header{*Theory of Events for Security Protocols that use smartcards*}
theory EventSC imports "../Message" begin
consts
initState :: "agent => msg set"
datatype card = Card agent
text{*Four new events express the traffic between an agent and his card*}
datatype
event = Says agent agent msg
| Notes agent msg
| Gets agent msg
| Inputs agent card msg
| C_Gets card msg
| Outpts card agent msg
| A_Gets agent msg
consts
bad :: "agent set"
knows :: "agent => event list => msg set"
stolen :: "card set"
cloned :: "card set"
secureM :: "bool"
abbreviation
insecureM :: bool where
"insecureM == ¬secureM"
text{*Spy has access to his own key for spoof messages, but Server is secure*}
specification (bad)
Spy_in_bad [iff]: "Spy ∈ bad"
Server_not_bad [iff]: "Server ∉ bad"
apply (rule exI [of _ "{Spy}"], simp) done
specification (stolen)
Card_Server_not_stolen [iff]: "Card Server ∉ stolen"
Card_Spy_not_stolen [iff]: "Card Spy ∉ stolen"
apply blast done
specification (cloned)
Card_Server_not_cloned [iff]: "Card Server ∉ cloned"
Card_Spy_not_cloned [iff]: "Card Spy ∉ cloned"
apply blast done
primrec
knows_Nil: "knows A [] = initState A"
knows_Cons: "knows A (ev # evs) =
(case ev of
Says A' B X =>
if (A=A' | A=Spy) then insert X (knows A evs) else knows A evs
| Notes A' X =>
if (A=A' | (A=Spy & A'∈bad)) then insert X (knows A evs)
else knows A evs
| Gets A' X =>
if (A=A' & A ≠ Spy) then insert X (knows A evs)
else knows A evs
| Inputs A' C X =>
if secureM then
if A=A' then insert X (knows A evs) else knows A evs
else
if (A=A' | A=Spy) then insert X (knows A evs) else knows A evs
| C_Gets C X => knows A evs
| Outpts C A' X =>
if secureM then
if A=A' then insert X (knows A evs) else knows A evs
else
if A=Spy then insert X (knows A evs) else knows A evs
| A_Gets A' X =>
if (A=A' & A ≠ Spy) then insert X (knows A evs)
else knows A evs)"
consts
used :: "event list => msg set"
primrec
used_Nil: "used [] = (UN B. parts (initState B))"
used_Cons: "used (ev # evs) =
(case ev of
Says A B X => parts {X} ∪ (used evs)
| Notes A X => parts {X} ∪ (used evs)
| Gets A X => used evs
| Inputs A C X => parts{X} ∪ (used evs)
| C_Gets C X => used evs
| Outpts C A X => parts{X} ∪ (used evs)
| A_Gets A X => used evs)"
--{*@{term Gets} always follows @{term Says} in real protocols.
Likewise, @{term C_Gets} will always have to follow @{term Inputs}
and @{term A_Gets} will always have to follow @{term Outpts}*}
lemma Notes_imp_used [rule_format]: "Notes A X ∈ set evs --> X ∈ used evs"
apply (induct_tac evs)
apply (auto split: event.split)
done
lemma Says_imp_used [rule_format]: "Says A B X ∈ set evs --> X ∈ used evs"
apply (induct_tac evs)
apply (auto split: event.split)
done
lemma MPair_used [rule_format]:
"MPair X Y ∈ used evs --> X ∈ used evs & Y ∈ used evs"
apply (induct_tac evs)
apply (auto split: event.split)
done
subsection{*Function @{term knows}*}
lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs", standard]
lemma knows_Spy_Says [simp]:
"knows Spy (Says A B X # evs) = insert X (knows Spy evs)"
by simp
text{*Letting the Spy see "bad" agents' notes avoids redundant case-splits
on whether @{term "A=Spy"} and whether @{term "A∈bad"}*}
lemma knows_Spy_Notes [simp]:
"knows Spy (Notes A X # evs) =
(if A∈bad then insert X (knows Spy evs) else knows Spy evs)"
by simp
lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs"
by simp
lemma knows_Spy_Inputs_secureM [simp]:
"secureM ==> knows Spy (Inputs A C X # evs) =
(if A=Spy then insert X (knows Spy evs) else knows Spy evs)"
by simp
lemma knows_Spy_Inputs_insecureM [simp]:
"insecureM ==> knows Spy (Inputs A C X # evs) = insert X (knows Spy evs)"
