header{*Exponentiation*}
theory Power
imports Nat
begin
class power =
fixes power :: "'a => nat => 'a" (infixr "^" 80)
subsection{*Powers for Arbitrary Monoids*}
class recpower = monoid_mult + power +
assumes power_0 [simp]: "a ^ 0 = 1"
assumes power_Suc [simp]: "a ^ Suc n = a * (a ^ n)"
lemma power_0_Suc [simp]: "(0::'a::{recpower,semiring_0}) ^ (Suc n) = 0"
by simp
text{*It looks plausible as a simprule, but its effect can be strange.*}
lemma power_0_left: "0^n = (if n=0 then 1 else (0::'a::{recpower,semiring_0}))"
by (induct n) simp_all
lemma power_one [simp]: "1^n = (1::'a::recpower)"
by (induct n) simp_all
lemma power_one_right [simp]: "(a::'a::recpower) ^ 1 = a"
unfolding One_nat_def by simp
lemma power_commutes: "(a::'a::recpower) ^ n * a = a * a ^ n"
by (induct n) (simp_all add: mult_assoc)
lemma power_Suc2: "(a::'a::recpower) ^ Suc n = a ^ n * a"
by (simp add: power_commutes)
lemma power_add: "(a::'a::recpower) ^ (m+n) = (a^m) * (a^n)"
by (induct m) (simp_all add: mult_ac)
lemma power_mult: "(a::'a::recpower) ^ (m*n) = (a^m) ^ n"
by (induct n) (simp_all add: power_add)
lemma power_mult_distrib: "((a::'a::{recpower,comm_monoid_mult}) * b) ^ n = (a^n) * (b^n)"
by (induct n) (simp_all add: mult_ac)
lemma zero_less_power[simp]:
"0 < (a::'a::{ordered_semidom,recpower}) ==> 0 < a^n"
by (induct n) (simp_all add: mult_pos_pos)
lemma zero_le_power[simp]:
"0 ≤ (a::'a::{ordered_semidom,recpower}) ==> 0 ≤ a^n"
by (induct n) (simp_all add: mult_nonneg_nonneg)
lemma one_le_power[simp]:
"1 ≤ (a::'a::{ordered_semidom,recpower}) ==> 1 ≤ a^n"
apply (induct "n")
apply simp_all
apply (rule order_trans [OF _ mult_mono [of 1 _ 1]])
apply (simp_all add: order_trans [OF zero_le_one])
done
lemma gt1_imp_ge0: "1 < a ==> 0 ≤ (a::'a::ordered_semidom)"
by (simp add: order_trans [OF zero_le_one order_less_imp_le])
lemma power_gt1_lemma:
assumes gt1: "1 < (a::'a::{ordered_semidom,recpower})"
shows "1 < a * a^n"
proof -
have "1*1 < a*1" using gt1 by simp
also have "… ≤ a * a^n" using gt1
by (simp only: mult_mono gt1_imp_ge0 one_le_power order_less_imp_le
zero_le_one order_refl)
finally show ?thesis by simp
qed
lemma one_less_power[simp]:
"[|1 < (a::'a::{ordered_semidom,recpower}); 0 < n|] ==> 1 < a ^ n"
by (cases n, simp_all add: power_gt1_lemma)
lemma power_gt1:
"1 < (a::'a::{ordered_semidom,recpower}) ==> 1 < a ^ (Suc n)"
by (simp add: power_gt1_lemma)
lemma power_le_imp_le_exp:
assumes gt1: "(1::'a::{recpower,ordered_semidom}) < a"
shows "!!n. a^m ≤ a^n ==> m ≤ n"
proof (induct m)
case 0
show ?case by simp
next
case (Suc m)
show ?case
proof (cases n)
case 0
from prems have "a * a^m ≤ 1" by simp
with gt1 show ?thesis
by (force simp only: power_gt1_lemma
linorder_not_less [symmetric])
next
case (Suc n)
from prems show ?thesis
by (force dest: mult_left_le_imp_le
simp add: order_less_trans [OF zero_less_one gt1])
qed
qed
text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
lemma power_inject_exp [simp]:
"1 < (a::'a::{ordered_semidom,recpower}) ==> (a^m = a^n) = (m=n)"
by (force simp add: order_antisym power_le_imp_le_exp)
text{*Can relax the first premise to @{term "0<a"} in the case of the
natural numbers.*}
lemma power_less_imp_less_exp:
