(* Title: HOL/Tools/function_package/context_tree.ML Author: Alexander Krauss, TU Muenchen A package for general recursive function definitions. Builds and traverses trees of nested contexts along a term. *) signature FUNDEF_CTXTREE = sig type ctxt = (string * typ) list * thm list (* poor man's contexts: fixes + assumes *) type ctx_tree (* FIXME: This interface is a mess and needs to be cleaned up! *) val get_fundef_congs : Proof.context -> thm list val add_fundef_cong : thm -> Context.generic -> Context.generic val map_fundef_congs : (thm list -> thm list) -> Context.generic -> Context.generic val cong_add: attribute val cong_del: attribute val mk_tree: (string * typ) -> term -> Proof.context -> term -> ctx_tree val inst_tree: theory -> term -> term -> ctx_tree -> ctx_tree val export_term : ctxt -> term -> term val export_thm : theory -> ctxt -> thm -> thm val import_thm : theory -> ctxt -> thm -> thm val traverse_tree : (ctxt -> term -> (ctxt * thm) list -> (ctxt * thm) list * 'b -> (ctxt * thm) list * 'b) -> ctx_tree -> 'b -> 'b val rewrite_by_tree : theory -> term -> thm -> (thm * thm) list -> ctx_tree -> thm * (thm * thm) list end structure FundefCtxTree : FUNDEF_CTXTREE = struct type ctxt = (string * typ) list * thm list open FundefCommon open FundefLib structure FundefCongs = GenericDataFun ( type T = thm list val empty = [] val extend = I fun merge _ = Thm.merge_thms ); val get_fundef_congs = FundefCongs.get o Context.Proof val map_fundef_congs = FundefCongs.map val add_fundef_cong = FundefCongs.map o Thm.add_thm (* congruence rules *) val cong_add = Thm.declaration_attribute (map_fundef_congs o Thm.add_thm o safe_mk_meta_eq); val cong_del = Thm.declaration_attribute (map_fundef_congs o Thm.del_thm o safe_mk_meta_eq); type depgraph = int IntGraph.T datatype ctx_tree = Leaf of term | Cong of (thm * depgraph * (ctxt * ctx_tree) list) | RCall of (term * ctx_tree) (* Maps "Trueprop A = B" to "A" *) val rhs_of = snd o HOLogic.dest_eq o HOLogic.dest_Trueprop (*** Dependency analysis for congruence rules ***) fun branch_vars t = let val t' = snd (dest_all_all t) val (assumes, concl) = Logic.strip_horn t' in (fold Term.add_vars assumes [], Term.add_vars concl []) end fun cong_deps crule = let val num_branches = map_index (apsnd branch_vars) (prems_of crule) in IntGraph.empty |> fold (fn (i,_)=> IntGraph.new_node (i,i)) num_branches |> fold_product (fn (i, (c1, _)) => fn (j, (_, t2)) => if i = j orelse null (c1 inter t2) then I else IntGraph.add_edge_acyclic (i,j)) num_branches num_branches end val default_congs = map (fn c => c RS eq_reflection) [@{thm "cong"}, @{thm "ext"}] (* Called on the INSTANTIATED branches of the congruence rule *) fun mk_branch ctx t = let val (ctx', fixes, impl) = dest_all_all_ctx ctx t val (assms, concl) = Logic.strip_horn impl in (ctx', fixes, assms, rhs_of concl) end fun find_cong_rule ctx fvar h ((r,dep)::rs) t = (let val thy = ProofContext.theory_of ctx val tt' = Logic.mk_equals (Pattern.rewrite_term thy [(Free fvar, h)] [] t, t) val (c, subs) = (concl_of r, prems_of r) val subst = Pattern.match (ProofContext.theory_of ctx) (c, tt') (Vartab.empty, Vartab.empty) val branches = map (mk_branch ctx o Envir.beta_norm o Envir.subst_vars subst) subs val inst = map (fn v => (cterm_of thy (Var v), cterm_of thy (Envir.subst_vars subst (Var v)))) (Term.add_vars c []) in (cterm_instantiate inst r, dep, branches) end handle Pattern.MATCH => find_cong_rule ctx fvar h rs t) | find_cong_rule _ _ _ [] _ = sys_error "function_package/context_tree.ML: No cong rule found!" fun mk_tree fvar h ctxt t = let val congs = get_fundef_congs ctxt val congs_deps = map (fn c => (c, cong_deps c)) (congs @ default_congs) (* FIXME: Save in theory *) fun matchcall (a $ b) = if a = Free fvar then SOME b else NONE | matchcall _ = NONE fun