(* Title: Tools/code/code_haskell.ML Author: Florian Haftmann, TU Muenchen Serializer for Haskell. *) signature CODE_HASKELL = sig val setup: theory -> theory end; structure Code_Haskell : CODE_HASKELL = struct val target = "Haskell"; open Basic_Code_Thingol; open Code_Printer; infixr 5 @@; infixr 5 @|; (** Haskell serializer **) fun pr_haskell_bind pr_term = let fun pr_bind ((NONE, NONE), _) = str "_" | pr_bind ((SOME v, NONE), _) = str v | pr_bind ((NONE, SOME p), _) = p | pr_bind ((SOME v, SOME p), _) = brackets [str v, str "@", p]; in gen_pr_bind pr_bind pr_term end; fun pr_haskell_stmt naming labelled_name syntax_class syntax_tyco syntax_const init_syms deresolve is_cons contr_classparam_typs deriving_show = let val deresolve_base = Long_Name.base_name o deresolve; fun class_name class = case syntax_class class of NONE => deresolve class | SOME class => class; fun pr_typcontext tyvars vs = case maps (fn (v, sort) => map (pair v) sort) vs of [] => [] | classbinds => Pretty.enum "," "(" ")" ( map (fn (v, class) => str (class_name class ^ " " ^ Code_Printer.lookup_var tyvars v)) classbinds) @@ str " => "; fun pr_typforall tyvars vs = case map fst vs of [] => [] | vnames => str "forall " :: Pretty.breaks (map (str o Code_Printer.lookup_var tyvars) vnames) @ str "." @@ Pretty.brk 1; fun pr_tycoexpr tyvars fxy (tyco, tys) = brackify fxy (str tyco :: map (pr_typ tyvars BR) tys) and pr_typ tyvars fxy (tycoexpr as tyco `%% tys) = (case syntax_tyco tyco of NONE => pr_tycoexpr tyvars fxy (deresolve tyco, tys) | SOME (i, pr) => pr (pr_typ tyvars) fxy tys) | pr_typ tyvars fxy (ITyVar v) = (str o Code_Printer.lookup_var tyvars) v; fun pr_typdecl tyvars (vs, tycoexpr) = Pretty.block (pr_typcontext tyvars vs @| pr_tycoexpr tyvars NOBR tycoexpr); fun pr_typscheme tyvars (vs, ty) = Pretty.block (pr_typforall tyvars vs @ pr_typcontext tyvars vs @| pr_typ tyvars NOBR ty); fun pr_term tyvars thm vars fxy (IConst c) = pr_app tyvars thm vars fxy (c, []) | pr_term tyvars thm vars fxy (t as (t1 `$ t2)) = (case Code_Thingol.unfold_const_app t of SOME app => pr_app tyvars thm vars fxy app | _ => brackify fxy [ pr_term tyvars thm vars NOBR t1, pr_term tyvars thm vars BR t2 ]) | pr_term tyvars thm vars fxy (IVar v) = (str o Code_Printer.lookup_var vars) v | pr_term tyvars thm vars fxy (t as _ `|-> _) = let val (binds, t') = Code_Thingol.unfold_abs t; fun pr ((v, pat), ty) = pr_bind tyvars thm BR ((SOME v, pat), ty); val (ps, vars') = fold_map pr binds vars; in brackets (str "\\" :: ps @ str "->" @@ pr_term tyvars thm vars' NOBR t') end | pr_term tyvars thm vars fxy (ICase (cases as (_, t0))) = (case Code_Thingol.unfold_const_app t0 of SOME (c_ts as ((c, _), _)) => if is_none (syntax_const c) then pr_case tyvars thm vars fxy cases else pr_app tyvars thm vars fxy c_ts | NONE => pr_case tyvars thm vars fxy cases) and pr_app' tyvars thm vars ((c, (_, tys)), ts) = case contr_classparam_typs c of [] => (str o deresolve) c :: map (pr_term tyvars thm vars BR) ts | fingerprint => let val ts_fingerprint = ts ~~ curry Library.take (length ts) fingerprint; val needs_annotation = forall (fn (_, NONE) => true | (t, SOME _) => (not o Code_Thingol.locally_monomorphic) t) ts_fingerprint; fun pr_term_anno (t, NONE) _ = pr_term tyvars thm vars BR t | pr_term_anno (t, SOME _) ty = brackets [pr_term tyvars thm vars NOBR t, str "::", pr_typ tyvars NOBR ty]; in if needs_annotation then (str o deresolve) c :: map2 pr_term_anno ts_fingerprint (curry Library.take (length ts) tys) else (str o deresolve) c :: map (pr_term tyvars thm vars BR) ts end and pr_app tyvars = gen_pr_app (pr_app' tyvars) (pr_term tyvars) syntax_const