for ini-
tializing the package to work with a new type, and lift_definition for lifting

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 284

constants. The Lifting package works with all four kinds of type abstraction:
type copies, subtypes, total quotients and partial quotients.
Theoretical background can be found in [24].

setup_lifting : local_theory → local_theory
lift_definition : local_theory → proof (prove)
lifting_forget : local_theory → local_theory

lifting_update : local_theory → local_theory
print_quot_maps : context →

print_quotients : context →
quot_map : attribute

relator_eq_onp : attribute
relator_mono : attribute
relator_distr : attribute

quot_del : attribute
lifting_restore : attribute

setup_lifting
�� ��thm �

�thm

�
�

�

��
��

�parametric
�� ��thm

�
�

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 285

lift_definition
�� ���

� (
����code_dt

�� ��)
����

�
�

�

��
�name ::

����type �
�mixfix

�
�

is
����term �

��
��

�parametric
�� �� thm�

�
�
�

�
�

lifting_forget
�� ��name

lifting_update
�� ��name

lifting_restore
�� ��thm �

�thm thm

�
�

setup_lifting Sets up the Lifting package to work with a user-defined type.
The command supports two modes.

1. The first one is a low-level mode when the user must provide as a
first argument of setup_lifting a quotient theorem Quotient R
Abs Rep T. The package configures a transfer rule for equality, a
domain transfer rules and sets up the lift_definition command
to work with the abstract type. An optional theorem reflp R,
which certifies that the equivalence relation R is total, can be pro-
vided as a second argument. This allows the package to generate
stronger transfer rules. And finally, the parametricity theorem for
R can be provided as a third argument. This allows the package
to generate a stronger transfer rule for equality.

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 286

Users generally will not prove the Quotient theorem manually for
new types, as special commands exist to automate the process.

2. When a new subtype is defined by typedef , lift_definition can
be used in its second mode, where only the type_definition theo-
rem type_definition Rep Abs A is used as an argument of the com-
mand. The command internally proves the corresponding Quo-
tient theorem and registers it with setup_lifting using its first
mode.

For quotients, the command quotient_type can be used. The
command defines a new quotient type and similarly to the previous
case, the corresponding Quotient theorem is proved and registered by
setup_lifting.

The command setup_lifting also sets up the code generator for the
new type. Later on, when a new constant is defined by lift_definition,
the Lifting package proves and registers a code equation (if there is one)
for the new constant.

lift_definition f :: τ is t Defines a new function f with an abstract type τ
in terms of a corresponding operation t on a representation type. More
formally, if t :: σ, then the command builds a term F as a corresponding
combination of abstraction and representation functions such that F ::
σ ⇒ τ and defines f ≡ F t. The term t does not have to be necessarily
a constant but it can be any term.
The command opens a proof and the user must discharge a respectful-
ness proof obligation. For a type copy, i.e. a typedef with UNIV, the
obligation is discharged automatically. The proof goal is presented in a
user-friendly, readable form. A respectfulness theorem in the standard
format f .rsp and a transfer rule f .transfer for the Transfer package are
generated by the package.
The user can specify a parametricity theorems for t after the keyword
parametric, which allows the command to generate parametric trans-
fer rules for f.
For each constant defined through trivial quotients (type copies or sub-
types) f .rep_eq is generated. The equation is a code certificate that
defines f using the representation function.
For each constant f .abs_eq is generated. The equation is uncondi-
tional for total quotients. The equation defines f using the abstraction
function.

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 287

Integration with [code abstract]: For subtypes (e.g. corresponding to a
datatype invariant, such as ′a dlist), lift_definition uses a code cer-
tificate theorem f .rep_eq as a code equation. Because of the limitation
of the code generator, f .rep_eq cannot be used as a code equation if
the subtype occurs inside the result type rather than at the top level
(e.g. function returning ′a dlist option vs. ′a dlist).
In this case, an extension of lift_definition can be invoked by speci-
fying the flag code_dt. This extension enables code execution through
series of internal type and lifting definitions if the return type τ meets
the following inductive conditions:

τ is a type variable
τ = τ 1 . . . τn κ, where κ is an abstract type constructor and τ 1 . . .

τn do not contain abstract types (i.e. int dlist is allowed whereas
int dlist dlist not)

τ = τ 1 . . . τn κ, κ is a type constructor that was defined as a (co)data-
type whose constructor argument types do not contain either non-
free datatypes or the function type.

Integration with [code equation]: For total quotients, lift_definition
uses f .abs_eq as a code equation.

lifting_forget and lifting_update These two commands serve for stor-
ing and deleting the set-up of the Lifting package and corresponding
transfer rules defined by this package. This is useful for hiding of type
construction details of an abstract type when the construction is fin-
ished but it still allows additions to this construction when this is later
necessary.
Whenever the Lifting package is set up with a new abstract type τ
by lift_definition, the package defines a new bundle that is called
τ .lifting. This bundle already includes set-up for the Lifting package.
The new transfer rules introduced by lift_definition can be stored in
the bundle by the command lifting_update τ .lifting.
The command lifting_forget τ .lifting deletes set-up of the Lifting
package for τ and deletes all the transfer rules that were introduced by
lift_definition using τ as an abstract type.
The stored set-up in a bundle can be reintroduced by the Isar com-
mands for including a bundle (include, includes and including).

print_quot_maps prints stored quotient map theorems.

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 288

print_quotients prints stored quotient theorems.

quot_map registers a quotient map theorem, a theorem showing how to
“lift” quotients over type constructors. E.g. Quotient R Abs Rep T =⇒
Quotient (rel_set R) (image Abs) (image Rep) (rel_set T). For exam-
ples see ~~/src/HOL/Lifting_Set.thy or ~~/src/HOL/Lifting.thy.
This property is proved automatically if the involved type is BNF with-
out dead variables.

relator_eq_onp registers a theorem that shows that a relator applied to
an equality restricted by a predicate P (i.e. eq_onp P) is equal to a
predicator applied to the P. The combinator eq_onp is used for inter-
nal encoding of proper subtypes. Such theorems allows the package
to hide eq_onp from a user in a user-readable form of a respectful-
ness theorem. For examples see ~~/src/HOL/Lifting_Set.thy or ~~/
src/HOL/Lifting.thy. This property is proved automatically if the
involved type is BNF without dead variables.

relator_mono registers a property describing a monotonicity of a relator.
E.g. A ≤ B =⇒ rel_set A ≤ rel_set B. This property is needed for
proving a stronger transfer rule in lift_definition when a parametric-
ity theorem for the raw term is specified and also for the reflexivity
prover. For examples see ~~/src/HOL/Lifting_Set.thy or ~~/src/
HOL/Lifting.thy. This property is proved automatically if the in-
volved type is BNF without dead variables.

relator_distr registers a property describing a distributivity of the rela-
tion composition and a relator. E.g. rel_set R ◦◦ rel_set S = rel_set
(R ◦◦ S). This property is needed for proving a stronger transfer
rule in lift_definition when a parametricity theorem for the raw
term is specified. When this equality does not hold unconditionally
(e.g. for the function type), the user can specified each direction sepa-
rately and also register multiple theorems with different set of assump-
tions. This attribute can be used only after the monotonicity property
was already registered by relator_mono. For examples see ~~/src/
HOL/Lifting_Set.thy or ~~/src/HOL/Lifting.thy. This property is
proved automatically if the involved type is BNF without dead vari-
ables.

quot_del deletes a corresponding Quotient theorem from the Lifting in-
frastructure and thus de-register the corresponding quotient. This ef-
fectively causes that lift_definition will not do any lifting for the

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 289

corresponding type. This attribute is rather used for low-level manip-
ulation with set-up of the Lifting package because lifting_forget is
preferred for normal usage.

lifting_restore Quotient_thm pcr_def pcr_cr_eq_thm registers the Quo-
tient theorem Quotient_thm in the Lifting infrastructure and thus sets
up lifting for an abstract type τ (that is defined by Quotient_thm). Op-
tional theorems pcr_def and pcr_cr_eq_thm can be specified to reg-
ister the parametrized correspondence relation for τ . E.g. for ′a dlist,
pcr_def is pcr_dlist A ≡ list_all2 A ◦◦ cr_dlist and pcr_cr_eq_thm
is pcr_dlist (=) = (=). This attribute is rather used for low-level
manipulation with set-up of the Lifting package because using of
the bundle τ .lifting together with the commands lifting_forget and
lifting_update is preferred for normal usage.

Integration with the BNF package [8]: As already mentioned, the theorems
that are registered by the following attributes are proved and regis-
tered automatically if the involved type is BNF without dead variables:
quot_map, relator_eq_onp, relator_mono, relator_distr . Also the def-
inition of a relator and predicator is provided automatically. Moreover,
if the BNF represents a datatype, simplification rules for a predicator
are again proved automatically.

11.8.3 Transfer package
transfer : method
transfer ′ : method

transfer_prover : method
Transfer .transferred : attribute

untransferred : attribute
transfer_start : method

transfer_prover_start : method
transfer_step : method
transfer_end : method

transfer_prover_end : method
transfer_rule : attribute

transfer_domain_rule : attribute
relator_eq : attribute

relator_domain : attribute

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 290

transfer method replaces the current subgoal with a logically equivalent one
that uses different types and constants. The replacement of types and
constants is guided by the database of transfer rules. Goals are gener-
alized over all free variables by default; this is necessary for variables
whose types change, but can be overridden for specific variables with
e.g. transfer fixing: x y z.

transfer ′ is a variant of transfer that allows replacing a subgoal with one that
is logically stronger (rather than equivalent). For example, a subgoal
involving equality on a quotient type could be replaced with a subgoal
involving equality (instead of the corresponding equivalence relation)
on the underlying raw type.

transfer_prover method assists with proving a transfer rule for a new con-
stant, provided the constant is defined in terms of other constants that
already have transfer rules. It should be applied after unfolding the
constant definitions.

transfer_start, transfer_step, transfer_end, transfer_prover_start and
transfer_prover_end methods are meant to be used for debug-
ging of transfer and transfer_prover , which we can decompose as
follows: transfer = (transfer_start, transfer_step+, transfer_end)
and transfer_prover = (transfer_prover_start, transfer_step+,
transfer_prover_end). For usage examples see ~~/src/HOL/ex/
Transfer_Debug.thy.

untransferred proves the same equivalent theorem as transfer internally
does.

Transfer .transferred works in the opposite direction than transfer ′. E.g.
given the transfer relation ZN x n ≡ (x = int n), corresponding transfer
rules and the theorem ∀ x ::int ∈ {0..}. x < x + 1, the attribute would
prove ∀ n::nat. n < n + 1. The attribute is still in experimental phase
of development.

transfer_rule attribute maintains a collection of transfer rules, which relate
constants at two different types. Typical transfer rules may relate
different type instances of the same polymorphic constant, or they may
relate an operation on a raw type to a corresponding operation on an
abstract type (quotient or subtype). For example:
((A ===> B) ===> list_all2 A ===> list_all2 B) map map
(cr_int ===> cr_int ===> cr_int) (λ(x ,y) (u,v). (x+u, y+v)) plus

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 291

Lemmas involving predicates on relations can also be registered using
the same attribute. For example:
bi_unique A =⇒ (list_all2 A ===> (=)) distinct distinct
[[bi_unique A; bi_unique B]] =⇒ bi_unique (rel_prod A B)

Preservation of predicates on relations (bi_unique, bi_total,
right_unique, right_total, left_unique, left_total) with the respect
to a relator is proved automatically if the involved type is BNF [8]
without dead variables.

transfer_domain_rule attribute maintains a collection of rules, which spec-
ify a domain of a transfer relation by a predicate. E.g. given the transfer
relation ZN x n ≡ (x = int n), one can register the following transfer
domain rule: Domainp ZN = (λx . x ≥ 0). The rules allow the package
to produce more readable transferred goals, e.g. when quantifiers are
transferred.

relator_eq attribute collects identity laws for relators of various type con-
structors, e.g. rel_set (=) = (=). The transfer method uses these
lemmas to infer transfer rules for non-polymorphic constants on the
fly. For examples see ~~/src/HOL/Lifting_Set.thy or ~~/src/HOL/
Lifting.thy. This property is proved automatically if the involved
type is BNF without dead variables.

relator_domain attribute collects rules describing domains of relators by
predicators. E.g. Domainp (rel_set T) = (λA. Ball A (Domainp T)).
This allows the package to lift transfer domain rules through type
constructors. For examples see ~~/src/HOL/Lifting_Set.thy or ~~/
src/HOL/Lifting.thy. This property is proved automatically if the
involved type is BNF without dead variables.

