header{*Theory of Events for Security Protocols*}
theory Event imports Message begin
consts
initState :: "agent => msg set"
datatype
event = Says agent agent msg
| Gets agent msg
| Notes agent msg
consts
bad :: "agent set"
knows :: "agent => event list => msg set"
text{*The constant "spies" is retained for compatibility's sake*}
abbreviation (input)
spies :: "event list => msg set" where
"spies == knows Spy"
text{*Spy has access to his own key for spoof messages, but Server is secure*}
specification (bad)
Spy_in_bad [iff]: "Spy ∈ bad"
Server_not_bad [iff]: "Server ∉ bad"
by (rule exI [of _ "{Spy}"], simp)
primrec
knows_Nil: "knows A [] = initState A"
knows_Cons:
"knows A (ev # evs) =
(if A = Spy then
(case ev of
Says A' B X => insert X (knows Spy evs)
| Gets A' X => knows Spy evs
| Notes A' X =>
if A' ∈ bad then insert X (knows Spy evs) else knows Spy evs)
else
(case ev of
Says A' B X =>
if A'=A then insert X (knows A evs) else knows A evs
| Gets A' X =>
if A'=A then insert X (knows A evs) else knows A evs
| Notes A' X =>
if A'=A then insert X (knows A evs) else knows A evs))"
consts
used :: "event list => msg set"
primrec
used_Nil: "used [] = (UN B. parts (initState B))"
used_Cons: "used (ev # evs) =
(case ev of
Says A B X => parts {X} ∪ used evs
| Gets A X => used evs
| Notes A X => parts {X} ∪ used evs)"
--{*The case for @{term Gets} seems anomalous, but @{term Gets} always
follows @{term Says} in real protocols. Seems difficult to change.
See @{text Gets_correct} in theory @{text "Guard/Extensions.thy"}. *}
lemma Notes_imp_used [rule_format]: "Notes A X ∈ set evs --> X ∈ used evs"
apply (induct_tac evs)
apply (auto split: event.split)
done
lemma Says_imp_used [rule_format]: "Says A B X ∈ set evs --> X ∈ used evs"
apply (induct_tac evs)
apply (auto split: event.split)
done
subsection{*Function @{term knows}*}
lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs", standard]
lemma knows_Spy_Says [simp]:
"knows Spy (Says A B X # evs) = insert X (knows Spy evs)"
by simp
text{*Letting the Spy see "bad" agents' notes avoids redundant case-splits
on whether @{term "A=Spy"} and whether @{term "A∈bad"}*}
lemma knows_Spy_Notes [simp]:
"knows Spy (Notes A X # evs) =
(if A:bad then insert X (knows Spy evs) else knows Spy evs)"
by simp
lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs"
by simp
lemma knows_Spy_subset_knows_Spy_Says:
"knows Spy evs ⊆ knows Spy (Says A B X # evs)"
by (simp add: subset_insertI)
lemma knows_Spy_subset_knows_Spy_Notes:
"knows Spy evs ⊆ knows Spy (Notes A X # evs)"
by force
lemma knows_Spy_subset_knows_Spy_Gets:
"knows Spy evs ⊆ knows Spy (Gets A X # evs)"
by (simp add: subset_insertI)
text{*Spy sees what is sent on the traffic*}
lemma Says_imp_knows_Spy [rule_format]:
"Says A B X ∈ set evs --> X ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma Notes_imp_knows_Spy [rule_format]:
"Notes A X ∈ set evs --> A: bad --> X ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
text{*Elimination rules: derive contradictions from old Says events containing
items known to be fresh*}
lemmas knows_Spy_partsEs =
Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl, standard]
parts.Body [THEN revcut_rl, standard]
lemmas Says_imp_analz_Spy = Says_imp_knows_Spy [THEN analz.Inj]
text{*Compatibility for the old "spies" function*}
lemmas spies_partsEs = knows_Spy_partsEs
lemmas Says_imp_spies = Says_imp_knows_Spy
lemmas parts_insert_spies = parts_insert_knows_A [of _ Spy]
subsection{*Knowledge of Agents*}
lemma knows_Says: "knows A (Says A B X # evs) = insert X (knows A evs)"
by simp
lemma knows_Notes: "knows A (Notes A X # evs) = insert X (knows A evs)"
by simp
lemma knows_Gets:
"A ≠ Spy --> knows A (Gets A X # evs) = insert X (knows A evs)"
by simp
lemma knows_subset_knows_Says: "knows A evs ⊆ knows A (Says A' B X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_Notes: "knows A evs ⊆ knows A (Notes A' X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_Gets: "knows A evs ⊆ knows A (Gets A' X # evs)"
by (simp add: subset_insertI)
text{*Agents know what they say*}
lemma Says_imp_knows [rule_format]: "Says A B X ∈ set evs --> X ∈ knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
text{*Agents know what they note*}
lemma Notes_imp_knows [rule_format]: "Notes A X ∈ set evs --> X ∈ knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
text{*Agents know what they receive*}
lemma Gets_imp_knows_agents [rule_format]:
"A ≠ Spy --> Gets A X ∈ set evs --> X ∈ knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
text{*What agents DIFFERENT FROM Spy know
was either said, or noted, or got, or known initially*}
lemma knows_imp_Says_Gets_Notes_initState [rule_format]:
"[| X ∈ knows A evs; A ≠ Spy |] ==> EX B.
