(* Title: Provers/Arith/assoc_fold.ML ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1999 University of Cambridge Simplification procedure for associative operators + and * on numeric types. Performs constant folding when the literals are separated, as in 3+n+4. *) signature ASSOC_FOLD_DATA = sig val assoc_ss: simpset val eq_reflection: thm val is_numeral: term -> bool end; signature ASSOC_FOLD = sig val proc: simpset -> term -> thm option end; functor Assoc_Fold(Data: ASSOC_FOLD_DATA): ASSOC_FOLD = struct exception Assoc_fail; fun mk_sum plus [] = raise Assoc_fail | mk_sum plus tms = foldr1 (fn (x, y) => plus $ x $ y) tms; (*Separate the literals from the other terms being combined*) fun sift_terms plus (t, (lits,others)) = if Data.is_numeral t then (t::lits, others) (*new literal*) else (case t of (f as Const _) $ x $ y => if f = plus then sift_terms plus (x, sift_terms plus (y, (lits,others))) else (lits, t::others) (*arbitrary summand*) | _ => (lits, t::others)); (*A simproc to combine all literals in a associative nest*) fun proc ss lhs = let val plus = (case lhs of f $ _ $ _ => f | _ => error "Assoc_fold: bad pattern") val (lits, others) = sift_terms plus (lhs, ([],[])) val _ = length lits < 2 andalso raise Assoc_fail (*we can't reduce the number of terms*) val rhs = plus $ mk_sum plus lits $ mk_sum plus others val th = Goal.prove (Simplifier.the_context ss) [] [] (Logic.mk_equals (lhs, rhs)) (fn _ => rtac Data.eq_reflection 1 THEN simp_tac (Simplifier.inherit_context ss Data.assoc_ss) 1) in SOME th end handle Assoc_fail => NONE; end;