Theoretical background can be found in [24].

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 292

11.8.4 Old-style definitions for quotient types
quotient_definition : local_theory → proof (prove)
print_quotmapsQ3 : context →
print_quotientsQ3 : context →

print_quotconsts : context →
lifting : method

lifting_setup : method
descending : method

descending_setup : method
partiality_descending : method

partiality_descending_setup : method
regularize : method
injection : method
cleaning : method

quot_thm : attribute
quot_lifted : attribute

quot_respect : attribute
quot_preserve : attribute

quotient_definition
�� ���

�constdecl

�
�

�
�thmdecl

�
�

�

��
�term is

����term

constdecl

name �
�::

����type

�
�

�
�mixfix

�
�

lifting
�� ���

�thms

�
�

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 293

lifting_setup
�� ���

�thms

�
�

quotient_definition defines a constant on the quotient type.

print_quotmapsQ3 prints quotient map functions.

print_quotientsQ3 prints quotients.

print_quotconsts prints quotient constants.

lifting and lifting_setup methods match the current goal with the given
raw theorem to be lifted producing three new subgoals: regularization,
injection and cleaning subgoals. lifting tries to apply the heuristics for
automatically solving these three subgoals and leaves only the subgoals
unsolved by the heuristics to the user as opposed to lifting_setup which
leaves the three subgoals unsolved.

descending and descending_setup try to guess a raw statement that would
lift to the current subgoal. Such statement is assumed as a new subgoal
and descending continues in the same way as lifting does. descending
tries to solve the arising regularization, injection and cleaning subgoals
with the analogous method descending_setup which leaves the four
unsolved subgoals.

partiality_descending finds the regularized theorem that would lift to the
current subgoal, lifts it and leaves as a subgoal. This method can
be used with partial equivalence quotients where the non regularized
statements would not be true. partiality_descending_setup leaves the
injection and cleaning subgoals unchanged.

regularize applies the regularization heuristics to the current subgoal.

injection applies the injection heuristics to the current goal using the stored
quotient respectfulness theorems.

cleaning applies the injection cleaning heuristics to the current subgoal using
the stored quotient preservation theorems.

quot_lifted attribute tries to automatically transport the theorem to the
quotient type. The attribute uses all the defined quotients types and
quotient constants often producing undesired results or theorems that
cannot be lifted.

CHAPTER 11. DERIVED SPECIFICATION ELEMENTS 294

quot_respect and quot_preserve attributes declare a theorem as a respect-
fulness and preservation theorem respectively. These are stored in the
local theory store and used by the injection and cleaning methods re-
spectively.

quot_thm declares that a certain theorem is a quotient extension theo-
rem. Quotient extension theorems allow for quotienting inside con-
tainer types. Given a polymorphic type that serves as a container, a
map function defined for this container using functor and a relation
map defined for for the container type, the quotient extension theorem
should be Quotient3 R Abs Rep =⇒ Quotient3 (rel_map R) (map Abs)
(map Rep). Quotient extension theorems are stored in a database and
are used all the steps of lifting theorems.

Chapter 12

Proof tools

12.1 Proving propositions
In addition to the standard proof methods, a number of diagnosis tools search
for proofs and provide an Isar proof snippet on success. These tools are
available via the following commands.

solve_direct∗ : proof →
try∗ : proof →

try0∗ : proof →
sledgehammer∗ : proof →

sledgehammer_params : theory → theory

try
�� ��
try0

�� ���
� simp

�� ���
�intro

�� ���elim
�� ���dest
�� ��

�
�
�
�

:
����thms�

�

�

�

�
�

sledgehammer
�� ���

� [
����args]

����
�
�

�
�facts

�
�

�
�nat

�
�

295

CHAPTER 12. PROOF TOOLS 296

sledgehammer_params
�� ���

� [
����args]

����
�
�

args

name =
����value�

� ,
����

�
�

facts

(
�����

� �
� add

�� ���
�del

�� ��
�
�

:
����

�
�

thms�

�

�

�

�
�

)
����

solve_direct checks whether the current subgoals can be solved directly
by an existing theorem. Duplicate lemmas can be detected in this way.

try0 attempts to prove a subgoal using a combination of standard proof
methods (auto, simp, blast, etc.). Additional facts supplied via simp:,
intro:, elim:, and dest: are passed to the appropriate proof methods.

try attempts to prove or disprove a subgoal using a combination of provers
and disprovers (solve_direct, quickcheck, try0, sledgehammer,
nitpick).

sledgehammer attempts to prove a subgoal using external automatic
provers (resolution provers and SMT solvers). See the Sledgehammer
manual [9] for details.

sledgehammer_params changes sledgehammer configuration options
persistently.

CHAPTER 12. PROOF TOOLS 297

12.2 Checking and refuting propositions
Identifying incorrect propositions usually involves evaluation of particular
assignments and systematic counterexample search. This is supported by
the following commands.

value∗ : context →
values∗ : context →

quickcheck∗ : proof →
nitpick∗ : proof →

quickcheck_params : theory → theory
nitpick_params : theory → theory

quickcheck_generator : theory → theory
find_unused_assms : context →

value
�� ���

� [
����name]

����
�
�

�
�modes

�
�

term

values
�� ���

�modes

�
�

�
�nat

�
�

term

quickcheck
�� ���

�nitpick
�� ��

�
�

�
� [

����args]
����

�
�

�
�nat

�
�

quickcheck_params
�� ���

�nitpick_params
�� ��

�
�

�
� [

����args]
����

�
�

CHAPTER 12. PROOF TOOLS 298

quickcheck_generator
�� ��name �

��
�operations:

�� �� term�
�

�
�

find_unused_assms
�� ���

�name

�
�

modes

(
���� name�

�
�
�

)
����

args

name =
����value�

� ,
����

�
�

value t evaluates and prints a term; optionally modes can be specified,
which are appended to the current print mode; see §8.1.3. Evalua-
tion is tried first using ML, falling back to normalization by evaluation
if this fails. Alternatively a specific evaluator can be selected using
square brackets; typical evaluators use the current set of code equa-
tions to normalize and include simp for fully symbolic evaluation using
the simplifier, nbe for normalization by evaluation and code for code
generation in SML.

values t enumerates a set comprehension by evaluation and prints its values
up to the given number of solutions; optionally modes can be specified,
which are appended to the current print mode; see §8.1.3.

quickcheck tests the current goal for counterexamples using a series of as-
signments for its free variables; by default the first subgoal is tested, an
other can be selected explicitly using an optional goal index. Assign-
ments can be chosen exhausting the search space up to a given size,

CHAPTER 12. PROOF TOOLS 299

or using a fixed number of random assignments in the search space, or
exploring the search space symbolically using narrowing. By default,
quickcheck uses exhaustive testing. A number of configuration options
are supported for quickcheck, notably:

tester specifies which testing approach to apply. There are three
testers, exhaustive, random, and narrowing. An unknown config-
uration option is treated as an argument to tester, making tester
= optional. When multiple testers are given, these are applied in
parallel. If no tester is specified, quickcheck uses the testers that
are set active, i.e. configurations quickcheck_exhaustive_active,
quickcheck_random_active, quickcheck_narrowing_active are set
to true.

size specifies the maximum size of the search space for assignment
values.

genuine_only sets quickcheck only to return genuine counterexample,
but not potentially spurious counterexamples due to underspeci-
fied functions.

abort_potential sets quickcheck to abort once it found a potentially
spurious counterexample and to not continue to search for a fur-
ther genuine counterexample. For this option to be effective, the
genuine_only option must be set to false.

eval takes a term or a list of terms and evaluates these terms under the
variable assignment found by quickcheck. This option is currently
only supported by the default (exhaustive) tester.

iterations sets how many sets of assignments are generated for each
particular size.

no_assms specifies whether assumptions in structured proofs should
be ignored.

locale specifies how to process conjectures in a locale context, i.e. they
can be interpreted or expanded. The option is a whitespace-
separated list of the two words interpret and expand. The list
determines the order they are employed. The default setting is to
first use interpretations and then test the expanded conjecture.
The option is only provided as attribute declaration, but not as
parameter to the command.

timeout sets the time limit in seconds.
default_type sets the type(s) generally used to instantiate type vari-

ables.

CHAPTER 12. PROOF TOOLS 300

report if set quickcheck reports how many tests fulfilled the precondi-
tions.

use_subtype if set quickcheck automatically lifts conjectures to regis-
tered subtypes if possible, and tests the lifted conjecture.

quiet if set quickcheck does not output anything while testing.
verbose if set quickcheck informs about the current size and cardinality

while testing.
expect can be used to check if the user’s expectation was met

(no_expectation, no_counterexample, or counterexample).

These option can be given within square brackets.
Using the following type classes, the testers generate values and convert
them back into Isabelle terms for displaying counterexamples.

exhaustive The parameters of the type classes exhaustive and
full_exhaustive implement the testing. They take a testing
function as a parameter, which takes a value of type ′a and
optionally produces a counterexample, and a size parameter for
the test values. In full_exhaustive, the testing function param-
eter additionally expects a lazy term reconstruction in the type
Code_Evaluation.term of the tested value.
The canonical implementation for exhaustive testers calls the
given testing function on all values up to the given size and stops
as soon as a counterexample is found.

random The operation Quickcheck_Random.random of the type class
random generates a pseudo-random value of the given size
and a lazy term reconstruction of the value in the type
Code_Evaluation.term. A pseudo-randomness generator is de-
fined in theory HOL.Random.

narrowing implements Haskell’s Lazy Smallcheck [51] using the type
classes narrowing and partial_term_of. Variables in the current
goal are initially represented as symbolic variables. If the ex-
ecution of the goal tries to evaluate one of them, the test en-
gine replaces it with refinements provided by narrowing. Nar-
rowing views every value as a sum-of-products which is ex-
pressed using the operations Quickcheck_Narrowing.cons (em-
bedding a value), Quickcheck_Narrowing.apply (product) and
Quickcheck_Narrowing.sum (sum). The refinement should en-
able further evaluation of the goal.

CHAPTER 12. PROOF TOOLS 301

For example, narrowing for the list type ′a :: narrowing
list can be recursively defined as Quickcheck_Narrowing.sum
(Quickcheck_Narrowing.cons []) (Quickcheck_Narrowing.apply
(Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons
(#)) narrowing) narrowing). If a symbolic variable of type _
list is evaluated, it is replaced by (i) the empty list [] and (ii) by
a non-empty list whose head and tail can then be recursively
refined if needed.
To reconstruct counterexamples, the operation partial_term_of
transforms narrowing’s deep representation of terms to the type
Code_Evaluation.term. The deep representation models symbolic
variables as Quickcheck_Narrowing.Narrowing_variable, which
are normally converted to Code_Evaluation.Free, and refined
values as Quickcheck_Narrowing.Narrowing_constructor i args,
where i :: integer denotes the index in the sum of refinements. In
the above example for lists, 0 corresponds to [] and 1 to (#).
The command code_datatype sets up partial_term_of such
that the i-th refinement is interpreted as the i-th constructor,
but it does not ensures consistency with narrowing.

quickcheck_params changes quickcheck configuration options persis-
tently.

quickcheck_generator creates random and exhaustive value generators
for a given type and operations. It generates values by using the oper-
ations as if they were constructors of that type.

nitpick tests the current goal for counterexamples using a reduction to
first-order relational logic. See the Nitpick manual [10] for details.

nitpick_params changes nitpick configuration options persistently.

find_unused_assms finds potentially superfluous assumptions in theo-
rems using quickcheck. It takes the theory name to be checked for su-
perfluous assumptions as optional argument. If not provided, it checks
the current theory. Options to the internal quickcheck invocations can
be changed with common configuration declarations.