Says A B X ∈ set evs | Gets A X ∈ set evs | Notes A X ∈ set evs | X ∈ initState A"
apply (erule rev_mp)
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
text{*What the Spy knows -- for the time being --
was either said or noted, or known initially*}
lemma knows_Spy_imp_Says_Notes_initState [rule_format]:
"[| X ∈ knows Spy evs |] ==> EX A B.
Says A B X ∈ set evs | Notes A X ∈ set evs | X ∈ initState Spy"
apply (erule rev_mp)
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) ⊆ used evs"
apply (induct_tac "evs", force)
apply (simp add: parts_insert_knows_A knows_Cons add: event.split, blast)
done
lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro]
lemma initState_into_used: "X ∈ parts (initState B) ==> X ∈ used evs"
apply (induct_tac "evs")
apply (simp_all add: parts_insert_knows_A split add: event.split, blast)
done
lemma used_Says [simp]: "used (Says A B X # evs) = parts{X} ∪ used evs"
by simp
lemma used_Notes [simp]: "used (Notes A X # evs) = parts{X} ∪ used evs"
by simp
lemma used_Gets [simp]: "used (Gets A X # evs) = used evs"
by simp
lemma used_nil_subset: "used [] ⊆ used evs"
apply simp
apply (blast intro: initState_into_used)
done
text{*NOTE REMOVAL--laws above are cleaner, as they don't involve "case"*}
declare knows_Cons [simp del]
used_Nil [simp del] used_Cons [simp del]
text{*For proving theorems of the form @{term "X ∉ analz (knows Spy evs) --> P"}
New events added by induction to "evs" are discarded. Provided
this information isn't needed, the proof will be much shorter, since
it will omit complicated reasoning about @{term analz}.*}
lemmas analz_mono_contra =
knows_Spy_subset_knows_Spy_Says [THEN analz_mono, THEN contra_subsetD]
knows_Spy_subset_knows_Spy_Notes [THEN analz_mono, THEN contra_subsetD]
knows_Spy_subset_knows_Spy_Gets [THEN analz_mono, THEN contra_subsetD]
lemma knows_subset_knows_Cons: "knows A evs ⊆ knows A (e # evs)"
by (induct e, auto simp: knows_Cons)
lemma initState_subset_knows: "initState A ⊆ knows A evs"
apply (induct_tac evs, simp)
apply (blast intro: knows_subset_knows_Cons [THEN subsetD])
done
text{*For proving @{text new_keys_not_used}*}
lemma keysFor_parts_insert:
"[| K ∈ keysFor (parts (insert X G)); X ∈ synth (analz H) |]
==> K ∈ keysFor (parts (G ∪ H)) | Key (invKey K) ∈ parts H";
by (force
dest!: parts_insert_subset_Un [THEN keysFor_mono, THEN [2] rev_subsetD]
analz_subset_parts [THEN keysFor_mono, THEN [2] rev_subsetD]
intro: analz_subset_parts [THEN subsetD] parts_mono [THEN [2] rev_subsetD])
lemmas analz_impI = impI [where P = "Y ∉ analz (knows Spy evs)", standard]
ML
{*
val analz_mono_contra_tac =
rtac @{thm analz_impI} THEN'
REPEAT1 o (dresolve_tac @{thms analz_mono_contra})
THEN' mp_tac
*}
method_setup analz_mono_contra = {*
Scan.succeed (K (SIMPLE_METHOD (REPEAT_FIRST analz_mono_contra_tac))) *}
"for proving theorems of the form X ∉ analz (knows Spy evs) --> P"
subsubsection{*Useful for case analysis on whether a hash is a spoof or not*}
lemmas syan_impI = impI [where P = "Y ∉ synth (analz (knows Spy evs))", standard]
ML
{*
val synth_analz_mono_contra_tac =
rtac @{thm syan_impI} THEN'
REPEAT1 o
(dresolve_tac
[@{thm knows_Spy_subset_knows_Spy_Says} RS @{thm synth_analz_mono} RS @{thm contra_subsetD},
@{thm knows_Spy_subset_knows_Spy_Notes} RS @{thm synth_analz_mono} RS @{thm contra_subsetD},
@{thm knows_Spy_subset_knows_Spy_Gets} RS @{thm synth_analz_mono} RS @{thm contra_subsetD}])
THEN'
mp_tac
*}
method_setup synth_analz_mono_contra = {*
Scan.succeed (K (SIMPLE_METHOD (REPEAT_FIRST synth_analz_mono_contra_tac))) *}
"for proving theorems of the form X ∉ synth (analz (knows Spy evs)) --> P"
end