(* Title: Provers/Arith/abel_cancel.ML ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1998 University of Cambridge Simplification procedures for abelian groups (e.g. integers, reals, polymorphic types). - Cancel complementary terms in sums - Cancel like terms on opposite sides of relations *) signature ABEL_CANCEL = sig val eq_reflection : thm (*object-equality to meta-equality*) val T : typ (*the type of group elements*) val cancel_ss : simpset (*abelian group cancel simpset*) val sum_pats : cterm list val eqI_rules : thm list val dest_eqI : thm -> term end; functor Abel_Cancel (Data: ABEL_CANCEL) = struct open Data; (* FIXME dependent on abstract syntax *) fun zero t = Const (@{const_name HOL.zero}, t); fun minus t = Const (@{const_name HOL.uminus}, t --> t); fun add_terms pos (Const (@{const_name HOL.plus}, _) $ x $ y, ts) = add_terms pos (x, add_terms pos (y, ts)) | add_terms pos (Const (@{const_name HOL.minus}, _) $ x $ y, ts) = add_terms pos (x, add_terms (not pos) (y, ts)) | add_terms pos (Const (@{const_name HOL.uminus}, _) $ x, ts) = add_terms (not pos) (x, ts) | add_terms pos (x, ts) = (pos,x) :: ts; fun terms fml = add_terms true (fml, []); fun zero1 pt (u as (c as Const(@{const_name HOL.plus},_)) $ x $ y) = (case zero1 pt x of NONE => (case zero1 pt y of NONE => NONE | SOME z => SOME(c $ x $ z)) | SOME z => SOME(c $ z $ y)) | zero1 (pos,t) (u as (c as Const(@{const_name HOL.minus},_)) $ x $ y) = (case zero1 (pos,t) x of NONE => (case zero1 (not pos,t) y of NONE => NONE | SOME z => SOME(c $ x $ z)) | SOME z => SOME(c $ z $ y)) | zero1 (pos,t) (u as (c as Const(@{const_name HOL.uminus},_)) $ x) = (case zero1 (not pos,t) x of NONE => NONE | SOME z => SOME(c $ z)) | zero1 (pos,t) u = if pos andalso (t aconv u) then SOME(zero(fastype_of t)) else NONE exception Cancel; fun find_common _ [] _ = raise Cancel | find_common opp ((p,l)::ls) rs = let val pr = if opp then not p else p in if exists (fn (q,r) => pr = q andalso l aconv r) rs then (p,l) else find_common opp ls rs end (* turns t1(t) OP t2(t) into t1(0) OP t2(0) where OP can be +, -, =, etc. If OP = +, it must be t2(-t) rather than t2(t) *) fun cancel t = let val c $ lhs $ rhs = t val opp = case c of Const(@{const_name HOL.plus},_) => true | _ => false; val (pos,l) = find_common opp (terms lhs) (terms rhs) val posr = if opp then not pos else pos val t' = c $ (the(zero1 (pos,l) lhs)) $ (the(zero1 (posr,l) rhs)) in t' end; (*A simproc to cancel complementary terms in arbitrary sums.*) fun sum_proc ss t = let val t' = cancel t val thm = Goal.prove (Simplifier.the_context ss) [] [] (Logic.mk_equals (t, t')) (fn _ => simp_tac (Simplifier.inherit_context ss cancel_ss) 1) in SOME thm end handle Cancel => NONE; val sum_conv = Simplifier.mk_simproc "cancel_sums" (map (Drule.cterm_fun Logic.varify) Data.sum_pats) (K sum_proc); (*A simproc to cancel like terms on the opposite sides of relations: (x + y - z < -z + x) = (y < 0) Works for (=) and (<=) as well as (<), if the necessary rules are supplied. Reduces the problem to subtraction.*) fun rel_proc ss t = let val t' = cancel t val thm = Goal.prove (Simplifier.the_context ss) [] [] (Logic.mk_equals (t, t')) (fn _ => rtac eq_reflection 1 THEN resolve_tac eqI_rules 1 THEN simp_tac (Simplifier.inherit_context ss cancel_ss) 1) in SOME thm end handle Cancel => NONE; val rel_conv = Simplifier.mk_simproc "cancel_relations" (map (fn th => Thm.cterm_of (Thm.theory_of_thm th) (Data.dest_eqI th)) eqI_rules) (K rel_proc); end;