CHAPTER 12. PROOF TOOLS 302

12.3 Coercive subtyping
coercion : attribute

coercion_delete : attribute
coercion_enabled : attribute

coercion_map : attribute
coercion_args : attribute

Coercive subtyping allows the user to omit explicit type conversions, also
called coercions. Type inference will add them as necessary when parsing a
term. See [53] for details.

coercion
�� ��term

coercion_delete
�� ��term

coercion_map
�� ��term

coercion_args
�� ��const +

�����
� 0

����� -
����

�
�
�

�

�

�

�
coercion f registers a new coercion function f :: σ1 ⇒ σ2 where σ1 and σ2 are

type constructors without arguments. Coercions are composed by the
inference algorithm if needed. Note that the type inference algorithm
is complete only if the registered coercions form a lattice.

coercion_delete f deletes a preceding declaration (using coercion) of the
function f :: σ1 ⇒ σ2 as a coercion.

coercion_map map registers a new map function to lift coercions through
type constructors. The function map must conform to the following
type pattern

CHAPTER 12. PROOF TOOLS 303

map :: f 1 ⇒ . . . ⇒ f n ⇒ (α1, . . . , αn) t ⇒ (β1, . . . , βn) t

where t is a type constructor and f i is of type αi ⇒ βi or βi ⇒ αi .
Registering a map function overwrites any existing map function for
this particular type constructor.

coercion_args can be used to disallow coercions to be inserted in certain
positions in a term. For example, given the constant c :: σ1 ⇒ σ2

⇒ σ3 ⇒ σ4 and the list of policies − + 0 as arguments, coercions
will not be inserted in the first argument of c (policy −); they may
be inserted in the second argument (policy +) even if the constant c
itself is in a position where coercions are disallowed; the third argu-
ment inherits the allowance of coercsion insertion from the position of
the constant c (policy 0). The standard usage of policies is the def-
inition of syntatic constructs (usually extralogical, i.e., processed and
stripped during type inference), that should not be destroyed by the
insertion of coercions (see, for example, the setup for the case syntax
in HOL.Ctr_Sugar).

coercion_enabled enables the coercion inference algorithm.

12.4 Arithmetic proof support
arith : method
arith : attribute

linarith_split : attribute

arith decides linear arithmetic problems (on types nat, int, real). Any cur-
rent facts are inserted into the goal before running the procedure.

arith declares facts that are supplied to the arithmetic provers implicitly.

linarith_split attribute declares case split rules to be expanded before arith
is invoked.

Note that a simpler (but faster) arithmetic prover is already invoked by the
Simplifier.

CHAPTER 12. PROOF TOOLS 304

12.5 Intuitionistic proof search
iprover : method

iprover
�� ���

�rulemod

�
�

iprover performs intuitionistic proof search, depending on specifically de-
clared rules from the context, or given as explicit arguments. Chained
facts are inserted into the goal before commencing proof search.
Rules need to be classified as intro, elim, or dest; here the “!” indica-
tor refers to “safe” rules, which may be applied aggressively (without
considering back-tracking later). Rules declared with “?” are ignored
in proof search (the single-step rule method still observes these). An
explicit weight annotation may be given as well; otherwise the number
of rule premises will be taken into account here.

12.6 Model Elimination and Resolution
meson : method
metis : method

meson
�� ���

�thms

�
�

metis
�� ���

� (
���� partial_types

�� ���
�full_types

�� ���no_types
�� ���name

�
�
�
�

)
����

�
�

�
�thms

�
�

CHAPTER 12. PROOF TOOLS 305

meson implements Loveland’s model elimination procedure [30]. See ~~/
src/HOL/ex/Meson_Test.thy for examples.

metis combines ordered resolution and ordered paramodulation to find first-
order (or mildly higher-order) proofs. The first optional argument spec-
ifies a type encoding; see the Sledgehammer manual [9] for details. The
directory ~~/src/HOL/Metis_Examples contains several small theories
developed to a large extent using metis.

12.7 Algebraic reasoning via Gröbner bases
algebra : method
algebra : attribute

algebra
�� ���

�add
�� ��:

����thms

�
�

�
�del

�� ��:
����thms

�
�

algebra
�� ���

�add
�� ���del
�� ��

�
�
�

algebra performs algebraic reasoning via Gröbner bases, see also [13] and [12,
§3.2]. The method handles deals with two main classes of problems:

1. Universal problems over multivariate polynomials in a (semi)-
ring/field/idom; the capabilities of the method are augmented ac-
cording to properties of these structures. For this problem class
the method is only complete for algebraically closed fields, since
the underlying method is based on Hilbert’s Nullstellensatz, where
the equivalence only holds for algebraically closed fields.
The problems can contain equations p = 0 or inequations q 6= 0
anywhere within a universal problem statement.

2. All-exists problems of the following restricted (but useful) form:

CHAPTER 12. PROOF TOOLS 306

∀ x1 . . . xn .
e1(x1, . . . , xn) = 0 ∧ . . . ∧ em(x1, . . . , xn) = 0 −→
(∃ y1 . . . yk .

p11(x1, . . . ,xn) ∗ y1 + . . . + p1k(x1, . . . , xn) ∗ yk = 0 ∧
. . . ∧
pt1(x1, . . . , xn) ∗ y1 + . . . + ptk(x1, . . . , xn) ∗ yk = 0)

Here e1, . . . , en and the pi j are multivariate polynomials only in
the variables mentioned as arguments.

The proof method is preceded by a simplification step, which may be
modified by using the form (algebra add: ths1 del: ths2). This acts like
declarations for the Simplifier (§9.3) on a private simpset for this tool.

algebra (as attribute) manages the default collection of pre-simplification
rules of the above proof method.

Example

The subsequent example is from geometry: collinearity is invariant by rota-
tion.
type_synonym point = int × int

fun collinear :: point ⇒ point ⇒ point ⇒ bool where
collinear (Ax, Ay) (Bx, By) (Cx, Cy) ←→
(Ax − Bx) ∗ (By − Cy) = (Ay − By) ∗ (Bx − Cx)

lemma collinear_inv_rotation:
assumes collinear (Ax, Ay) (Bx, By) (Cx, Cy) and c2 + s2 = 1
shows collinear (Ax ∗ c − Ay ∗ s, Ay ∗ c + Ax ∗ s)
(Bx ∗ c − By ∗ s, By ∗ c + Bx ∗ s) (Cx ∗ c − Cy ∗ s, Cy ∗ c + Cx ∗ s)

using assms by (algebra add: collinear .simps)

See also ~~/src/HOL/Examples/Groebner_Examples.thy.

12.8 Coherent Logic
coherent : method

CHAPTER 12. PROOF TOOLS 307

coherent
�� ���

�thms

�
�

coherent solves problems of Coherent Logic [7], which covers applications
in confluence theory, lattice theory and projective geometry. See ~~/
src/HOL/Examples/Coherent.thy for some examples.

12.9 Unstructured case analysis and induc-
tion

The following tools of Isabelle/HOL support cases analysis and induction in
unstructured tactic scripts; see also §6.5 for proper Isar versions of similar
ideas.

case_tac∗ : method
induct_tac∗ : method
ind_cases∗ : method

inductive_cases∗ : local_theory → local_theory

case_tac
�� ���

�goal_spec

�
�

term �
�rule

�
�

induct_tac
�� ���

�goal_spec

�
�

�
� insts�

� and
�� ��

�
�

�
�

�
�rule

�
�

ind_cases
�� �� prop�

�
�
�

for_fixes

CHAPTER 12. PROOF TOOLS 308

inductive_cases
�� �� �

�thmdecl

�
�

prop�
�

�
�

�

� and
�� ��

�

�
rule

rule
�� ��:

����thm

case_tac and induct_tac admit to reason about inductive types. Rules
are selected according to the declarations by the cases and induct at-
tributes, cf. §6.5. The datatype package already takes care of this.
These unstructured tactics feature both goal addressing and dynamic
instantiation. Note that named rule cases are not provided as would
be by the proper cases and induct proof methods (see §6.5). Unlike
the induct method, induct_tac does not handle structured rule state-
ments, only the compact object-logic conclusion of the subgoal being
addressed.

ind_cases and inductive_cases provide an interface to the internal
mk_cases operation. Rules are simplified in an unrestricted forward
manner.
While ind_cases is a proof method to apply the result immediately as
elimination rules, inductive_cases provides case split theorems at the
theory level for later use. The for argument of the ind_cases method
allows to specify a list of variables that should be generalized before
applying the resulting rule.

12.10 Adhoc tuples
split_format∗ : attribute

split_format
�� ���

� (
����complete

�� ��)
����

�
�

CHAPTER 12. PROOF TOOLS 309

split_format (complete) causes arguments in function applications to be
represented canonically according to their tuple type structure.
Note that this operation tends to invent funny names for new local
parameters introduced.

Chapter 13

Executable code

For validation purposes, it is often useful to execute specifications. In prin-
ciple, execution could be simulated by Isabelle’s inference kernel, i.e. by a
combination of resolution and simplification. Unfortunately, this approach
is rather inefficient. A more efficient way of executing specifications is to
translate them into a functional programming language such as ML.
Isabelle provides a generic framework to support code generation from exe-
cutable specifications. Isabelle/HOL instantiates these mechanisms in a way
that is amenable to end-user applications. Code can be generated for func-
tional programs (including overloading using type classes) targeting SML
[34], OCaml [29], Haskell [49] and Scala [15]. Conceptually, code genera-
tion is split up in three steps: selection of code theorems, translation into
an abstract executable view and serialization to a specific target language.
Inductive specifications can be executed using the predicate compiler which
operates within HOL. See [21] for an introduction.

310

CHAPTER 13. EXECUTABLE CODE 311

export_code∗ : local_theory → local_theory
code : attribute

code_datatype : theory → theory
print_codesetup∗ : context →

code_unfold : attribute
code_post : attribute

code_abbrev : attribute
print_codeproc∗ : context →

code_thms∗ : context →
code_deps∗ : context →

code_reserved : theory → theory
code_printing : theory → theory

code_identifier : theory → theory
code_monad : theory → theory
code_reflect : theory → theory

code_pred : theory → proof (prove)
code_timing : attribute

code_simp_trace : attribute
code_runtime_trace : attribute

export_code
�� ���

�open
�� ��

�
�

�

��
� const_expr�

�
�
�

�
�export_target

�
�

CHAPTER 13. EXECUTABLE CODE 312

export_target

in
����target �

�module_name
�� ��name

�
�

�

��
��

�file_prefix
�� ��path

�
�

�
� (

����args)
����

�
�

target

SML
�� ���

�OCaml
�� ���Haskell
�� ���Scala
�� ���Eval
�� ��

�
�
�
�
�

const_expr

const�
�name._

�� ��� _
����

�
�
�

const

term

type_constructor

name

class

name

CHAPTER 13. EXECUTABLE CODE 313

path

embedded

code
�� ���

� equation
�� ���

�nbe
�� ���abstype
�� ���abstract
�� ���del
�� ���drop:
�� �� const�

�
�
�

�abort:
�� �� const�

�
�
�

�
�
�
�
�
�

�

�
�

code_datatype
�� �� const�

�
�
�

code_unfold
�� ���

�del
�� ��

�
�

code_post
�� ���

�del
�� ��

�
�

CHAPTER 13. EXECUTABLE CODE 314

code_abbrev
�� ���

�del
�� ��

�
�

code_thms
�� �� const_expr�

�
�
�

code_deps
�� �� const_expr�

�
�
�

code_reserved
�� �� (

����target)
���� string�

�
�
�

�

� and
�� ��

�

�
symbol_const

constant
�� ��const

symbol_type_constructor

type_constructor
�� ��type_constructor

symbol_class

type_class
�� ��class

symbol_class_relation

class_relation
�� ��class <

�����
�⊆

����
�
�

class

symbol_class_instance

class_instance
�� ��type_constructor ::