naming and pr_bind tyvars = pr_haskell_bind (pr_term tyvars) and pr_case tyvars thm vars fxy (cases as ((_, [_]), _)) = let val (binds, body) = Code_Thingol.unfold_let (ICase cases); fun pr ((pat, ty), t) vars = vars |> pr_bind tyvars thm BR ((NONE, SOME pat), ty) |>> (fn p => semicolon [p, str "=", pr_term tyvars thm vars NOBR t]) val (ps, vars') = fold_map pr binds vars; in Pretty.block_enclose ( str "let {", concat [str "}", str "in", pr_term tyvars thm vars' NOBR body] ) ps end | pr_case tyvars thm vars fxy (((t, ty), clauses as _ :: _), _) = let fun pr (pat, body) = let val (p, vars') = pr_bind tyvars thm NOBR ((NONE, SOME pat), ty) vars; in semicolon [p, str "->", pr_term tyvars thm vars' NOBR body] end; in Pretty.block_enclose ( concat [str "(case", pr_term tyvars thm vars NOBR t, str "of", str "{"], str "})" ) (map pr clauses) end | pr_case tyvars thm vars fxy ((_, []), _) = str "error \"empty case\""; fun pr_stmt (name, Code_Thingol.Fun (_, ((vs, ty), []))) = let val tyvars = Code_Printer.intro_vars (map fst vs) init_syms; val n = (length o fst o Code_Thingol.unfold_fun) ty; in Pretty.chunks [ Pretty.block [ (str o suffix " ::" o deresolve_base) name, Pretty.brk 1, pr_typscheme tyvars (vs, ty), str ";" ], concat ( (str o deresolve_base) name :: map str (replicate n "_") @ str "=" :: str "error" @@ (str o (fn s => s ^ ";") o ML_Syntax.print_string o Long_Name.base_name o Long_Name.qualifier) name ) ] end | pr_stmt (name, Code_Thingol.Fun (_, ((vs, ty), raw_eqs))) = let val eqs = filter (snd o snd) raw_eqs; val tyvars = Code_Printer.intro_vars (map fst vs) init_syms; fun pr_eq ((ts, t), (thm, _)) = let val consts = map_filter (fn c => if (is_some o syntax_const) c then NONE else (SOME o Long_Name.base_name o deresolve) c) ((fold o Code_Thingol.fold_constnames) (insert (op =)) (t :: ts) []); val vars = init_syms |> Code_Printer.intro_vars consts |> Code_Printer.intro_vars ((fold o Code_Thingol.fold_unbound_varnames) (insert (op =)) ts []); in semicolon ( (str o deresolve_base) name :: map (pr_term tyvars thm vars BR) ts @ str "=" @@ pr_term tyvars thm vars NOBR t ) end; in Pretty.chunks ( Pretty.block [ (str o suffix " ::" o deresolve_base) name, Pretty.brk 1, pr_typscheme tyvars (vs, ty), str ";" ] :: map pr_eq eqs ) end | pr_stmt (name, Code_Thingol.Datatype (_, (vs, []))) = let val tyvars = Code_Printer.intro_vars (map fst vs) init_syms; in semicolon [ str "data", pr_typdecl tyvars (vs, (deresolve_base name, map (ITyVar o fst) vs)) ] end | pr_stmt (name, Code_Thingol.Datatype (_, (vs, [(co, [ty])]))) = let val tyvars = Code_Printer.intro_vars (map fst vs) init_syms; in semicolon ( str "newtype" :: pr_typdecl tyvars (vs, (deresolve_base name, map (ITyVar o fst) vs)) :: str "=" :: (str o deresolve_base) co :: pr_typ tyvars BR ty :: (if deriving_show name then [str "deriving (Read, Show)"] else []) ) end | pr_stmt (name, Code_Thingol.Datatype (_, (vs, co :: cos))) = let val tyvars = Code_Printer.intro_vars (map fst vs) init_syms; fun pr_co (co, tys) = concat ( (str o deresolve_base) co :: map (pr_typ tyvars BR) tys ) in semicolon ( str "data" :: pr_typdecl tyvars (vs, (deresolve_base name, map (ITyVar o fst) vs)) :: str "=" :: pr_co co :: map ((fn p => Pretty.block [str "| ", p]) o pr_co) cos @ (if deriving_show name then [str "deriving (Read, Show)"] else []) ) end | pr_stmt (name, Code_Thingol.Class (_, (v, (superclasses, classparams)))) = let val tyvars = Code_Printer.intro_vars [v] init_syms; fun pr_classparam (classparam, ty) = semicolon [ (str o deresolve_base) classparam, str "::", pr_typ tyvars NOBR ty ] in Pretty.block_enclose ( Pretty.block [ str "class ", Pretty.block (pr_typcontext tyvars [(v, map fst superclasses)]), str (deresolve_base name ^ " " ^ Code_Printer.lookup_var tyvars v), str " where {" ], str "};" ) (map pr_classparam classparams) end | pr_stmt (_, Code_Thingol.Classinst ((class, (tyco, vs)), (_, classparam_insts))) = let val split_abs_pure = (fn (v, _) `|-> t => SOME (v, t) | _ => NONE); val unfold_abs_pure = Code_Thingol.unfoldr split_abs_pure; val tyvars = Code_Printer.intro_vars (map fst vs) init_syms; fun pr_instdef ((classparam, c_inst), (thm, _)) = case syntax_const classparam of NONE => semicolon [ (str o deresolve_base) classparam, str "=", pr_app tyvars thm init_syms NOBR (c_inst, []) ] | SOME (k, pr) => let val (c_inst_name, (_, tys)) = c_inst; val const = if (is_some o syntax_const) c_inst_name then NONE else (SOME o Long_Name.base_name o deresolve) c_inst_name; val proto_rhs = Code_Thingol.eta_expand k (c_inst, []); val (vs, rhs) = unfold_abs_pure proto_rhs; val vars = init_syms |> Code_Printer.intro_vars (the_list const) |> Code_Printer.intro_vars vs; val lhs = IConst (classparam, ([], tys)) `$$ map IVar vs; (*dictionaries are not relevant at this late stage*) in semicolon [ pr_term tyvars thm vars NOBR lhs, str "=", pr_term tyvars thm vars NOBR rhs ] end; in Pretty.block_enclose ( Pretty.block [ str "instance ", Pretty.block (pr_typcontext tyvars vs), str (class_name class ^ " "), pr_typ tyvars BR (tyco `%% map (ITyVar o fst) vs), str " where {" ], str "};" ) (map pr_instdef classparam_insts) end; in pr_stmt end; fun haskell_program_of_program labelled_name module_name module_prefix reserved_names raw_module_alias program = let val module_alias = if is_some module_name then K module_name else raw_module_alias; val reserved_names = Name.make_context reserved_names; val mk_name_module = Code_Printer.mk_name_module reserved_names module_prefix module_alias program; fun add_stmt (name, (stmt, deps)) = let val (module_name, base) = Code_Printer.dest_name name; val module_name' = mk_name_module module_name; val mk_name_stmt = yield_singleton Name.variants; fun add_fun upper (nsp_fun, nsp_typ) = let val (base', nsp_fun') = mk_name_stmt (if upper then Code_Printer.first_upper base else base) nsp_fun in (base', (nsp_fun', nsp_typ)) end; fun add_typ (nsp_fun, nsp_typ) = let val (base', nsp_typ') = mk_name_stmt (Code_Printer.first_upper base) nsp_typ in (base', (nsp_fun, nsp_typ')) end; val add_name = case stmt of Code_Thingol.Fun _ => add_fun false | Code_Thingol.Datatype _ => add_typ | Code_Thingol.Datatypecons _ => add_fun true | Code_Thingol.Class _ => add_typ | Code_Thingol.Classrel _ => pair base | Code_Thingol.Classparam _ => add_fun false | Code_Thingol.Classinst _ => pair base; fun add_stmt' base' = case stmt of Code_Thingol.Datatypecons _ => cons (name, (Long_Name.append module_name' base', NONE)) | Code_Thingol.Classrel _ => I | Code_Thingol.Classparam _ => cons (name, (Long_Name.append module_name' base', NONE)) | _ => cons (name, (Long_Name.append module_name' base', SOME stmt)); in Symtab.map_default (module_name', ([], ([], (reserved_names, reserved_names)))) (apfst (fold (insert (op = : string * string -> bool)) deps)) #> `(fn program => add_name ((snd o snd o the o Symtab.lookup program) module_name')) #-> (fn (base', names) => (Symtab.map_entry module_name' o apsnd) (fn (stmts, _) => (add_stmt' base' stmts, names))) end; val hs_program = fold add_stmt (AList.make (fn name => (Graph.get_node program name, Graph.imm_succs program name)) (Graph.strong_conn program |> flat)) Symtab.empty; fun deresolver name = (fst o the o AList.lookup (op =) ((fst o snd o the o Symtab.lookup