"[| (1::'a::{recpower,ordered_semidom}) < a; a^m < a^n |] ==> m < n"
by (simp add: order_less_le [of m n] order_less_le [of "a^m" "a^n"]
power_le_imp_le_exp)
lemma power_mono:
"[|a ≤ b; (0::'a::{recpower,ordered_semidom}) ≤ a|] ==> a^n ≤ b^n"
apply (induct "n")
apply simp_all
apply (auto intro: mult_mono order_trans [of 0 a b])
done
lemma power_strict_mono [rule_format]:
"[|a < b; (0::'a::{recpower,ordered_semidom}) ≤ a|]
==> 0 < n --> a^n < b^n"
apply (induct "n")
apply (auto simp add: mult_strict_mono order_le_less_trans [of 0 a b])
done
lemma power_eq_0_iff [simp]:
"(a^n = 0) <->
(a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,recpower}) & n≠0)"
apply (induct "n")
apply (auto simp add: no_zero_divisors)
done
lemma field_power_not_zero:
"a ≠ (0::'a::{ring_1_no_zero_divisors,recpower}) ==> a^n ≠ 0"
by force
lemma nonzero_power_inverse:
fixes a :: "'a::{division_ring,recpower}"
shows "a ≠ 0 ==> inverse (a ^ n) = (inverse a) ^ n"
apply (induct "n")
apply (auto simp add: nonzero_inverse_mult_distrib power_commutes)
done
text{*Perhaps these should be simprules.*}
lemma power_inverse:
fixes a :: "'a::{division_ring,division_by_zero,recpower}"
shows "inverse (a ^ n) = (inverse a) ^ n"
apply (cases "a = 0")
apply (simp add: power_0_left)
apply (simp add: nonzero_power_inverse)
done
lemma power_one_over: "1 / (a::'a::{field,division_by_zero,recpower})^n =
(1 / a)^n"
apply (simp add: divide_inverse)
apply (rule power_inverse)
done
lemma nonzero_power_divide:
"b ≠ 0 ==> (a/b) ^ n = ((a::'a::{field,recpower}) ^ n) / (b ^ n)"
by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse)
lemma power_divide:
"(a/b) ^ n = ((a::'a::{field,division_by_zero,recpower}) ^ n / b ^ n)"
apply (case_tac "b=0", simp add: power_0_left)
apply (rule nonzero_power_divide)
apply assumption
done
lemma power_abs: "abs(a ^ n) = abs(a::'a::{ordered_idom,recpower}) ^ n"
apply (induct "n")
apply (auto simp add: abs_mult)
done
lemma abs_power_minus [simp]:
fixes a:: "'a::{ordered_idom,recpower}" shows "abs((-a) ^ n) = abs(a ^ n)"
by (simp add: abs_minus_cancel power_abs)
lemma zero_less_power_abs_iff [simp,noatp]:
"(0 < (abs a)^n) = (a ≠ (0::'a::{ordered_idom,recpower}) | n=0)"
proof (induct "n")
case 0
show ?case by simp
next
case (Suc n)
show ?case by (auto simp add: prems zero_less_mult_iff)
qed
lemma zero_le_power_abs [simp]:
"(0::'a::{ordered_idom,recpower}) ≤ (abs a)^n"
by (rule zero_le_power [OF abs_ge_zero])
lemma power_minus: "(-a) ^ n = (- 1)^n * (a::'a::{ring_1,recpower}) ^ n"
proof (induct n)
case 0 show ?case by simp
next
case (Suc n) then show ?case
by (simp del: power_Suc add: power_Suc2 mult_assoc)
qed
text{*Lemma for @{text power_strict_decreasing}*}
lemma power_Suc_less:
"[|(0::'a::{ordered_semidom,recpower}) < a; a < 1|]
==> a * a^n < a^n"
apply (induct n)
apply (auto simp add: mult_strict_left_mono)
done
lemma power_strict_decreasing:
"[|n < N; 0 < a; a < (1::'a::{ordered_semidom,recpower})|]
==> a^N < a^n"
apply (erule rev_mp)
apply (induct "N")
apply (auto simp add: power_Suc_less less_Suc_eq)
apply (rename_tac m)
apply (subgoal_tac "a * a^m < 1 * a^n", simp)
apply (rule mult_strict_mono)
apply (auto simp add: order_less_imp_le)
done
text{*Proof resembles that of @{text power_strict_decreasing}*}