����class

CHAPTER 13. EXECUTABLE CODE 315

symbol_module

code_module
�� ��name

syntax

string�
� infix

�� ���
�infixl

�� ���infixr
�� ��

�
�
�

nat string

�
�

printing_const

symbol_const ⇀
�����

�=>
����

�
�

�

��
� (

����target)
�����

�syntax

�
�

�

� and
�� ��

�

�
printing_type_constructor

symbol_type_constructor ⇀
�����

�=>
����

�
�

�

��
� (

����target)
�����

�syntax

�
�

�

� and
�� ��

�

�

CHAPTER 13. EXECUTABLE CODE 316

printing_class

symbol_class ⇀
�����

�=>
����

�
�

�

��
� (

����target)
�����

�string

�
�

�

� and
�� ��

�

�
printing_class_relation

symbol_class_relation ⇀
�����

�=>
����

�
�

�

��
� (

����target)
�����

�string

�
�

�

� and
�� ��

�

�
printing_class_instance

symbol_class_instance ⇀
�����

�=>
����

�
�

�

��
� (

����target)
�����

� -
����

�
�

�

� and
�� ��

�

�

CHAPTER 13. EXECUTABLE CODE 317

printing_module

symbol_module ⇀
�����

�=>
����

�
�

�

��
� (

����target)
�����

�string �
�for_symbol

�
�

�
�

�

� and
�� ��

�

�
for_symbol

for
�� �� symbol_const�

�symbol_typeconstructor

�symbol_class

�symbol_class_relation

�symbol_class_instance

�
�
�
�
�

�

�

�

�

CHAPTER 13. EXECUTABLE CODE 318

code_printing
�� �� printing_const�

�printing_type_constructor

�printing_class

�printing_class_relation

�printing_class_instance

�printing_module

�
�
�
�
�
�

�

� |
����

�

�
code_identifier

�� �� symbol_const�
�symbol_type_constructor

�symbol_class

�symbol_class_relation

�symbol_class_instance

�symbol_module

�
�
�
�
�
�

⇀
�����

�=>
����

�
�

�

��
� (

����target)
�����

�string

�
�

�

� and
�� ��

�

�

�

��

� |
����

�

�
code_monad

�� ��const const target

CHAPTER 13. EXECUTABLE CODE 319

code_reflect
�� ��string �

��
��

�datatypes
�� ��string =

���� _
�����

� string�
� |

����
�
�

�

� and
�� ��

�

�

�
�

�
�

�

��
��

�functions
�� �� string�

�
�
�

�
�

�
�file_prefix

�� ��path

�
�

code_pred
�� ���

��
��

� (
����modes

�� ��:
����modedecl)

����
�
�

�

��
�const

CHAPTER 13. EXECUTABLE CODE 320

modedecl

modes�
�const :

����modes �
��

��
�and

�� �� const :
����modes and

�� ���
�

�
�

�
�

�

�

modes

mode as
����const

export_code generates code for a given list of constants in the specified
target language(s). If no serialization instruction is given, only abstract
code is generated internally.
Constants may be specified by giving them literally, referring to all
executable constants within a certain theory by giving name._, or re-
ferring to all executable constants currently available by giving _.
By default, exported identifiers are minimized per module. This can
be suppressed by prepending open before the list of constants.
By default, for each involved theory one corresponding name space
module is generated. Alternatively, a module name may be specified
after the module_name keyword; then all code is placed in this mod-
ule.
Generated code is output as logical files within the theory context, as
well as session exports that can be retrieved using isabelle export,
or isabelle build with option -e and suitable export_files speci-
fications in the session ROOT entry. All files have a common directory
prefix: the long theory name plus “code”. The actual file name is de-
termined by the target language together with an optional file_prefix
(the default is “export” with a consecutive number within the current
theory). For SML, OCaml and Scala, the file prefix becomes a plain file
with extension (e.g. “.ML” for SML). For Haskell the file prefix becomes
a directory that is populated with a separate file for each module (with
extension “.hs”).

CHAPTER 13. EXECUTABLE CODE 321

Serializers take an optional list of arguments in parentheses.

• For Haskell a module name prefix may be given using the “root:”
argument; “string_classes” adds a “deriving (Read, Show)”
clause to each appropriate datatype declaration.

• For Scala, “case_insensitive” avoids name clashes on case-
insensitive file systems.

code declares code equations for code generation.
Variant code equation declares a conventional equation as code equa-
tion.
Variants code abstype and code abstract declare abstract datatype cer-
tificates or code equations on abstract datatype representations respec-
tively.
Vanilla code falls back to code equation or code abstract depending on
the syntactic shape of the underlying equation.
Variant code del deselects a code equation for code generation.
Variant code nbe accepts also non-left-linear equations for normaliza-
tion by evaluation only.
Variants code drop: and code abort: take a list of constants as argu-
ments and drop all code equations declared for them. In the case of
abort, these constants if needed are implemented by program abort
(exception).
Packages declaring code equations usually provide a reasonable default
setup.

code_datatype specifies a constructor set for a logical type.

print_codesetup gives an overview on selected code equations and code
generator datatypes.

code_unfold declares (or with option “del” removes) theorems which dur-
ing preprocessing are applied as rewrite rules to any code equation or
evaluation input.

code_post declares (or with option “del” removes) theorems which are ap-
plied as rewrite rules to any result of an evaluation.

code_abbrev declares (or with option “del” removes) equations which are
applied as rewrite rules to any result of an evaluation and symmetrically
during preprocessing to any code equation or evaluation input.

CHAPTER 13. EXECUTABLE CODE 322

print_codeproc prints the setup of the code generator preprocessor.

code_thms prints a list of theorems representing the corresponding pro-
gram containing all given constants after preprocessing.

code_deps visualizes dependencies of theorems representing the corre-
sponding program containing all given constants after preprocessing.

code_reserved declares a list of names as reserved for a given target,
preventing it to be shadowed by any generated code.

code_printing associates a series of symbols (constants, type constructors,
classes, class relations, instances, module names) with target-specific
serializations; omitting a serialization deletes an existing serialization.

code_monad provides an auxiliary mechanism to generate monadic code
for Haskell.

code_identifier associates a a series of symbols (constants, type construc-
tors, classes, class relations, instances, module names) with target-
specific hints how these symbols shall be named. These hints gain
precedence over names for symbols with no hints at all. Conflicting
hints are subject to name disambiguation. Warning: It is at the discre-
tion of the user to ensure that name prefixes of identifiers in compound
statements like type classes or datatypes are still the same.

code_reflect without a “file_prefix” argument compiles code into the
system runtime environment and modifies the code generator setup
that future invocations of system runtime code generation referring to
one of the “datatypes” or “functions” entities use these precompiled
entities. With a “file_prefix” argument, the corresponding code is
generated/exported to the specified file (as for export_code) without
modifying the code generator setup.

code_pred creates code equations for a predicate given a set of introduc-
tion rules. Optional mode annotations determine which arguments are
supposed to be input or output. If alternative introduction rules are
declared, one must prove a corresponding elimination rule.

code_timing scrapes timing samples from different stages of the code gen-
erator.

code_simp_trace traces the simplifier when it is used with code equations.

code_runtime_trace traces ML code generated dynamically for execution.

Part IV

Appendix

323

Appendix A

Isabelle/Isar quick reference

A.1 Proof commands
A.1.1 Main grammar

main = notepad begin statement∗ end
| theorem name: props if name: props for vars proof
| theorem name:

fixes vars
assumes name: props
shows name: props proof

| theorem name:
fixes vars
assumes name: props
obtains (name) vars where props | . . . proof

proof = refinement∗ proper_proof
refinement = apply method

| supply name = thms
| subgoal premises name for vars proof
| using thms
| unfolding thms

proper_proof = proof method? statement∗ qed method?

| done
statement = { statement∗ }

| next
| note name = thms
| let term = term
| write name (mixfix)
| fix vars
| assume name: props if props for vars
| then? goal

goal = have name: props if name: props for vars proof
| show name: props if name: props for vars proof

324

APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 325

A.1.2 Primitives
fix x augment context by

∧
x . 2

assume a: A augment context by A =⇒ 2
then indicate forward chaining of facts
have a: A prove local result
show a: A prove local result, refining some goal
using a indicate use of additional facts
unfolding a unfold definitional equations
proof m1 . . . qed m2 indicate proof structure and refinements
{ . . . } indicate explicit blocks
next switch proof blocks
note a = b reconsider and declare facts
let p = t abbreviate terms by higher-order matching
write c (mx) declare local mixfix syntax

A.1.3 Abbreviations and synonyms
by m1 m2 ≡ proof m1 qed m2

.. ≡ by standard
. ≡ by this

from a ≡ note a then
with a ≡ from a and this

from this ≡ then

A.1.4 Derived elements
also0 ≈ note calculation = this

alson+1 ≈ note calculation = trans [OF calculation this]
finally ≈ also from calculation

moreover ≈ note calculation = calculation this
ultimately ≈ moreover from calculation

presume a: A ≈ assume a: A
define x where x = t ≈ fix x assume x_def : x = t

consider x where A | . . . ≈ have thesis
if

∧
x . A =⇒ thesis and . . . for thesis

obtain x where a: A 〈proof 〉 ≈ consider x where A 〈proof 〉
fix x assume a: A

case c ≈ fix x assume c: A
sorry ≈ by cheating

APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 326

A.1.5 Diagnostic commands
typ τ print type
term t print term
prop ϕ print proposition
thm a print fact
print_statement a print fact in long statement form

A.2 Proof methods
Single steps (forward-chaining facts)
assumption apply some goal assumption
this apply current facts
rule a apply some rule
standard apply standard rule (default for proof)
contradiction apply ¬ elimination rule (any order)
cases t case analysis (provides cases)
induct x proof by induction (provides cases)

Repeated steps (inserting facts)
− no rules
intro a introduction rules
intro_classes class introduction rules
intro_locales locale introduction rules (without body)
unfold_locales locale introduction rules (with body)
elim a elimination rules
unfold a definitional rewrite rules

Automated proof tools (inserting facts)
iprover intuitionistic proof search
blast, fast Classical Reasoner
simp, simp_all Simplifier (+ Splitter)
auto, force Simplifier + Classical Reasoner
arith Arithmetic procedures

APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 327

A.3 Attributes
Rules
OF a rule resolved with facts (skipping “_”)
of t rule instantiated with terms (skipping “_”)
where x = t rule instantiated with terms, by variable name
symmetric resolution with symmetry rule
THEN b resolution with another rule
rule_format result put into standard rule format
elim_format destruct rule turned into elimination rule format
Declarations
simp Simplifier rule
intro, elim, dest Pure or Classical Reasoner rule
iff Simplifier + Classical Reasoner rule
split case split rule
trans transitivity rule
sym symmetry rule

A.4 Rule declarations and methods
rule iprover blast simp auto

fast simp_all force
Pure.elim! Pure.intro! × ×
Pure.elim Pure.intro × ×
elim! intro! × × ×
elim intro × × ×
iff × × × ×
iff ? ×
elim? intro? ×
simp × ×
cong × ×
split × ×

APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 328

A.5 Proof scripts
A.5.1 Commands
apply m apply proof method during backwards refinement
apply_end m apply proof method (as if in terminal position)
supply a supply facts during backwards refinement
subgoal nested proof during backwards refinement
defer n move subgoal to end
prefer n move subgoal to start
back backtrack last command
done complete proof

A.5.2 Methods
rule_tac insts resolution (with instantiation)
erule_tac insts elim-resolution (with instantiation)
drule_tac insts destruct-resolution (with instantiation)
frule_tac insts forward-resolution (with instantiation)
cut_tac insts insert facts (with instantiation)
thin_tac ϕ delete assumptions
subgoal_tac ϕ new claims
rename_tac x rename innermost goal parameters
rotate_tac n rotate assumptions of goal
tactic text arbitrary ML tactic
case_tac t exhaustion (datatypes)
induct_tac x induction (datatypes)
ind_cases t exhaustion + simplification (inductive predicates)

Appendix B

Predefined Isabelle symbols

Isabelle supports an infinite number of non-ASCII symbols, which are repre-
sented in source text as \<name> (where name may be any identifier). It is
left to front-end tools how to present these symbols to the user. The collec-
tion of predefined standard symbols given below is available by default for
Isabelle document output, due to appropriate definitions of \isasymname
for each \<name> in the isabellesym.sty file. Most of these symbols are
displayed properly in Isabelle/jEdit and LATEX generated from Isabelle.
Moreover, any single symbol (or ASCII character) may be prefixed by
\<^sup> for superscript and \<^sub> for subscript, such as A\<^sup>\<star>
for A? and A\<^sub>1 for A1. Sub- and superscripts that span a region of text
can be marked up with \<^bsub>. . . \<^esub> and \<^bsup>. . . \<^esup>
respectively, but note that there are limitations in the typographic ren-
dering quality of this form. Furthermore, all ASCII characters and most
other symbols may be printed in bold by prefixing \<^bold> such as
\<^bold>\<alpha> for α. Note that \<^sup>, \<^sub>, \<^bold> cannot
be combined.
Further details of Isabelle document preparation are covered in chapter 4.

