(* Title: Tools/code/code_funcgr.ML Author: Florian Haftmann, TU Muenchen Retrieving, normalizing and structuring code equations in graph with explicit dependencies. Legacy. To be replaced by Tools/code/code_wellsorted.ML *) signature CODE_WELLSORTED = sig type T val eqns: T -> string -> (thm * bool) list val typ: T -> string -> (string * sort) list * typ val all: T -> string list val pretty: theory -> T -> Pretty.T val make: theory -> string list -> ((sort -> sort) * Sorts.algebra) * T val eval_conv: theory -> (term -> term * (((sort -> sort) * Sorts.algebra) -> T -> thm)) -> cterm -> thm val eval_term: theory -> (term -> term * (((sort -> sort) * Sorts.algebra) -> T -> 'a)) -> term -> 'a val timing: bool ref end structure Code_Wellsorted : CODE_WELLSORTED = struct (** the graph type **) type T = (((string * sort) list * typ) * (thm * bool) list) Graph.T; fun eqns funcgr = these o Option.map snd o try (Graph.get_node funcgr); fun typ funcgr = fst o Graph.get_node funcgr; fun all funcgr = Graph.keys funcgr; fun pretty thy funcgr = AList.make (snd o Graph.get_node funcgr) (Graph.keys funcgr) |> (map o apfst) (Code_Unit.string_of_const thy) |> sort (string_ord o pairself fst) |> map (fn (s, thms) => (Pretty.block o Pretty.fbreaks) ( Pretty.str s :: map (Display.pretty_thm o fst) thms )) |> Pretty.chunks; (** generic combinators **) fun fold_consts f thms = thms |> maps (op :: o swap o apfst (snd o strip_comb) o Logic.dest_equals o Thm.plain_prop_of) |> (fold o fold_aterms) (fn Const c => f c | _ => I); fun consts_of (const, []) = [] | consts_of (const, thms as _ :: _) = let fun the_const (c, _) = if c = const then I else insert (op =) c in fold_consts the_const (map fst thms) [] end; fun insts_of thy algebra tys sorts = let fun class_relation (x, _) _ = x; fun type_constructor tyco xs class = (tyco, class) :: (maps o maps) fst xs; fun type_variable (TVar (_, sort)) = map (pair []) sort | type_variable (TFree (_, sort)) = map (pair []) sort; fun of_sort_deriv ty sort = Sorts.of_sort_derivation (Syntax.pp_global thy) algebra { class_relation = class_relation, type_constructor = type_constructor, type_variable = type_variable } (ty, sort) handle Sorts.CLASS_ERROR _ => [] (*permissive!*) in (flat o flat) (map2 of_sort_deriv tys sorts) end; fun meets_of thy algebra = let fun meet_of ty sort tab = Sorts.meet_sort algebra (ty, sort) tab handle Sorts.CLASS_ERROR _ => tab (*permissive!*); in fold2 meet_of end; (** graph algorithm **) val timing = ref false; local fun resort_thms thy algebra typ_of thms = let val cs = fold_consts (insert (op =)) thms []; fun meets (c, ty) = case typ_of c of SOME (vs, _) => meets_of thy algebra (Sign.const_typargs thy (c, ty)) (map snd vs) | NONE => I; val tab = fold meets cs Vartab.empty; in map (Code_Unit.inst_thm thy tab) thms end; fun resort_eqnss thy algebra funcgr = let val typ_funcgr = try (fst o Graph.get_node funcgr); val resort_dep = (apsnd o burrow_fst) (resort_thms thy algebra typ_funcgr); fun resort_rec typ_of (c, []) = (true, (c, [])) | resort_rec typ_of (c, thms as (thm, _) :: _) = if is_some (AxClass.inst_of_param thy c) then (true, (c, thms)) else let val (_, (vs, ty)) = Code_Unit.head_eqn thy thm; val thms' as (thm', _) :: _ = burrow_fst (resort_thms thy algebra typ_of) thms val (_, (vs', ty')) = Code_Unit.head_eqn thy thm'; (*FIXME