by simp
lemma knows_Spy_C_Gets [simp]: "knows Spy (C_Gets C X # evs) = knows Spy evs"
by simp
lemma knows_Spy_Outpts_secureM [simp]:
"secureM ==> knows Spy (Outpts C A X # evs) =
(if A=Spy then insert X (knows Spy evs) else knows Spy evs)"
by simp
lemma knows_Spy_Outpts_insecureM [simp]:
"insecureM ==> knows Spy (Outpts C A X # evs) = insert X (knows Spy evs)"
by simp
lemma knows_Spy_A_Gets [simp]: "knows Spy (A_Gets A X # evs) = knows Spy evs"
by simp
lemma knows_Spy_subset_knows_Spy_Says:
"knows Spy evs ⊆ knows Spy (Says A B X # evs)"
by (simp add: subset_insertI)
lemma knows_Spy_subset_knows_Spy_Notes:
"knows Spy evs ⊆ knows Spy (Notes A X # evs)"
by force
lemma knows_Spy_subset_knows_Spy_Gets:
"knows Spy evs ⊆ knows Spy (Gets A X # evs)"
by (simp add: subset_insertI)
lemma knows_Spy_subset_knows_Spy_Inputs:
"knows Spy evs ⊆ knows Spy (Inputs A C X # evs)"
by auto
lemma knows_Spy_equals_knows_Spy_Gets:
"knows Spy evs = knows Spy (C_Gets C X # evs)"
by (simp add: subset_insertI)
lemma knows_Spy_subset_knows_Spy_Outpts: "knows Spy evs ⊆ knows Spy (Outpts C A X # evs)"
by auto
lemma knows_Spy_subset_knows_Spy_A_Gets: "knows Spy evs ⊆ knows Spy (A_Gets A X # evs)"
by (simp add: subset_insertI)
text{*Spy sees what is sent on the traffic*}
lemma Says_imp_knows_Spy [rule_format]:
"Says A B X ∈ set evs --> X ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma Notes_imp_knows_Spy [rule_format]:
"Notes A X ∈ set evs --> A∈ bad --> X ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma Inputs_imp_knows_Spy_secureM [rule_format (no_asm)]:
"Inputs Spy C X ∈ set evs --> secureM --> X ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma Inputs_imp_knows_Spy_insecureM [rule_format (no_asm)]:
"Inputs A C X ∈ set evs --> insecureM --> X ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma Outpts_imp_knows_Spy_secureM [rule_format (no_asm)]:
"Outpts C Spy X ∈ set evs --> secureM --> X ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma Outpts_imp_knows_Spy_insecureM [rule_format (no_asm)]:
"Outpts C A X ∈ set evs --> insecureM --> X ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
text{*Elimination rules: derive contradictions from old Says events containing
items known to be fresh*}
lemmas knows_Spy_partsEs =
Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl, standard]
parts.Body [THEN revcut_rl, standard]
subsection{*Knowledge of Agents*}
lemma knows_Says: "knows A (Says A B X # evs) = insert X (knows A evs)"
by simp
lemma knows_Notes: "knows A (Notes A X # evs) = insert X (knows A evs)"
by simp
lemma knows_Gets:
"A ≠ Spy --> knows A (Gets A X # evs) = insert X (knows A evs)"
by simp
lemma knows_Inputs: "knows A (Inputs A C X # evs) = insert X (knows A evs)"
by simp
lemma knows_C_Gets: "knows A (C_Gets C X # evs) = knows A evs"
by simp
lemma knows_Outpts_secureM:
"secureM --> knows A (Outpts C A X # evs) = insert X (knows A evs)"
by simp
lemma knows_Outpts_insecureM:
"insecureM --> knows Spy (Outpts C A X # evs) = insert X (knows Spy evs)"
by simp
lemma knows_subset_knows_Says: "knows A evs ⊆ knows A (Says A' B X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_Notes: "knows A evs ⊆ knows A (Notes A' X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_Gets: "knows A evs ⊆ knows A (Gets A' X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_Inputs: "knows A evs ⊆ knows A (Inputs A' C X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_C_Gets: "knows A evs ⊆ knows A (C_Gets C X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_Outpts: "knows A evs ⊆ knows A (Outpts C A' X # evs)"