\<zero> 0 \<one> 1
\<two> 2 \<three> 3
\<four> 4 \<five> 5
\<six> 6 \<seven> 7
\<eight> 8 \<nine> 9
\<A> A \ B
\<C> C \<D> D
\<E> E \<F> F
\<G> G \<H> H
\<I> I \<J> J
\<K> K \<L> L
\<M> M \<N> N
\<O> O \<P> P
\<Q> Q \<R> R

329

APPENDIX B. PREDEFINED ISABELLE SYMBOLS 330

\<S> S \<T> T
\<U> U \<V> V
\<W> W \<X> X
\<Y> Y \<Z> Z
\<a> a \ b
\<c> c \<d> d
\<e> e \<f> f
\<g> g \<h> h
\<i> i \<j> j
\<k> k \<l> l
\<m> m \<n> n
\<o> o \<p> p
\<q> q \<r> r
\<s> s \<t> t
\<u> u \<v> v
\<w> w \<x> x
\<y> y \<z> z
\<AA> A \<BB> B
\<CC> C \<DD> D
\<EE> E \<FF> F
\<GG> G \<HH> H
\<II> I \<JJ> J
\<KK> K \<LL> L
\<MM> M \<NN> N
\<OO> O \<PP> P
\<QQ> Q \<RR> R
\<SS> S \<TT> T
\<UU> U \<VV> V
\<WW> W \<XX> X
\<YY> Y \<ZZ> Z
\<aa> a \<bb> b
\<cc> c \<dd> d
\<ee> e \<ff> f
\<gg> g \<hh> h
\<ii> i \<jj> j
\<kk> k \<ll> l
\<mm> m \<nn> n
\<oo> o \<pp> p
\<qq> q \<rr> r
\<ss> s \<tt> t
\<uu> u \<vv> v
\<ww> w \<xx> x

APPENDIX B. PREDEFINED ISABELLE SYMBOLS 331

\<yy> y \<zz> z
\<alpha> α \<beta> β
\<gamma> γ \<delta> δ
\<epsilon> ε \<zeta> ζ
\<eta> η \<theta> ϑ
\<iota> ι \<kappa> κ
\<lambda> λ \<mu> µ
\<nu> ν \<xi> ξ
\<pi> π \<rho> %
\<sigma> σ \<tau> τ
\<upsilon> υ \<phi> ϕ
\<chi> χ \<psi> ψ
\<omega> ω \<Gamma> Γ
\<Delta> ∆ \<Theta> Θ
\<Lambda> Λ \<Xi> Ξ
\<Pi> Π \<Sigma> Σ
\<Upsilon> Υ \<Phi> Φ
\<Psi> Ψ \<Omega> Ω
\<bbbA> � \<bool> �

\<complex> � \<bbbD> �

\<bbbE> � \<bbbF> �

\<bbbG> � \<bbbH> �

\<bbbI> � \<bbbJ> �

\<bbbK> � \<bbbL> �

\<bbbM> � \<nat> �

\<bbbO> � \<bbbP> �

\<rat> � \<real> �

\<bbbS> � \<bbbT> �

\<bbbU> � \<bbbV> �

\<bbbW> � \<bbbX> �

\<bbbY> � \<int> �

\<leftarrow> ← \<rightarrow> →
\<longleftarrow> ←− \<longrightarrow> −→
\<longlongleftarrow> ←−−− \<longlongrightarrow> −−−→
\<longlonglongleftarrow> ←−−−− \<longlonglongrightarrow> −−−−→
\<Leftarrow> ⇐ \<Rightarrow> ⇒
\<Longleftarrow> ⇐= \<Longrightarrow> =⇒
\<Lleftarrow> W \<Rrightarrow> V
\<leftrightarrow> ↔ \<Leftrightarrow> ⇔
\<longleftrightarrow> ←→ \<Longleftrightarrow> ⇐⇒
\<mapsto> 7→ \<longmapsto> 7−→
\<midarrow> − \<Midarrow> =

APPENDIX B. PREDEFINED ISABELLE SYMBOLS 332

\<hookleftarrow> ←↩ \<hookrightarrow> ↪→
\<leftharpoondown> ↽ \<rightharpoondown> ⇁
\<leftharpoonup> ↼ \<rightharpoonup> ⇀
\<rightleftharpoons>
 \<leadsto> ;
\<downharpoonleft> � \<downharpoonright> �
\<upharpoonleft> � \<upharpoonright> �
\<restriction> � \<Colon> ::
\<up> ↑ \<Up> ⇑
\<down> ↓ \<Down> ⇓
\<updown> l \<Updown> m
\<langle> 〈 \<rangle> 〉
\<llangle> 〈〈 \<rrangle> 〉〉
\<lceil> d \<rceil> e
\<lfloor> b \<rfloor> c
\<lparr> (| \<rparr> |)
\<lbrakk> [[\<rbrakk>]]
\<lbrace> {| \<rbrace> |}
\<lblot> 〈| \<rblot> |〉
\<guillemotleft> « \<guillemotright> »
\<bottom> ⊥ \<top> >
\<and> ∧ \<And>

∧
\<or> ∨ \<Or>

∨
\<forall> ∀ \<exists> ∃
\<not> ¬ \<nexists> @
\<circle> # \<box> 2
\<diamond> 3 \<diamondop> �
\<surd>

√
\<turnstile> `

\<Turnstile> |= \<tturnstile> `̀
\<TTurnstile> ||= \<stileturn> a
\<le> ≤ \<ge> ≥
\<lless> � \<ggreater> �
\<lesssim> . \<greatersim> &
\<lessapprox> / \<greaterapprox> '
\<in> ∈ \<notin> /∈
\<subset> ⊂ \<supset> ⊃
\<subseteq> ⊆ \<supseteq> ⊇
\<sqsubset> < \<sqsupset> =
\<sqsubseteq> v \<sqsupseteq> w
\<inter> ∩ \<Inter>

⋂
\<union> ∪ \<Union>

⋃
\<squnion> t \<Squnion>

⊔
\<sqinter> u \<Sqinter>

d

APPENDIX B. PREDEFINED ISABELLE SYMBOLS 333

\<setminus> \ \<propto> ∝
\<uplus>] \<Uplus>

⊎
\<noteq> 6= \<sim> ∼
\<doteq> .

= \<simeq> '
\<approx> ≈ \<asymp> �
\<cong> ∼= \<smile> ^
\<equiv> ≡ \<frown> _
\<Join> 1 \<bowtie> ./
\<prec> ≺ \<succ> �
\<preceq> � \<succeq> �
\<parallel> ‖ \<Parallel>

f

\<interleace> 9 \<sslash> �
\<bar> | \<bbar> []
\<plusminus> ± \<minusplus> ∓
\<times> × \<div> ÷
\<cdot> · \<sqdot> �

\<star> ? \<bullet> ·
\<circ> ◦ \<dagger> †
\<ddagger> ‡ \<lhd> �
\<rhd> � \<unlhd> �
\<unrhd> � \<triangleleft> /
\<triangleright> . \<triangle> 4
\<triangleq> , \<oplus> ⊕
\<Oplus>

⊕
\<otimes> ⊗

\<Otimes>
⊗

\<odot> �
\<Odot>

⊙
\<ominus> 	

\<oslash> � \<dots> . . .
\<cdots> · · · \<Sum>

∑
\<Prod>

∏
\<Coprod>

∐
\<infinity> ∞ \<integral>

∫
\<ointegral>

∮
\<clubsuit> ♣

\<diamondsuit> ♦ \<heartsuit> ♥
\<spadesuit> ♠ \<aleph> ℵ
\<emptyset> ∅ \<nabla> ∇
\<partial> ∂ \<Re> <
\<Im> = \<flat> [
\<natural> \ \<sharp>]
\<angle> ∠ \<copyright> ©
\<registered> ® \<inverse> −1

\<onequarter> ¼ \<onehalf> ½
\<threequarters> ¾ \<ordfeminine> ª
\<ordmasculine> º \<section> §

APPENDIX B. PREDEFINED ISABELLE SYMBOLS 334

\<paragraph> ¶ \<exclamdown> ¡
\<questiondown> ¿ \<euro> e
\<pounds> £ \<yen> U
\<cent> ¢ \<currency> ¤
\<degree> ° \<hyphen> -
\<amalg> q \<mho> 0
\<lozenge> ♦ \<wp> ℘
\<wrong> o \<acute> ´
\<index> ı \<dieresis> ¨
\<cedilla> ¸ \<hungarumlaut> ˝
\<some> ε \<bind> >>=
\<then> >> \<Zcomp> #
\<Zinj> � \<Zpinj> 7�
\<Zfinj> 7 7� \<Zsurj> →→
\<Zpsurj> 7→→ \<Zbij> �→
\<Zpfun> 7→ \<Zffun> 7 7→
\<Zdres> � \<Zndres> −�
\<Zrres> � \<Znrres> −�
\<Zspot> • \<Zproject> �
\<Zsemi> o

9 \<Ztypecolon> o
o

\<Zhide> \ \<Zcat> _

\<Zinbag> <− \<hole> ◊
\<newline> ←↩ \<comment> —
\<proof> 〈proof 〉 \<open> ‹
\<close> › \<checkmark> 3

\<crossmark> 7

Bibliography

[1] P. Andrews. An Introduction to Mathematical Logic and Type Theory: to
Truth through Proof. Computer Science and Applied Mathematics.
Academic Press, 1986.

[2] D. Aspinall. Proof General. http://proofgeneral.inf.ed.ac.uk/.

[3] D. Aspinall. Proof General: A generic tool for proof development. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 1785 of Lecture Notes in Computer Science, pages 38–42.
Springer-Verlag, 2000.

[4] C. Ballarin. Locales: A module system for mathematical theories. Journal of
Automated Reasoning, 52(2):123–153, 2014.

[5] G. Bauer and M. Wenzel. Calculational reasoning revisited — an
Isabelle/Isar experience. In R. J. Boulton and P. B. Jackson, editors,
Theorem Proving in Higher Order Logics: TPHOLs 2001, volume 2152 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

[6] S. Berghofer and T. Nipkow. Proof terms for simply typed higher order
logic. In J. Harrison and M. Aagaard, editors, Theorem Proving in Higher
Order Logics: TPHOLs 2000, volume 1869 of Lecture Notes in Computer
Science, pages 38–52. Springer-Verlag, 2000.

[7] M. Bezem and T. Coquand. Automating Coherent Logic. In G. Sutcliffe and
A. Voronkov, editors, LPAR-12, volume 3835 of Lecture Notes in Computer
Science. Springer-Verlag, 2005.

[8] J. Biendarra, J. C. Blanchette, M. Desharnais, L. Panny, A. Popescu, and
D. Traytel. Defining (Co)datatypes and Primitively (Co)recursive Functions
in Isabelle/HOL. https://isabelle.in.tum.de/doc/datatypes.pdf.

[9] J. C. Blanchette. Hammering Away: A User’s Guide to Sledgehammer for
Isabelle/HOL. https://isabelle.in.tum.de/doc/sledgehammer.pdf.

[10] J. C. Blanchette. Picking Nits: A User’s Guide to Nitpick for Isabelle/HOL.
https://isabelle.in.tum.de/doc/nitpick.pdf.