simplify check*) in (Sign.typ_equiv thy (ty, ty'), (c, thms')) end; fun resort_recs eqnss = let fun typ_of c = case these (AList.lookup (op =) eqnss c) of (thm, _) :: _ => (SOME o snd o Code_Unit.head_eqn thy) thm | [] => NONE; val (unchangeds, eqnss') = split_list (map (resort_rec typ_of) eqnss); val unchanged = fold (fn x => fn y => x andalso y) unchangeds true; in (unchanged, eqnss') end; fun resort_rec_until eqnss = let val (unchanged, eqnss') = resort_recs eqnss; in if unchanged then eqnss' else resort_rec_until eqnss' end; in map resort_dep #> resort_rec_until end; fun instances_of thy algebra insts = let val thy_classes = (#classes o Sorts.rep_algebra o Sign.classes_of) thy; fun all_classparams tyco class = these (try (#params o AxClass.get_info thy) class) |> map_filter (fn (c, _) => try (AxClass.param_of_inst thy) (c, tyco)) in Symtab.empty |> fold (fn (tyco, class) => Symtab.map_default (tyco, []) (insert (op =) class)) insts |> (fn tab => Symtab.fold (fn (tyco, classes) => append (maps (all_classparams tyco) (Graph.all_succs thy_classes classes))) tab []) end; fun instances_of_consts thy algebra funcgr consts = let fun inst (cexpr as (c, ty)) = insts_of thy algebra (Sign.const_typargs thy (c, ty)) ((map snd o fst) (typ funcgr c)); in [] |> fold (fold (insert (op =)) o inst) consts |> instances_of thy algebra end; fun ensure_const' thy algebra funcgr const auxgr = if can (Graph.get_node funcgr) const then (NONE, auxgr) else if can (Graph.get_node auxgr) const then (SOME const, auxgr) else if is_some (Code.get_datatype_of_constr thy const) then auxgr |> Graph.new_node (const, []) |> pair (SOME const) else let val thms = Code.these_eqns thy const |> burrow_fst (Code_Unit.norm_args thy) |> burrow_fst (Code_Unit.norm_varnames thy Code_Name.purify_tvar Code_Name.purify_var); val rhs = consts_of (const, thms); in auxgr |> Graph.new_node (const, thms) |> fold_map (ensure_const thy algebra funcgr) rhs |-> (fn rhs' => fold (fn SOME const' => Graph.add_edge (const, const') | NONE => I) rhs') |> pair (SOME const) end and ensure_const thy algebra funcgr const = let val timeap = if !timing then Output.timeap_msg ("time for " ^ Code_Unit.string_of_const thy const) else I; in timeap (ensure_const' thy algebra funcgr const) end; fun merge_eqnss thy algebra raw_eqnss funcgr = let val eqnss = raw_eqnss |> resort_eqnss thy algebra funcgr |> filter_out (can (Graph.get_node funcgr) o fst); fun typ_eqn c [] = Code.default_typscheme thy c | typ_eqn c (thms as (thm, _) :: _) = (snd o Code_Unit.head_eqn thy) thm; fun add_eqns (const, thms) = Graph.new_node (const, (typ_eqn const thms, thms)); fun add_deps (eqns as (const, thms)) funcgr = let val deps = consts_of eqns; val insts = instances_of_consts thy algebra funcgr (fold_consts (insert (op =)) (map fst thms) []); in funcgr |> ensure_consts thy algebra insts |> fold (curry Graph.add_edge const) deps |> fold (curry Graph.add_edge const) insts end; in funcgr |> fold add_eqns eqnss |> fold add_deps eqnss end and ensure_consts thy algebra cs funcgr = let val auxgr = Graph.empty |> fold (snd oo ensure_const thy algebra funcgr) cs; in funcgr |> fold (merge_eqnss thy algebra) (map (AList.make (Graph.get_node auxgr)) (rev (Graph.strong_conn auxgr))) end; in (** retrieval interfaces **) val ensure_consts = ensure_consts; fun proto_eval thy cterm_of