lemma power_decreasing:
"[|n ≤ N; 0 ≤ a; a ≤ (1::'a::{ordered_semidom,recpower})|]
==> a^N ≤ a^n"
apply (erule rev_mp)
apply (induct "N")
apply (auto simp add: le_Suc_eq)
apply (rename_tac m)
apply (subgoal_tac "a * a^m ≤ 1 * a^n", simp)
apply (rule mult_mono)
apply auto
done
lemma power_Suc_less_one:
"[| 0 < a; a < (1::'a::{ordered_semidom,recpower}) |] ==> a ^ Suc n < 1"
apply (insert power_strict_decreasing [of 0 "Suc n" a], simp)
done
text{*Proof again resembles that of @{text power_strict_decreasing}*}
lemma power_increasing:
"[|n ≤ N; (1::'a::{ordered_semidom,recpower}) ≤ a|] ==> a^n ≤ a^N"
apply (erule rev_mp)
apply (induct "N")
apply (auto simp add: le_Suc_eq)
apply (rename_tac m)
apply (subgoal_tac "1 * a^n ≤ a * a^m", simp)
apply (rule mult_mono)
apply (auto simp add: order_trans [OF zero_le_one])
done
text{*Lemma for @{text power_strict_increasing}*}
lemma power_less_power_Suc:
"(1::'a::{ordered_semidom,recpower}) < a ==> a^n < a * a^n"
apply (induct n)
apply (auto simp add: mult_strict_left_mono order_less_trans [OF zero_less_one])
done
lemma power_strict_increasing:
"[|n < N; (1::'a::{ordered_semidom,recpower}) < a|] ==> a^n < a^N"
apply (erule rev_mp)
apply (induct "N")
apply (auto simp add: power_less_power_Suc less_Suc_eq)
apply (rename_tac m)
apply (subgoal_tac "1 * a^n < a * a^m", simp)
apply (rule mult_strict_mono)
apply (auto simp add: order_less_trans [OF zero_less_one] order_less_imp_le)
done
lemma power_increasing_iff [simp]:
"1 < (b::'a::{ordered_semidom,recpower}) ==> (b ^ x ≤ b ^ y) = (x ≤ y)"
by (blast intro: power_le_imp_le_exp power_increasing order_less_imp_le)
lemma power_strict_increasing_iff [simp]:
"1 < (b::'a::{ordered_semidom,recpower}) ==> (b ^ x < b ^ y) = (x < y)"
by (blast intro: power_less_imp_less_exp power_strict_increasing)
lemma power_le_imp_le_base:
assumes le: "a ^ Suc n ≤ b ^ Suc n"
and ynonneg: "(0::'a::{ordered_semidom,recpower}) ≤ b"
shows "a ≤ b"
proof (rule ccontr)
assume "~ a ≤ b"
then have "b < a" by (simp only: linorder_not_le)
then have "b ^ Suc n < a ^ Suc n"
by (simp only: prems power_strict_mono)
from le and this show "False"
by (simp add: linorder_not_less [symmetric])
qed
lemma power_less_imp_less_base:
fixes a b :: "'a::{ordered_semidom,recpower}"
assumes less: "a ^ n < b ^ n"
assumes nonneg: "0 ≤ b"
shows "a < b"
proof (rule contrapos_pp [OF less])
assume "~ a < b"
hence "b ≤ a" by (simp only: linorder_not_less)
hence "b ^ n ≤ a ^ n" using nonneg by (rule power_mono)
thus "~ a ^ n < b ^ n" by (simp only: linorder_not_less)
qed
lemma power_inject_base:
"[| a ^ Suc n = b ^ Suc n; 0 ≤ a; 0 ≤ b |]
==> a = (b::'a::{ordered_semidom,recpower})"
by (blast intro: power_le_imp_le_base order_antisym order_eq_refl sym)
lemma power_eq_imp_eq_base:
fixes a b :: "'a::{ordered_semidom,recpower}"
shows "[|a ^ n = b ^ n; 0 ≤ a; 0 ≤ b; 0 < n|] ==> a = b"
by (cases n, simp_all del: power_Suc, rule power_inject_base)
text {* The divides relation *}
lemma le_imp_power_dvd:
fixes a :: "'a::{comm_semiring_1,recpower}"
assumes "m ≤ n" shows "a^m dvd a^n"
proof
have "a^n = a^(m + (n - m))"
using `m ≤ n` by simp
also have "… = a^m * a^(n - m)"
by (rule power_add)
finally show "a^n = a^m * a^(n - m)" .