[11] R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic
Press, 1988.

335

http://proofgeneral.inf.ed.ac.uk/
https://isabelle.in.tum.de/doc/datatypes.pdf
https://isabelle.in.tum.de/doc/sledgehammer.pdf
https://isabelle.in.tum.de/doc/nitpick.pdf

BIBLIOGRAPHY 336

[12] A. Chaieb. Automated methods for formal proofs in simple arithmetics and
algebra. PhD thesis, Technische Universität München, 2008.
http://www4.in.tum.de/~chaieb/pubs/pdf/diss.pdf.

[13] A. Chaieb and M. Wenzel. Context aware calculation and deduction — ring
equalities via Gröbner Bases in Isabelle. In M. Kauers, M. Kerber, R. Miner,
and W. Windsteiger, editors, Towards Mechanized Mathematical Assistants
(CALCULEMUS 2007), volume 4573 of LNAI. Springer-Verlag, 2007.

[14] A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

[15] M. O. et al. An overview of the scala programming language. Technical
Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[16] W. M. Farmer. The seven virtues of simple type theory. J. Applied Logic,
6(3):267–286, 2008.

[17] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of
OBJ2. In Symposium on Principles of Programming Languages, pages
52–66, 1985.

[18] G. Gentzen. Untersuchungen über das logische Schließen. Math. Zeitschrift,
1935.

[19] M. J. C. Gordon. HOL: A machine oriented formulation of higher order
logic. Technical Report 68, University of Cambridge Computer Laboratory,
1985.

[20] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic. Cambridge
University Press, 1993.

[21] F. Haftmann. Code generation from Isabelle theories.
https://isabelle.in.tum.de/doc/codegen.pdf.

[22] F. Haftmann. Haskell-style type classes with Isabelle/Isar.
https://isabelle.in.tum.de/doc/classes.pdf.

[23] F. Haftmann and M. Wenzel. Constructive type classes in Isabelle. In
T. Altenkirch and C. McBride, editors, Types for Proofs and Programs,
TYPES 2006, volume 4502 of LNCS. Springer, 2007.

[24] B. Huffman and O. Kunčar. Lifting and Transfer: A Modular Design for
Quotients in Isabelle/HOL. In Certified Programs and Proofs (CPP 2013),
volume 8307 of Lecture Notes in Computer Science. Springer-Verlag, 2013.

http://www4.in.tum.de/~chaieb/pubs/pdf/diss.pdf
https://isabelle.in.tum.de/doc/codegen.pdf
https://isabelle.in.tum.de/doc/classes.pdf

BIBLIOGRAPHY 337

[25] A. Krauss. Defining Recursive Functions in Isabelle/HOL.
https://isabelle.in.tum.de/doc/functions.pdf.

[26] A. Krauss. Automating Recursive Definitions and Termination Proofs in
Higher-Order Logic. PhD thesis, Institut für Informatik, Technische
Universität München, Germany, 2009.

[27] O. Kuncar. Correctness of Isabelle’s cyclicity checker: Implementability of
overloading in proof assistants. In Proceedings of the 2015 Conference on
Certified Programs and Proofs, CPP 2015, Mumbai, India, January 15-17,
2015, 2015.

[28] O. Kuncar and A. Popescu. A consistent foundation for Isabelle/HOL. In
C. Urban and X. Zhang, editors, Interactive Theorem Proving - 6th
International Conference, ITP 2015, Nanjing, China, August 24-27, 2015,
Proceedings, volume 9236 of Lecture Notes in Computer Science. Springer,
2015.

[29] X. Leroy et al. The Objective Caml system – Documentation and user’s
manual. http://caml.inria.fr/pub/docs/manual-ocaml/.

[30] D. W. Loveland. Automated Theorem Proving: A Logical Basis.
North-Holland Publishing Co., 1978.

[31] U. Martin and T. Nipkow. Ordered rewriting and confluence. In M. E.
Stickel, editor, 10th International Conference on Automated Deduction,
LNAI 449, pages 366–380. Springer, 1990.

[32] D. Matichuk, M. Wenzel, and T. C. Murray. An Isabelle proof method
language. In G. Klein and R. Gamboa, editors, Interactive Theorem Proving
- 5th International Conference, ITP 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, volume 8558 of LNCS.
Springer, 2014.

[33] D. Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4),
1991.

[34] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

[35] W. Naraschewski and M. Wenzel. Object-oriented verification based on
record subtyping in higher-order logic. In J. Grundy and M. Newey, editors,
Theorem Proving in Higher Order Logics: TPHOLs ’98, volume 1479 of
Lecture Notes in Computer Science. Springer-Verlag, 1998.

https://isabelle.in.tum.de/doc/functions.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/

BIBLIOGRAPHY 338

[36] T. Nipkow. Functional unification of higher-order patterns. In M. Vardi,
editor, Eighth Annual Symposium on Logic in Computer Science, pages
64–74. IEEE Computer Society Press, 1993.

[37] T. Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers and F. Wiedijk,
editors, Types for Proofs and Programs (TYPES 2002), volume 2646 of
Lecture Notes in Computer Science, pages 259–278. Springer-Verlag, 2003.

[38] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. Springer, 2002. LNCS 2283.

[39] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[40] T. Nipkow and C. Prehofer. Type reconstruction for type classes. Journal of
Functional Programming, 5(2):201–224, 1995.

[41] D. C. Oppen. Pretty printing. ACM Transactions on Programming
Languages and Systems, 2(4), 1980.

[42] L. C. Paulson. Isabelle’s Logics. https://isabelle.in.tum.de/doc/logics.pdf.

[43] L. C. Paulson. Isabelle’s Logics: FOL and ZF.
https://isabelle.in.tum.de/doc/logics-ZF.pdf.

[44] L. C. Paulson. Natural deduction as higher-order resolution. Journal of
Logic Programming, 3:237–258, 1986.

[45] L. C. Paulson. The foundation of a generic theorem prover. Journal of
Automated Reasoning, 5(3):363–397, 1989.

[46] L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science, pages 361–386. Academic Press, 1990.

[47] L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, 2nd edition, 1996. https://www.cl.cam.ac.uk/~lp15/MLbook.

[48] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers.
Journal of Automated Reasoning, 2:191–216, 1986. Errata, JAR 4 (1988),
235–236 and JAR 18 (1997), 135.

[49] S. Peyton Jones et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 13(1):0–255, Jan 2003.
http://www.haskell.org/definition/.

[50] A. Pitts. The HOL logic. In M. J. C. Gordon and T. F. Melham, editors,
Introduction to HOL: A Theorem Proving Environment for Higher Order
Logic, pages 191–232. Cambridge University Press, 1993.

https://isabelle.in.tum.de/doc/logics.pdf
https://isabelle.in.tum.de/doc/logics-ZF.pdf
https://www.cl.cam.ac.uk/~lp15/MLbook
http://www.haskell.org/definition/

BIBLIOGRAPHY 339

[51] C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and Lazy
Smallcheck: Automatic exhaustive testing for small values. In Proceedings of
the First ACM SIGPLAN Symposium on Haskell (Haskell 2008), pages
37–48. ACM, 2008.

[52] P. Schroeder-Heister. A natural extension of natural deduction. Journal of
Symbolic Logic, 49(4), 1984.

[53] D. Traytel, S. Berghofer, and T. Nipkow. Extending Hindley-Milner Type
Inference with Coercive Structural Subtyping. In H. Yang, editor, APLAS
2011, volume 7078 of Lecture Notes in Computer Science, pages 89–104,
2011.

[54] M. Wenzel. The Isabelle System Manual.
https://isabelle.in.tum.de/doc/system.pdf.

[55] M. Wenzel. The Isabelle/Isar Implementation.
https://isabelle.in.tum.de/doc/implementation.pdf.

[56] M. Wenzel. Isabelle/jEdit. https://isabelle.in.tum.de/doc/jedit.pdf.

[57] M. Wenzel. Type classes and overloading in higher-order logic. In E. L.
Gunter and A. Felty, editors, Theorem Proving in Higher Order Logics:
TPHOLs ’97, volume 1275 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[58] M. Wenzel. Isar — a generic interpretative approach to readable formal
proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Theorem Proving in Higher Order Logics: TPHOLs ’99,
volume 1690 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

[59] M. Wenzel. Isabelle/Isar — a versatile environment for human-readable
formal proof documents. PhD thesis, Institut für Informatik, Technische
Universität München, 2002.
https://mediatum.ub.tum.de/doc/601724/601724.pdf.

[60] M. Wenzel. Isabelle/Isar — a generic framework for human-readable proof
documents. In R. Matuszewski and A. Zalewska, editors, From Insight to
Proof — Festschrift in Honour of Andrzej Trybulec, volume 10(23) of
Studies in Logic, Grammar, and Rhetoric. University of Białystok, 2007.
http://www.in.tum.de/~wenzelm/papers/isar-framework.pdf.

[61] M. Wenzel. Isabelle/jEdit — a Prover IDE within the PIDE framework. In
J. Jeuring et al., editors, Conference on Intelligent Computer Mathematics
(CICM 2012), volume 7362 of LNAI. Springer, 2012.

[62] M. Wenzel and L. C. Paulson. Isabelle/Isar. In F. Wiedijk, editor, The
Seventeen Provers of the World, LNAI 3600. Springer-Verlag, 2006.

https://isabelle.in.tum.de/doc/system.pdf
https://isabelle.in.tum.de/doc/implementation.pdf
https://isabelle.in.tum.de/doc/jedit.pdf
https://mediatum.ub.tum.de/doc/601724/601724.pdf
http://www.in.tum.de/~wenzelm/papers/isar-framework.pdf

BIBLIOGRAPHY 340

[63] F. Wiedijk. Mizar: An impression. Unpublished paper, 1999.
http://www.cs.kun.nl/~freek/mizar/mizarintro.ps.gz.

http://www.cs.kun.nl/~freek/mizar/mizarintro.ps.gz

Index

- (method), 151
. (command), 148
.. (command), 148
?case (variable), 153
?thesis (variable), 144
_ (fact), 140
{ (command), 134
} (command), 134

abbrev (antiquotation), 72
abbreviation (command), 99, 259
abbrevs (keyword), 93
abs_def (attribute), 213, 214
abstraction (notation kind), 186
addafter (ML infix), 250
addbefore (ML infix), 250
addloop (ML infix), 235
addSafter (ML infix), 250
addSbefore (ML infix), 250
addSolver (ML infix), 233
addss (ML), 250
addSSolver (ML infix), 233
addSss (ML), 250
addSWrapper (ML infix), 250
addWrapper (ML infix), 250
adhoc_overloading (command), 120
algebra (HOL attribute), 305
algebra (HOL method), 305
alias (command), 132
also (command), 144
altstring (syntax), 53, 53, 63
and (keyword), 62, 136
antiquotation (syntax), 74
antiquotation_body (syntax), 75
any (inner syntax), 191, 193

application (notation kind), 186
apply (command), 139, 140, 168
apply_end (command), 168
aprop (inner syntax), 192, 193
args (syntax), 63
arith (HOL attribute), 303
arith (HOL method), 303
arity (syntax), 58
assms (fact), 141
assume (command), 135
assumes (element), 105
assumption (inference), 32
assumption (method), 151
atom (syntax), 62
atomize (attribute), 251
atomize (method), 251
attribute_setup (command), 121
attributes (syntax), 63
auto (method), 244
axiomatization (command), 101, 130
axmdecl (syntax), 64

back (command), 168
bash_function (antiquotation), 73
best (method), 244
bestsimp (method), 244
binder (keyword), 187
binder (notation kind), 186
blast (method), 244
bold (antiquotation), 73
break (antiquotation option), 81
build (tool), 70
bundle (antiquotation), 72
bundle (command), 96
by (command), 148