evaluator_lift evaluator proto_ct funcgr = let val ct = cterm_of proto_ct; val _ = Sign.no_vars (Syntax.pp_global thy) (Thm.term_of ct); val _ = Term.fold_types (Type.no_tvars #> K I) (Thm.term_of ct) (); fun consts_of t = fold_aterms (fn Const c_ty => cons c_ty | _ => I) t []; val algebra = Code.coregular_algebra thy; val thm = Code.preprocess_conv thy ct; val ct' = Thm.rhs_of thm; val t' = Thm.term_of ct'; val consts = map fst (consts_of t'); val funcgr' = ensure_consts thy algebra consts funcgr; val (t'', evaluator_funcgr) = evaluator t'; val consts' = consts_of t''; val dicts = instances_of_consts thy algebra funcgr' consts'; val funcgr'' = ensure_consts thy algebra dicts funcgr'; in (evaluator_lift (evaluator_funcgr (Code.operational_algebra thy)) thm funcgr'', funcgr'') end; fun proto_eval_conv thy = let fun evaluator_lift evaluator thm1 funcgr = let val thm2 = evaluator funcgr; val thm3 = Code.postprocess_conv thy (Thm.rhs_of thm2); in Thm.transitive thm1 (Thm.transitive thm2 thm3) handle THM _ => error ("could not construct evaluation proof:\n" ^ (cat_lines o map Display.string_of_thm) [thm1, thm2, thm3]) end; in proto_eval thy I evaluator_lift end; fun proto_eval_term thy = let fun evaluator_lift evaluator _ funcgr = evaluator funcgr; in proto_eval thy (Thm.cterm_of thy) evaluator_lift end; end; (*local*) structure Funcgr = CodeDataFun ( type T = T; val empty = Graph.empty; fun purge _ cs funcgr = Graph.del_nodes ((Graph.all_preds funcgr o filter (can (Graph.get_node funcgr))) cs) funcgr; ); fun make thy = pair (Code.operational_algebra thy) o Funcgr.change thy o ensure_consts thy (Code.coregular_algebra thy); fun eval_conv thy f = fst o Funcgr.change_yield thy o proto_eval_conv thy f; fun eval_term thy f = fst o Funcgr.change_yield thy o proto_eval_term thy f; (** diagnostic commands **) fun code_depgr thy consts = let val (_, gr) = make thy consts; val select = Graph.all_succs gr consts; in gr |> not (null consts) ? Graph.subgraph (member (op =) select) |> Graph.map_nodes ((apsnd o map o apfst) (AxClass.overload thy)) end; fun code_thms thy = Pretty.writeln o pretty thy o code_depgr thy; fun code_deps thy consts = let val gr = code_depgr thy consts; fun mk_entry (const, (_, (_, parents))) = let val name = Code_Unit.string_of_const thy const; val nameparents = map (Code_Unit.string_of_const thy) parents; in { name = name, ID = name, dir = "", unfold = true, path = "", parents = nameparents } end; val prgr = Graph.fold ((fn x => fn xs => xs @ [x]) o mk_entry) gr []; in Present.display_graph prgr end; local structure P = OuterParse and K = OuterKeyword fun code_thms_cmd thy = code_thms thy o op @ o Code_Name.read_const_exprs thy; fun code_deps_cmd thy = code_deps thy o op @ o Code_Name.read_const_exprs thy; in val _ = OuterSyntax.improper_command "code_thms" "print system of code equations for code" OuterKeyword.diag (Scan.repeat P.term_group >> (fn cs => Toplevel.no_timing o Toplevel.unknown_theory o Toplevel.keep ((fn thy => code_thms_cmd thy cs) o Toplevel.theory_of))); val _ = OuterSyntax.improper_command "code_deps" "visualize dependencies of code equations for code" OuterKeyword.diag (Scan.repeat P.term_group >> (fn cs => Toplevel.no_timing o Toplevel.unknown_theory o Toplevel.keep ((fn thy => code_deps_cmd thy cs) o Toplevel.theory_of))); end; end; (*struct*)