(* Title: Provers/Arith/combine_numerals.ML ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 2000 University of Cambridge Combine coefficients in expressions: i + #m*u + j ... + #n*u + k == #(m+n)*u + (i + (j + k)) It works by (a) massaging the sum to bring the selected terms to the front: #m*u + (#n*u + (i + (j + k))) (b) then using left_distrib to reach #(m+n)*u + (i + (j + k)) *) signature COMBINE_NUMERALS_DATA = sig (*abstract syntax*) eqtype coeff val iszero: coeff -> bool val add: coeff * coeff -> coeff (*addition (or multiplication) *) val mk_sum: typ -> term list -> term val dest_sum: term -> term list val mk_coeff: coeff * term -> term val dest_coeff: term -> coeff * term (*rules*) val left_distrib: thm (*proof tools*) val prove_conv: tactic list -> Proof.context -> term * term -> thm option val trans_tac: simpset -> thm option -> tactic (*applies the initial lemma*) val norm_tac: simpset -> tactic (*proves the initial lemma*) val numeral_simp_tac: simpset -> tactic (*proves the final theorem*) val simplify_meta_eq: simpset -> thm -> thm (*simplifies the final theorem*) end; functor CombineNumeralsFun(Data: COMBINE_NUMERALS_DATA): sig val proc: simpset -> term -> thm option end = struct (*Remove the first occurrence of #m*u from the term list*) fun remove (_, _, []) = (*impossible, since #m*u was found by find_repeated*) raise TERM("combine_numerals: remove", []) | remove (m, u, t::terms) = case try Data.dest_coeff t of SOME(n,v) => if m=n andalso u aconv v then terms else t :: remove (m, u, terms) | NONE => t :: remove (m, u, terms); (*a left-to-right scan of terms, seeking another term of the form #n*u, where #m*u is already in terms for some m*) fun find_repeated (tab, _, []) = raise TERM("find_repeated", []) | find_repeated (tab, past, t::terms) = case try Data.dest_coeff t of SOME(n,u) => (case Termtab.lookup tab u of SOME m => (u, m, n, rev (remove (m,u,past)) @ terms) | NONE => find_repeated (Termtab.update (u, n) tab, t::past, terms)) | NONE => find_repeated (tab, t::past, terms); (*the simplification procedure*) fun proc ss t = let val ctxt = Simplifier.the_context ss; val ([t'], ctxt') = Variable.import_terms true [t] ctxt val export = singleton (Variable.export ctxt' ctxt) val (u,m,n,terms) = find_repeated (Termtab.empty, [], Data.dest_sum t') val T = Term.fastype_of u val reshape = (*Move i*u to the front and put j*u into standard form i + #m + j + k == #m + i + (j + k) *) if Data.iszero m orelse Data.iszero n then (*trivial, so do nothing*) raise TERM("combine_numerals", []) else Data.prove_conv [Data.norm_tac ss] ctxt (t', Data.mk_sum T ([Data.mk_coeff (m, u), Data.mk_coeff (n, u)] @ terms)) in Option.map (export o Data.simplify_meta_eq ss) (Data.prove_conv [Data.trans_tac ss reshape, rtac Data.left_distrib 1, Data.numeral_simp_tac ss] ctxt (t', Data.mk_sum T (Data.mk_coeff(Data.add(m,n), u) :: terms))) end (* FIXME avoid handling of generic exceptions *) handle TERM _ => NONE | TYPE _ => NONE; (*Typically (if thy doesn't include Numeral) Undeclared type constructor "Numeral.bin"*) end;