hs_program) ((mk_name_module o fst o Code_Printer.dest_name) name))) name handle Option => error ("Unknown statement name: " ^ labelled_name name); in (deresolver, hs_program) end; fun serialize_haskell module_prefix raw_module_name string_classes labelled_name raw_reserved_names includes raw_module_alias syntax_class syntax_tyco syntax_const naming program cs destination = let val stmt_names = Code_Target.stmt_names_of_destination destination; val module_name = if null stmt_names then raw_module_name else SOME "Code"; val reserved_names = fold (insert (op =) o fst) includes raw_reserved_names; val (deresolver, hs_program) = haskell_program_of_program labelled_name module_name module_prefix reserved_names raw_module_alias program; val is_cons = Code_Thingol.is_cons program; val contr_classparam_typs = Code_Thingol.contr_classparam_typs program; fun deriving_show tyco = let fun deriv _ "fun" = false | deriv tycos tyco = member (op =) tycos tyco orelse case try (Graph.get_node program) tyco of SOME (Code_Thingol.Datatype (_, (_, cs))) => forall (deriv' (tyco :: tycos)) (maps snd cs) | NONE => true and deriv' tycos (tyco `%% tys) = deriv tycos tyco andalso forall (deriv' tycos) tys | deriv' _ (ITyVar _) = true in deriv [] tyco end; val reserved_names = Code_Printer.make_vars reserved_names; fun pr_stmt qualified = pr_haskell_stmt naming labelled_name syntax_class syntax_tyco syntax_const reserved_names (if qualified then deresolver else Long_Name.base_name o deresolver) is_cons contr_classparam_typs (if string_classes then deriving_show else K false); fun pr_module name content = (name, Pretty.chunks [ str ("module " ^ name ^ " where {"), str "", content, str "", str "}" ]); fun serialize_module1 (module_name', (deps, (stmts, _))) = let val stmt_names = map fst stmts; val deps' = subtract (op =) stmt_names deps |> distinct (op =) |> map_filter (try deresolver); val qualified = is_none module_name andalso map deresolver stmt_names @ deps' |> map Long_Name.base_name |> has_duplicates (op =); val imports = deps' |> map Long_Name.qualifier |> distinct (op =); fun pr_import_include (name, _) = str ("import qualified " ^ name ^ ";"); val pr_import_module = str o (if qualified then prefix "import qualified " else prefix "import ") o suffix ";"; val content = Pretty.chunks ( map pr_import_include includes @ map pr_import_module imports @ str "" :: separate (str "") (map_filter (fn (name, (_, SOME stmt)) => SOME (pr_stmt qualified (name, stmt)) | (_, (_, NONE)) => NONE) stmts) ) in pr_module module_name' content end; fun serialize_module2 (_, (_, (stmts, _))) = Pretty.chunks ( separate (str "") (map_filter (fn (name, (_, SOME stmt)) => if null stmt_names orelse member (op =) stmt_names name then SOME (pr_stmt false (name, stmt)) else NONE | (_, (_, NONE)) => NONE) stmts)); val serialize_module = if null stmt_names then serialize_module1 else pair "" o serialize_module2; fun check_destination destination = (File.check destination; destination); fun write_module destination (modlname, content) = let val filename = case modlname of "" => Path.explode "Main.hs" | _ => (Path.ext "hs" o Path.explode o implode o separate "/" o Long_Name.explode) modlname; val pathname = Path.append destination filename; val _ = File.mkdir (Path.dir pathname); in File.write pathname ("{-# OPTIONS_GHC -fglasgow-exts #-}\n\n" ^ Code_Target.code_of_pretty content) end in Code_Target.mk_serialization target NONE (fn NONE => K () o map (Code_Target.code_writeln o snd) | SOME file => K () o map (write_module (check_destination file))) (rpair [] o cat_lines o map (Code_Target.code_of_pretty o snd)) (map (uncurry