341

INDEX 342

calculation (fact), 144
cartouche (antiquotation option), 81
cartouche (antiquotation), 73
cartouche (inner syntax), 190
cartouche (syntax), 53, 54, 63, 74
case (command), 153, 155
case_conclusion (attribute), 155
case_names (attribute), 155, 166
case_tac (HOL method), 307
cases (attribute), 163
cases (method), 157, 158
chapter (command), 70
cite (antiquotation), 73
citep (antiquotation), 73
citet (antiquotation), 73
clamod (syntax), 245
clarify (method), 248
clarify_step (method), 249
clarsimp (method), 248
clasimpmod (syntax), 246
class (antiquotation), 72
class (command), 114
class_deps (command), 114
class_name (inner syntax), 193
class_syntax (ML antiquotation),

205
classdecl (syntax), 57
cleaning (HOL method), 292
code (HOL attribute), 311
code_abbrev (HOL attribute), 311
code_datatype (HOL command),

311
code_deps (HOL command), 311
code_identifier (HOL command),

311
code_monad (HOL command), 311
code_post (HOL attribute), 311
code_pred (HOL command), 311
code_printing (HOL command), 311
code_reflect (HOL command), 311
code_reserved (HOL command), 311

code_runtime_trace (HOL at-
tribute), 311

code_simp_trace (HOL attribute),
311

code_thms (HOL command), 311
code_timing (HOL attribute), 311
code_unfold (HOL attribute), 311
coercion (HOL attribute), 302
coercion_args (HOL attribute), 302
coercion_delete (HOL attribute),

302
coercion_enabled (HOL attribute),

302
coercion_map (HOL attribute), 302
coherent (HOL method), 306
coinduct (attribute), 163
coinduct (method), 158
coinductive (HOL command), 258
coinductive_set (HOL command),

258
compile_generated_files (com-

mand), 125
cong (attribute), 222
consider (command), 164
const (antiquotation), 72
const_syntax (ML antiquotation),

205
constrains (element), 105
consts (command), 118
consumes (attribute), 155
context (command), 94, 158
context_elem (syntax), 107
contradiction (method), 243
contributor (document marker), 84
corollary (command), 140
creator (document marker), 84
cut_tac (method), 173

datatype (HOL command), 263
date (document marker), 84
declaration (command), 102

INDEX 343

declare (command), 102
deepen (method), 244
default_sort (command), 129
defer (command), 168
define (command), 135
defines (element), 105
definition (command), 99
defn (attribute), 99
delloop (ML infix), 235
delSWrapper (ML infix), 250
delWrapper (ML infix), 250
descending (HOL method), 292
descending_setup (HOL method),

292
description (document marker), 84
dest (attribute), 242
dest (Pure attribute), 151
display (antiquotation option), 81
document_tags (system option), 85
done (command), 168
drule (method), 212
drule_tac (method), 173

elim (attribute), 242
elim (method), 212
elim (Pure attribute), 151
elim_format (Pure attribute), 214
elim_resolution (inference), 32
embedded (syntax), 56
emph (antiquotation), 73
end (global command), 91
end (local command), 94, 116
erule (method), 212
erule_tac (method), 173
eta_contract (antiquotation option),

81
eta_contract (attribute), 179, 205
expand (inference), 34
experiment (command), 105
export (inference), 34
export (tool), 320

export_code (command), 125
export_code (HOL command), 311
export_generated_files (command),

125
external_file (command), 125

fact (method), 63, 151
fail (method), 212
fast (method), 244
fastforce (method), 244
file (antiquotation), 73
finally (command), 144
find_consts (command), 66
find_theorems (command), 66
find_unused_assms (HOL com-

mand), 297
finish (inference), 31
fix (command), 135
fixes (element), 105
float (syntax), 53
float_const (inner syntax), 190
float_token (inner syntax), 189
fold (method), 212
folded (attribute), 214
for (keyword), 130
for_fixes (syntax), 65
force (method), 244
from (command), 138
frule (method), 212
frule_tac (method), 173
full_prf (antiquotation), 72
full_prf (command), 176
fun (HOL command), 262
fun_cases (HOL command), 262
function (HOL command), 262
functor (HOL command), 281

generate_file (command), 125
global_interpretation (command),

109
goal_cases (method), 151

INDEX 344

goal_spec (syntax), 148
goals (antiquotation), 72
goals_limit (antiquotation option),

82
goals_limit (attribute), 179

have (command), 140
help (command), 51
hence (command), 140
hide_class (command), 132
hide_const (command), 132
hide_fact (command), 132
hide_type (command), 132
hypsubst (method), 215

id (inner syntax), 189
idt (inner syntax), 192, 193, 194
idts (inner syntax), 192, 194
if (keyword), 144, 167
iff (attribute), 242
in (keyword), 95
include (command), 96
includes (keyword), 96
includes (syntax), 94, 97, 142
including (command), 96
ind_cases (HOL method), 307
indent (antiquotation option), 82
index (inner syntax), 192, 193
induct (attribute), 163
induct (method), 140, 157, 158
induct_simp (attribute), 162
induct_tac (HOL method), 307
induction (method), 158
induction_schema (HOL method),

267
inductive (HOL command), 258
inductive_cases (HOL command),

307
inductive_set (HOL command), 258
infix (keyword), 186
infix (notation kind), 186

infixl (keyword), 186
infixr (keyword), 186
init (inference), 31
injection (HOL method), 292
insert (method), 212
inst (syntax), 58
inst_step (method), 249
instance (command), 114, 131
instantiation (command), 114, 131
insts (syntax), 59
int (syntax), 55
interpret (command), 109
intro (attribute), 242
intro (method), 212
intro (Pure attribute), 151
intro_classes (method), 114, 150
intro_locales (method), 109, 150
iprover (HOL method), 304
is (keyword), 137

judgment (command), 251
judgment (notation kind), 186

keywords (keyword), 93

lemma (antiquotation), 72
lemma (command), 140
lemmas (command), 130
let (command), 137
lexicographic_order (HOL method),

267
license (document marker), 84
lift_definition (HOL command),

284, 285, 287, 288
lifting (HOL method), 292
lifting_forget (HOL command), 284
lifting_restore (HOL attribute), 284
lifting_setup (HOL method), 292
lifting_update (HOL command),

284
linarith_split (HOL attribute), 303
literal (notation kind), 186

INDEX 345

local_setup (command), 121
locale (antiquotation), 72
locale (command), 105
locale (syntax), 106
locale_deps (command), 105
locale_expr (syntax), 103
logic (inner syntax), 192, 193
long_ident (syntax), 53, 189
longid (inner syntax), 189

margin (antiquotation option), 82
marker (syntax), 83
marker_body (syntax), 84
meson (HOL method), 304
method (syntax), 147
method_facts (fact), 138
method_setup (command), 154
metis (HOL method), 304
mixfix (notation kind), 186
mixfix (syntax), 182
mixfix_properties (syntax), 184, 185
mkroot (tool), 70
ML (antiquotation), 72
ML (command), 121
ML_command (command), 121
ML_debugger (attribute), 121
ML_debugger (system option), 124
ML_def (antiquotation), 72
ML_environment (attribute), 121
ML_exception_debugger (at-

tribute), 121
ML_exception_trace (attribute),

121
ML_export (command), 121
ML_file (command), 121
ML_file_debug (command), 121
ML_file_no_debug (command),

121
ML_functor (antiquotation), 72
ML_functor_def (antiquotation), 72
ML_functor_ref (antiquotation), 72

ML_infix (antiquotation), 72
ML_infix_def (antiquotation), 72
ML_infix_ref (antiquotation), 72
ML_prf (command), 121
ML_print_depth (attribute), 121
ML_ref (antiquotation), 72
ML_source_trace (attribute), 121
ML_structure (antiquotation), 72
ML_structure_def (antiquotation),

72
ML_structure_ref (antiquotation),

72
ML_text (antiquotation), 72
ML_type (antiquotation), 72
ML_type_def (antiquotation), 72
ML_type_ref (antiquotation), 72
ML_val (command), 121
mode (antiquotation option), 81
modes (syntax), 177
mono (HOL attribute), 258
moreover (command), 144
multi_specs (syntax), 65

name (syntax), 54, 74
named_inst (syntax), 59
named_insts (syntax), 59
named_theorems (command), 130
names_long (antiquotation option),

81
names_long (attribute), 179
names_short (antiquotation option),

81
names_short (attribute), 179
names_unique (antiquotation op-

tion), 81
names_unique (attribute), 179
nat (syntax), 53, 53, 189
next (command), 134
nitpick (HOL command), 297
nitpick_params (HOL command),

297

INDEX 346

no_adhoc_overloading (command),
120

no_notation (command), 188
no_syntax (command), 200
no_translations (command), 200
no_type_notation (command), 188
no_vars (attribute), 214
nocite (antiquotation), 73
nonterminal (command), 200
notation (command), 188
note (command), 138
notepad (command), 133
notes (element), 105
nothing (fact), 140
num_const (inner syntax), 190
num_token (inner syntax), 189

obtain (command), 164
obtain_case (syntax), 143
obtain_clauses (syntax), 142
obtains (element), 141
OF (attribute), 151
of (attribute), 151
old_rep_datatype (HOL command),

272
oops (command), 135
opening (keyword), 96
opening (syntax), 94, 97, 106, 114
oracle (command), 131
output (keyword), 202
overloaded (syntax), 278
overloading (command), 118

par_name (syntax), 55
paragraph (command), 70
params (attribute), 155
parse_ast_translation (command),

205
parse_translation (command), 205
partial_function (HOL command),

268

partial_function_mono (HOL at-
tribute), 268

partiality_descending (HOL
method), 292

partiality_descending_setup (HOL
method), 292

pat_completeness (HOL method),
267

postfix (notation kind), 186
prefer (command), 168
prefix (notation kind), 186
presume (command), 135
prf (antiquotation), 72
prf (command), 176
primrec (HOL command), 262
print_abbrevs (command), 99
print_antiquotations (command), 73
print_ast_translation (command),

205
print_attributes (command), 66
print_bundles (command), 96
print_cases (command), 155
print_claset (command), 242
print_classes (command), 114
print_codeproc (HOL command),

311
print_codesetup (HOL command),

311
print_commands (command), 51
print_definitions (command), 66
print_defn_rules (command), 99
print_facts (command), 66
print_induct_rules (command), 163
print_inductives (command), 258
print_interps (command), 109
print_locale (command), 105
print_locales (command), 105
print_methods (command), 66
print_options (command), 211
print_quot_maps (HOL command),

284

INDEX 347

print_quotconsts (HOL command),
292

print_quotients (HOL command),
284

print_quotientsQ3 (HOL command),
292

print_quotmapsQ3 (HOL com-
mand), 292

print_record (HOL command), 274
print_rules (command), 151
print_simpset (command), 222
print_state (command), 176
print_statement (command), 140
print_syntax (command), 195, 205,

206
print_term_bindings (command),

66
print_theorems (command), 66
print_theory (command), 66
print_trans_rules (command), 144
print_translation (command), 205
Print_Mode.with_modes (ML), 181
print_mode_value (ML), 181
private (keyword), 94
proof

fake, 150
standard, 150
terminal, 150
trivial, 150

proof (command), 139, 140, 148, 148,
152

prop (antiquotation), 72
prop (command), 176
prop (inner syntax), 191, 193
prop (syntax), 58
prop_pat (syntax), 61
proposition (command), 140
props (syntax), 61
props’ (syntax), 62
pttrn (inner syntax), 192, 194
pttrns (inner syntax), 192, 194

qed (command), 148, 148
qualified (keyword), 94
quickcheck (HOL command), 297
quickcheck_generator (HOL com-

mand), 297
quickcheck_params (HOL com-

mand), 297
quot_del (HOL attribute), 284
quot_lifted (HOL attribute), 292
quot_map (HOL attribute), 284
quot_preserve (HOL attribute), 292
quot_respect (HOL attribute), 292
quot_thm (HOL attribute), 292
quotes (antiquotation option), 81
quotient_definition (HOL com-

mand), 292
quotient_type (HOL command), 282

rail (antiquotation), 86
raw_tactic (method), 173
real (syntax), 55
recdef (HOL command), 269
recdef_cong (HOL attribute), 271
recdef_simp (HOL attribute), 271
recdef_wf (HOL attribute), 271
record (HOL command), 274
regularize (HOL method), 292
relation (HOL method), 267
relator_distr (HOL attribute), 284
relator_domain (HOL attribute),