mk_tree' ctx t = case matchcall t of SOME arg => RCall (t, mk_tree' ctx arg) | NONE => if not (exists_subterm (fn Free v => v = fvar | _ => false) t) then Leaf t else let val (r, dep, branches) = find_cong_rule ctx fvar h congs_deps t in Cong (r, dep, map (fn (ctx', fixes, assumes, st) => ((fixes, map (assume o cterm_of (ProofContext.theory_of ctx)) assumes), mk_tree' ctx' st)) branches) end in mk_tree' ctxt t end fun inst_tree thy fvar f tr = let val cfvar = cterm_of thy fvar val cf = cterm_of thy f fun inst_term t = subst_bound(f, abstract_over (fvar, t)) val inst_thm = forall_elim cf o forall_intr cfvar fun inst_tree_aux (Leaf t) = Leaf t | inst_tree_aux (Cong (crule, deps, branches)) = Cong (inst_thm crule, deps, map inst_branch branches) | inst_tree_aux (RCall (t, str)) = RCall (inst_term t, inst_tree_aux str) and inst_branch ((fxs, assms), str) = ((fxs, map (assume o cterm_of thy o inst_term o prop_of) assms), inst_tree_aux str) in inst_tree_aux tr end (* Poor man's contexts: Only fixes and assumes *) fun compose (fs1, as1) (fs2, as2) = (fs1 @ fs2, as1 @ as2) fun export_term (fixes, assumes) = fold_rev (curry Logic.mk_implies o prop_of) assumes #> fold_rev (Logic.all o Free) fixes fun export_thm thy (fixes, assumes) = fold_rev (implies_intr o cprop_of) assumes #> fold_rev (forall_intr o cterm_of thy o Free) fixes fun import_thm thy (fixes, athms) = fold (forall_elim o cterm_of thy o Free) fixes #> fold Thm.elim_implies athms (* folds in the order of the dependencies of a graph. *) fun fold_deps G f x = let fun fill_table i (T, x) = case Inttab.lookup T i of SOME _ => (T, x) | NONE => let val (T', x') = fold fill_table (IntGraph.imm_succs G i) (T, x) val (v, x'') = f (the o Inttab.lookup T') i x' in (Inttab.update (i, v) T', x'') end val (T, x) = fold fill_table (IntGraph.keys G) (Inttab.empty, x) in (Inttab.fold (cons o snd) T [], x) end fun traverse_tree rcOp tr = let fun traverse_help ctx (Leaf _) _ x = ([], x) | traverse_help ctx (RCall (t, st)) u x = rcOp ctx t u (traverse_help ctx st u x) | traverse_help ctx (Cong (_, deps, branches)) u x = let fun sub_step lu i x = let val (ctx', subtree) = nth branches i val used = fold_rev (append o lu) (IntGraph.imm_succs deps i) u val (subs, x') = traverse_help (compose ctx ctx') subtree used x val exported_subs = map (apfst (compose ctx')) subs (* FIXME: Right order of composition? *) in (exported_subs, x') end in fold_deps deps sub_step x |> apfst flat end in snd o traverse_help ([], []) tr [] end fun rewrite_by_tree thy h ih x tr = let fun rewrite_help _ _ x (Leaf t) = (reflexive (cterm_of thy t), x) | rewrite_help fix h_as x (RCall (_ $ arg, st)) = let val (inner, (lRi,ha)::x') = rewrite_help fix h_as x st (* "a' = a" *) val iha = import_thm thy (fix, h_as) ha (* (a', h a') : G *) |> Conv.fconv_rule (Conv.arg_conv (Conv.comb_conv (Conv.arg_conv (K inner)))) (* (a, h a) : G *) val inst_ih = instantiate' [] [SOME (cterm_of thy arg)] ih val eq = implies_elim (implies_elim inst_ih lRi) iha (* h a = f a *) val h_a'_eq_h_a = combination (reflexive (cterm_of thy h)) inner val h_a_eq_f_a = eq RS eq_reflection val result = transitive h_a'_eq_h_a h_a_eq_f_a in (result, x') end | rewrite_help fix h_as x (Cong (crule, deps, branches)) = let fun sub_step lu i x = let val ((fixes, assumes), st) = nth branches i val used = map lu (IntGraph.imm_succs deps i) |> map (fn u_eq => (u_eq RS sym) RS eq_reflection) |> filter_out Thm.is_reflexive val assumes' = map (simplify (HOL_basic_ss addsimps used)) assumes val (subeq, x') = rewrite_help (fix @ fixes) (h_as @ assumes') x st val subeq_exp = export_thm thy (fixes, assumes) (subeq RS meta_eq_to_obj_eq) in (subeq_exp, x') end val (subthms, x') = fold_deps deps sub_step x in (fold_rev (curry op COMP) subthms crule, x') end in rewrite_help [] [] x tr end end