pr_module) includes @ map serialize_module (Symtab.dest hs_program)) destination end; val literals = let fun char_haskell c = let val s = ML_Syntax.print_char c; in if s = "'" then "\\'" else s end; in Literals { literal_char = enclose "'" "'" o char_haskell, literal_string = quote o translate_string char_haskell, literal_numeral = fn unbounded => fn k => if k >= 0 then string_of_int k else enclose "(" ")" (signed_string_of_int k), literal_list = Pretty.enum "," "[" "]", infix_cons = (5, ":") } end; (** optional monad syntax **) fun pretty_haskell_monad c_bind = let fun dest_bind t1 t2 = case Code_Thingol.split_abs t2 of SOME (((v, pat), ty), t') => SOME ((SOME (((SOME v, pat), ty), true), t1), t') | NONE => NONE; fun dest_monad c_bind_name (IConst (c, _) `$ t1 `$ t2) = if c = c_bind_name then dest_bind t1 t2 else NONE | dest_monad _ t = case Code_Thingol.split_let t of SOME (((pat, ty), tbind), t') => SOME ((SOME (((NONE, SOME pat), ty), false), tbind), t') | NONE => NONE; fun implode_monad c_bind_name = Code_Thingol.unfoldr (dest_monad c_bind_name); fun pr_monad pr_bind pr (NONE, t) vars = (semicolon [pr vars NOBR t], vars) | pr_monad pr_bind pr (SOME (bind, true), t) vars = vars |> pr_bind NOBR bind |>> (fn p => semicolon [p, str "<-", pr vars NOBR t]) | pr_monad pr_bind pr (SOME (bind, false), t) vars = vars |> pr_bind NOBR bind |>> (fn p => semicolon [str "let", p, str "=", pr vars NOBR t]); fun pretty pr naming thm vars fxy [(t1, _), (t2, _)] = case dest_bind t1 t2 of SOME (bind, t') => let val (binds, t'') = implode_monad ((the o Code_Thingol.lookup_const naming) c_bind) t' val (ps, vars') = fold_map (pr_monad (pr_haskell_bind (K pr) thm) pr) (bind :: binds) vars; in (brackify fxy o single o Pretty.enclose "do {" "}" o Pretty.breaks) (ps @| pr vars' NOBR t'') end | NONE => brackify_infix (1, L) fxy [pr vars (INFX (1, L)) t1, str ">>=", pr vars (INFX (1, X)) t2] in (2, pretty) end; fun add_monad target' raw_c_bind thy = let val c_bind = Code_Unit.read_const thy raw_c_bind; in if target = target' then thy |> Code_Target.add_syntax_const target c_bind (SOME (pretty_haskell_monad c_bind)) else error "Only Haskell target allows for monad syntax" end; (** Isar setup **) fun isar_seri_haskell module = Code_Target.parse_args (Scan.option (Args.$$$ "root" -- Args.colon |-- Args.name) -- Scan.optional (Args.$$$ "string_classes" >> K true) false >> (fn (module_prefix, string_classes) => serialize_haskell module_prefix module string_classes)); val _ = OuterSyntax.command "code_monad" "define code syntax for monads" OuterKeyword.thy_decl ( OuterParse.term_group -- OuterParse.name >> (fn (raw_bind, target) => Toplevel.theory (add_monad target raw_bind)) ); val setup = Code_Target.add_target (target, (isar_seri_haskell, literals)) #> Code_Target.add_syntax_tyco target "fun" (SOME (2, fn pr_typ => fn fxy => fn [ty1, ty2] => brackify_infix (1, R) fxy [ pr_typ (INFX (1, X)) ty1, str "->", pr_typ (INFX (1, R)) ty2 ])) #> fold (Code_Target.add_reserved target) [ "hiding", "deriving", "where", "case", "of", "infix", "infixl", "infixr", "import", "default", "forall", "let", "in", "class", "qualified", "data", "newtype", "instance", "if", "then", "else", "type", "as", "do", "module" ] #> fold (Code_Target.add_reserved target) [ "Prelude", "Main", "Bool", "Maybe", "Either", "Ordering", "Char", "String", "Int", "Integer", "Float", "Double", "Rational", "IO", "Eq", "Ord", "Enum", "Bounded", "Num", "Real", "Integral", "Fractional", "Floating", "RealFloat", "Monad", "Functor", "AlreadyExists", "ArithException", "ArrayException", "AssertionFailed", "AsyncException", "BlockedOnDeadMVar", "Deadlock", "Denormal", "DivideByZero", "DotNetException", "DynException", "Dynamic", "EOF", "EQ", "EmptyRec", "ErrorCall", "ExitException", "ExitFailure", "ExitSuccess", "False", "GT", "HeapOverflow", "IOError", "IOException", "IllegalOperation", "IndexOutOfBounds", "Just", "Key", "LT", "Left", "LossOfPrecision", "NoMethodError", "NoSuchThing", "NonTermination", "Nothing", "Obj", "OtherError", "Overflow", "PatternMatchFail", "PermissionDenied", "ProtocolError", "RecConError", "RecSelError", "RecUpdError", "ResourceBusy", "ResourceExhausted", "Right", "StackOverflow", "ThreadKilled", "True", "TyCon", "TypeRep", "UndefinedElement", "Underflow", "UnsupportedOperation", "UserError", "abs", "absReal", "acos", "acosh", "all", "and", "any", "appendFile", "asTypeOf", "asciiTab", "asin", "asinh", "atan", "atan2", "atanh", "basicIORun", "blockIO", "boundedEnumFrom", "boundedEnumFromThen", "boundedEnumFromThenTo", "boundedEnumFromTo", "boundedPred", "boundedSucc", "break", "catch", "catchException", "ceiling", "compare", "concat", "concatMap", "const", "cos", "cosh", "curry", "cycle", "decodeFloat", "denominator", "div", "divMod", "doubleToRatio", "doubleToRational", "drop", "dropWhile", "either", "elem", "emptyRec", "encodeFloat", "enumFrom", "enumFromThen", "enumFromThenTo", "enumFromTo", "error", "even", "exp", "exponent", "fail", "filter", "flip", "floatDigits", "floatProperFraction", "floatRadix", "floatRange", "floatToRational", "floor", "fmap", "foldl", "foldl'", "foldl1", "foldr", "foldr1", "fromDouble", "fromEnum", "fromEnum_0", "fromInt", "fromInteger", "fromIntegral", "fromObj", "fromRational", "fst", "gcd", "getChar", "getContents", "getLine", "head", "id", "inRange", "index", "init", "intToRatio", "interact", "ioError", "isAlpha", "isAlphaNum", "isDenormalized", "isDigit", "isHexDigit", "isIEEE", "isInfinite", "isLower", "isNaN", "isNegativeZero", "isOctDigit", "isSpace", "isUpper", "iterate", "iterate'", "last", "lcm", "length", "lex", "lexDigits", "lexLitChar", "lexmatch", "lines", "log", "logBase", "lookup", "loop", "map", "mapM", "mapM_", "max", "maxBound", "maximum", "maybe", "min", "minBound", "minimum", "mod", "negate", "nonnull", "not", "notElem", "null", "numerator", "numericEnumFrom", "numericEnumFromThen", "numericEnumFromThenTo", "numericEnumFromTo", "odd", "or", "otherwise", "pi", "pred", "print", "product", "properFraction", "protectEsc", "putChar", "putStr", "putStrLn", "quot", "quotRem", "range", "rangeSize", "rationalToDouble", "rationalToFloat", "rationalToRealFloat", "read", "readDec", "readField", "readFieldName", "readFile", "readFloat", "readHex", "readIO", "readInt", "readList", "readLitChar", "readLn", "readOct", "readParen", "readSigned", "reads", "readsPrec", "realFloatToRational", "realToFrac", "recip", "reduce", "rem", "repeat", "replicate", "return", "reverse", "round", "scaleFloat", "scanl", "scanl1", "scanr", "scanr1", "seq", "sequence", "sequence_", "show", "showChar", "showException", "showField", "showList", "showLitChar", "showParen", "showString", "shows", "showsPrec", "significand", "signum", "signumReal", "sin", "sinh", "snd", "span", "splitAt", "sqrt", "subtract", "succ", "sum", "tail", "take", "takeWhile", "takeWhile1", "tan", "tanh", "threadToIOResult", "throw", "toEnum", "toInt", "toInteger", "toObj", "toRational", "truncate", "uncurry", "undefined", "unlines", "unsafeCoerce", "unsafeIndex", "unsafeRangeSize", "until", "unwords", "unzip", "unzip3", "userError", "words", "writeFile", "zip", "zip3", "zipWith", "zipWith3" ] (*due to weird handling of ':', we can't do anything else than to import *all* prelude symbols*); end; (*struct*)