289, 291
relator_eq (HOL attribute), 289
relator_eq_onp (HOL attribute),

284
relator_mono (HOL attribute), 284
rename_tac (method), 173
resolution (inference), 31
rotate_tac (method), 173
rotated (attribute), 214
rule (attribute), 242
rule (HOL method), 149

INDEX 348

rule (method), 243
rule (Pure attribute), 151
rule (Pure method), 140, 149, 150,

151, 152
rule_format (attribute), 251
rule_tac (method), 173
rulify (attribute), 251

safe (method), 248
safe_step (method), 249
schematic_goal (command), 140
section (command), 70
session (antiquotation), 73
setloop (ML infix), 235
setSolver (ML infix), 233
setSSolver (ML infix), 233
setup (command), 121
setup_lifting (HOL command), 284
short_ident (syntax), 53, 189
show (command), 136, 140, 148
show_abbrevs (antiquotation op-

tion), 81
show_abbrevs (attribute), 179
show_consts (attribute), 179
show_consts_markup (attribute),

179
show_hyps (attribute), 179
show_main_goal (attribute), 179
show_markup (attribute), 179
show_question_marks (attribute),

179
show_sorts (antiquotation option),

81
show_sorts (attribute), 179
show_structs (antiquotation option),

81
show_tags (attribute), 179
show_types (antiquotation option),

81
show_types (attribute), 179
show_variants (attribute), 120

shows (element), 141
simp (attribute), 222
simp (method), 217
simp (Pure method), 217
simp_all (method), 217
simp_all (Pure method), 217
simp_break (attribute), 227
simp_debug (attribute), 227
simp_depth_limit (attribute), 217
simp_trace (attribute), 227
simp_trace_depth_limit (at-

tribute), 227
simp_trace_new (attribute), 227
simplified (attribute), 236
Simplifier.mk_solver (ML), 233
Simplifier.prems_of (ML), 232
Simplifier.set_subgoaler (ML),

232
Simplifier.set_term_ord (ML),

226
simpmod (syntax), 218
simproc_setup (command), 229
simproc_setup (ML antiquotation),

229, 231
simproc_setup (syntax), 229
simproc_setup_id (syntax), 230
size_change (HOL method), 267
sledgehammer (HOL command), 295
sledgehammer_params (HOL com-

mand), 295
sleep (method), 212
slow (method), 244
slow_step (method), 249
slowsimp (method), 244
SML_file (command), 121
SML_file_debug (command), 121
SML_file_no_debug (command),

121
solve_direct (HOL command), 295
solver (ML type), 233
sorry (command), 135, 148

INDEX 349

sort (inner syntax), 193, 194
sort (syntax), 57
source (antiquotation option), 82
source_cartouche (antiquotation op-

tion), 82
spec_prems (syntax), 66
specification (HOL command), 271
specification (syntax), 66
split (attribute), 222
split (method), 215, 219
split_format (HOL attribute), 308
Splitter.add_split (ML), 235
Splitter.add_split_bang (ML),

235
Splitter.del_split (ML), 235
standard (method), 148
step (method), 249
str_token (inner syntax), 189
string (syntax), 53, 53
string_token (inner syntax), 189
structure (keyword), 108, 193
structured_spec (syntax), 65
subclass (command), 114
subgoal (command), 170
subgoal_tac (method), 173
subgoals (antiquotation), 72
sublocale (command), 109
subparagraph (command), 70
subproofs (method), 151
subsection (command), 70
subst (method), 215
subsubsection (command), 70
succeed (method), 212
supply (command), 168
swapped (attribute), 242
sym_ident (syntax), 53
syntax (command), 200
syntax_ambiguity_limit (attribute),

196
syntax_ambiguity_warning (at-

tribute), 196

syntax_ast_stats (attribute), 200
syntax_ast_trace (attribute), 200
syntax_const (ML antiquotation),

205
syntax_consts (command), 200
syntax_declaration (command), 102
syntax_types (command), 200
system_name (syntax), 55
system_option (antiquotation), 73

tactic (method), 173
tag (document marker), 85
tagged (attribute), 214
tags (syntax), 84
target (syntax), 94
term (antiquotation), 72
term (command), 176
term (syntax), 58
term abbreviations, 138
term_pat (syntax), 61
term_type (antiquotation), 72
term_var (syntax), 53, 53
termination (HOL command), 262
termination_simp (HOL attribute),

267
text (antiquotation), 72, 73
text (command), 70, 82
text (syntax), 56
text_raw (command), 70, 82
that (fact), 144, 167
THEN (attribute), 214
then (command), 138
theorem (command), 140
theory (antiquotation), 72
theory (command), 91
thesis (variable), 138
thin_tac (method), 173
this (fact), 133, 138
this (method), 151
this (variable), 138
thm (antiquotation), 72

INDEX 350

thm (command), 176
thm (syntax), 64
thm_deps (command), 66
thm_oracles (command), 131
thmbind (syntax), 64
thmdecl (syntax), 64
thmdef (syntax), 64
thms (syntax), 64
thus (command), 140
thy_deps (command), 91
tid (inner syntax), 189
title (document marker), 84
trace_locales (attribute), 109
transfer (HOL method), 289
transfer’ (HOL method), 289
Transfer.transferred (HOL at-

tribute), 289
transfer_domain_rule (HOL at-

tribute), 289
transfer_end (HOL method), 289
transfer_prover (HOL method), 289
transfer_prover_end (HOL method),

289
transfer_prover_start (HOL

method), 289
transfer_rule (HOL attribute), 289
transfer_start (HOL method), 289
transfer_step (HOL method), 289
translations (command), 200
try (HOL command), 295
try0 (HOL command), 295
tvar (inner syntax), 189
txt (command), 70, 82
typ (antiquotation), 72
typ (command), 176
type (antiquotation), 72
type (inner syntax), 192, 194
type (syntax), 58
type_alias (command), 132
type_application (notation kind),

186

type_ident (syntax), 53, 189
type_name (inner syntax), 193
type_notation (command), 188
type_synonym (command), 129
type_syntax (ML antiquotation),

205
type_var (syntax), 53, 53, 189
typeargs (syntax), 60
typeargs_sorts (syntax), 60
typed_print_translation (com-

mand), 205
typedecl (command), 129, 130
typedef (command), 130
typedef (HOL command), 278
typeof (antiquotation), 72
typespec (syntax), 60
typespec_sorts (syntax), 60

ultimately (command), 144
unbundle (command), 96
unfold (method), 139, 212
unfold_locales (method), 109
unfolded (attribute), 214
unfolding (command), 138
unify_search_bound (attribute),

253
unify_trace (attribute), 253
unify_trace_bound (attribute), 253
unify_trace_simp (attribute), 253
unify_trace_types (attribute), 253
untagged (attribute), 214
untransferred (HOL attribute), 289
unused_thms (command), 66
url (antiquotation), 73
use (method), 138
using (command), 138

value (HOL command), 77, 297
values (HOL command), 297
var (inner syntax), 189
var (syntax), 189

INDEX 351

vars (syntax), 61
verbatim (antiquotation), 73
verbatim (syntax), 53, 53

when (keyword), 144
where (attribute), 151
with (command), 138
wrapper (ML type), 250
write (command), 188

	I Basic Concepts
	Synopsis
	Notepad
	Types and terms
	Facts
	Block structure

	Calculational reasoning
	Special names in Isar proofs
	Transitive chains
	Degenerate calculations

	Induction
	Induction as Natural Deduction
	Induction with local parameters and premises
	Implicit induction context
	Advanced induction with term definitions

	Natural Deduction
	Rule statements
	Isar context elements
	Pure rule composition
	Structured backward reasoning
	Structured rule application
	Example: predicate logic

	Generalized elimination and cases
	General elimination rules
	Rules with cases
	Elimination statements and case-splitting
	Obtaining local contexts

	The Isabelle/Isar Framework
	The Pure framework
	Primitive inferences
	Reasoning with rules

	The Isar proof language
	Context elements
	Structured statements
	Structured proof refinement
	Calculational reasoning

	Example: First-Order Logic
	Equational reasoning
	Basic group theory
	Propositional logic
	Classical logic
	Quantifiers
	Canonical reasoning patterns

	II General Language Elements
	Outer syntax — the theory language
	Commands
	Lexical matters
	Common syntax entities
	Names
	Numbers
	Embedded content
	Document text
	Document comments
	Type classes, sorts and arities
	Types and terms
	Term patterns and declarations
	Attributes and theorems
	Structured specifications

	Diagnostic commands

	Document preparation
	Markup commands
	Document antiquotations
	Styled antiquotations
	General options

	Markdown-like text structure
	Document markers and command tags
	Railroad diagrams

	Specifications
	Defining theories
	Local theory targets
	Bundled declarations
	Term definitions
	Axiomatizations
	Generic declarations
	Locales
	Locale expressions
	Locale declarations
	Locale interpretation

	Classes
	The class target
	Co-regularity of type classes and arities

	Overloaded constant definitions
	Overloaded constant abbreviations: adhoc overloading
	Incorporating ML code
	Generated files and exported files
	Primitive specification elements
	Sorts
	Types

	Naming existing theorems
	Oracles
	Name spaces

	Proofs
	Proof structure
	Formal notepad
	Blocks
	Omitting proofs

	Statements
	Context elements
	Term abbreviations
	Facts and forward chaining
	Goals

	Calculational reasoning
	Refinement steps
	Proof method expressions
	Initial and terminal proof steps
	Fundamental methods and attributes
	Defining proof methods

	Proof by cases and induction
	Rule contexts
	Proof methods
	Declaring rules

	Generalized elimination and case splitting

	Proof scripts
	Commands for step-wise refinement
	Explicit subgoal structure
	Tactics: improper proof methods

	Inner syntax — the term language
	Printing logical entities
	Diagnostic commands
	Details of printed content
	Alternative print modes

	Mixfix annotations
	The general mixfix form
	Infixes
	Binders

	Explicit notation
	The Pure syntax
	Lexical matters
	Priority grammars
	The Pure grammar
	Inspecting the syntax
	Ambiguity of parsed expressions

	Syntax transformations
	Abstract syntax trees
	Raw syntax and translations
	Syntax translation functions
	Built-in syntax transformations

	Generic tools and packages
	Configuration options
	Basic proof tools
	Miscellaneous methods and attributes
	Low-level equational reasoning

	The Simplifier
	Simplification methods
	Declaring rules
	Ordered rewriting with permutative rules
	Simplifier tracing and debugging
	Simplification procedures
	Configurable Simplifier strategies
	Forward simplification

	The Classical Reasoner
	Basic concepts
	Rule declarations
	Structured methods
	Fully automated methods
	Partially automated methods
	Single-step tactics
	Modifying the search step

	Object-logic setup
	Tracing higher-order unification

	III Isabelle/HOL
	Higher-Order Logic
	Derived specification elements
	Inductive and coinductive definitions
	Derived rules
	Monotonicity theorems

	Recursive functions
	Proof methods related to recursive definitions
	Functions with explicit partiality
	Old-style recursive function definitions (TFL)

	Definition by specification
	Old-style datatypes
	Records
	Basic concepts
	Record specifications
	Record operations
	Derived rules and proof tools

	Semantic subtype definitions
	Functorial structure of types
	Quotient types with lifting and transfer
	Quotient type definition
	Lifting package
	Transfer package
	Old-style definitions for quotient types

	Proof tools
	Proving propositions
	Checking and refuting propositions
	Coercive subtyping
	Arithmetic proof support
	Intuitionistic proof search
	Model Elimination and Resolution
	Algebraic reasoning via Gröbner bases
	Coherent Logic
	Unstructured case analysis and induction
	Adhoc tuples

	Executable code

	IV Appendix
	Isabelle/Isar quick reference
	Proof commands
	Main grammar
	Primitives
	Abbreviations and synonyms
	Derived elements
	Diagnostic commands

	Proof methods
	Attributes
	Rule declarations and methods
	Proof scripts
	Commands
	Methods

	Predefined Isabelle symbols
	Bibliography
	Index