by (simp add: subset_insertI)
lemma knows_subset_knows_A_Gets: "knows A evs ⊆ knows A (A_Gets A' X # evs)"
by (simp add: subset_insertI)
text{*Agents know what they say*}
lemma Says_imp_knows [rule_format]: "Says A B X ∈ set evs --> X ∈ knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
text{*Agents know what they note*}
lemma Notes_imp_knows [rule_format]: "Notes A X ∈ set evs --> X ∈ knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
text{*Agents know what they receive*}
lemma Gets_imp_knows_agents [rule_format]:
"A ≠ Spy --> Gets A X ∈ set evs --> X ∈ knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma Inputs_imp_knows_agents [rule_format (no_asm)]:
"Inputs A (Card A) X ∈ set evs --> X ∈ knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
lemma Outpts_imp_knows_agents_secureM [rule_format (no_asm)]:
"secureM --> Outpts (Card A) A X ∈ set evs --> X ∈ knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma Outpts_imp_knows_agents_insecureM [rule_format (no_asm)]:
"insecureM --> Outpts (Card A) A X ∈ set evs --> X ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done
lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) ⊆ used evs"
apply (induct_tac "evs", force)
apply (simp add: parts_insert_knows_A knows_Cons add: event.split, blast)
done
lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro]
lemma initState_into_used: "X ∈ parts (initState B) ==> X ∈ used evs"
apply (induct_tac "evs")
apply (simp_all add: parts_insert_knows_A split add: event.split, blast)
done
lemma used_Says [simp]: "used (Says A B X # evs) = parts{X} ∪ used evs"
by simp
lemma used_Notes [simp]: "used (Notes A X # evs) = parts{X} ∪ used evs"
by simp
lemma used_Gets [simp]: "used (Gets A X # evs) = used evs"
by simp
lemma used_Inputs [simp]: "used (Inputs A C X # evs) = parts{X} ∪ used evs"
by simp
lemma used_C_Gets [simp]: "used (C_Gets C X # evs) = used evs"
by simp
lemma used_Outpts [simp]: "used (Outpts C A X # evs) = parts{X} ∪ used evs"
by simp
lemma used_A_Gets [simp]: "used (A_Gets A X # evs) = used evs"
by simp
lemma used_nil_subset: "used [] ⊆ used evs"
apply simp
apply (blast intro: initState_into_used)
done
lemma Says_parts_used [rule_format (no_asm)]:
"Says A B X ∈ set evs --> (parts {X}) ⊆ used evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
lemma Notes_parts_used [rule_format (no_asm)]:
"Notes A X ∈ set evs --> (parts {X}) ⊆ used evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
lemma Outpts_parts_used [rule_format (no_asm)]:
"Outpts C A X ∈ set evs --> (parts {X}) ⊆ used evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
lemma Inputs_parts_used [rule_format (no_asm)]:
"Inputs A C X ∈ set evs --> (parts {X}) ⊆ used evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done
text{*NOTE REMOVAL--laws above are cleaner, as they don't involve "case"*}
declare knows_Cons [simp del]
used_Nil [simp del] used_Cons [simp del]
lemma knows_subset_knows_Cons: "knows A evs ⊆ knows A (e # evs)"
by (induct e, auto simp: knows_Cons)
lemma initState_subset_knows: "initState A ⊆ knows A evs"
apply (induct_tac evs, simp)
apply (blast intro: knows_subset_knows_Cons [THEN subsetD])
done
text{*For proving @{text new_keys_not_used}*}
lemma keysFor_parts_insert:
"[| K ∈ keysFor (parts (insert X G)); X ∈ synth (analz H) |]
==> K ∈ keysFor (parts (G ∪ H)) ∨ Key (invKey K) ∈ parts H";
by (force
dest!: parts_insert_subset_Un [THEN keysFor_mono, THEN [2] rev_subsetD]
analz_subset_parts [THEN keysFor_mono, THEN [2] rev_subsetD]
intro: analz_subset_parts [THEN subsetD] parts_mono [THEN [2] rev_subsetD])
end