qed
lemma power_le_dvd:
fixes a b :: "'a::{comm_semiring_1,recpower}"
shows "a^n dvd b ==> m ≤ n ==> a^m dvd b"
by (rule dvd_trans [OF le_imp_power_dvd])
lemma dvd_power_same:
"(x::'a::{comm_semiring_1,recpower}) dvd y ==> x^n dvd y^n"
by (induct n) (auto simp add: mult_dvd_mono)
lemma dvd_power_le:
"(x::'a::{comm_semiring_1,recpower}) dvd y ==> m >= n ==> x^n dvd y^m"
by(rule power_le_dvd[OF dvd_power_same])
lemma dvd_power [simp]:
"n > 0 | (x::'a::{comm_semiring_1,recpower}) = 1 ==> x dvd x^n"
apply (erule disjE)
apply (subgoal_tac "x ^ n = x^(Suc (n - 1))")
apply (erule ssubst)
apply (subst power_Suc)
apply auto
done
subsection{*Exponentiation for the Natural Numbers*}
instantiation nat :: recpower
begin
primrec power_nat where
"p ^ 0 = (1::nat)"
| "p ^ (Suc n) = (p::nat) * (p ^ n)"
instance proof
fix z n :: nat
show "z^0 = 1" by simp
show "z^(Suc n) = z * (z^n)" by simp
qed
declare power_nat.simps [simp del]
end
lemma of_nat_power:
"of_nat (m ^ n) = (of_nat m::'a::{semiring_1,recpower}) ^ n"
by (induct n, simp_all add: of_nat_mult)
lemma nat_one_le_power [simp]: "Suc 0 ≤ i ==> Suc 0 ≤ i^n"
by (rule one_le_power [of i n, unfolded One_nat_def])
lemma nat_zero_less_power_iff [simp]: "(x^n > 0) = (x > (0::nat) | n=0)"
by (induct "n", auto)
lemma nat_power_eq_Suc_0_iff [simp]:
"((x::nat)^m = Suc 0) = (m = 0 | x = Suc 0)"
by (induct_tac m, auto)
lemma power_Suc_0[simp]: "(Suc 0)^n = Suc 0"
by simp
text{*Valid for the naturals, but what if @{text"0<i<1"}?
Premises cannot be weakened: consider the case where @{term "i=0"},
@{term "m=1"} and @{term "n=0"}.*}
lemma nat_power_less_imp_less:
assumes nonneg: "0 < (i::nat)"
assumes less: "i^m < i^n"
shows "m < n"
proof (cases "i = 1")
case True with less power_one [where 'a = nat] show ?thesis by simp
next
case False with nonneg have "1 < i" by auto
from power_strict_increasing_iff [OF this] less show ?thesis ..
qed
lemma power_diff:
assumes nz: "a ~= 0"
shows "n <= m ==> (a::'a::{recpower, field}) ^ (m-n) = (a^m) / (a^n)"
by (induct m n rule: diff_induct)
(simp_all add: nonzero_mult_divide_cancel_left nz)
end