(* Title: HOL/Tools/datatype_aux.ML Author: Stefan Berghofer, TU Muenchen Auxiliary functions for defining datatypes. *) signature DATATYPE_AUX = sig val quiet_mode : bool ref val message : string -> unit val add_path : bool -> string -> theory -> theory val parent_path : bool -> theory -> theory val store_thmss_atts : string -> string list -> attribute list list -> thm list list -> theory -> thm list list * theory val store_thmss : string -> string list -> thm list list -> theory -> thm list list * theory val store_thms_atts : string -> string list -> attribute list list -> thm list -> theory -> thm list * theory val store_thms : string -> string list -> thm list -> theory -> thm list * theory val split_conj_thm : thm -> thm list val mk_conj : term list -> term val mk_disj : term list -> term val app_bnds : term -> int -> term val cong_tac : int -> tactic val indtac : thm -> string list -> int -> tactic val exh_tac : (string -> thm) -> int -> tactic datatype simproc_dist = FewConstrs of thm list | ManyConstrs of thm * simpset; datatype dtyp = DtTFree of string | DtType of string * (dtyp list) | DtRec of int; type descr type datatype_info exception Datatype exception Datatype_Empty of string val name_of_typ : typ -> string val dtyp_of_typ : (string * string list) list -> typ -> dtyp val mk_Free : string -> typ -> int -> term val is_rec_type : dtyp -> bool val typ_of_dtyp : descr -> (string * sort) list -> dtyp -> typ val dest_DtTFree : dtyp -> string val dest_DtRec : dtyp -> int val strip_dtyp : dtyp -> dtyp list * dtyp val body_index : dtyp -> int val mk_fun_dtyp : dtyp list -> dtyp -> dtyp val get_nonrec_types : descr -> (string * sort) list -> typ list val get_branching_types : descr -> (string * sort) list -> typ list val get_arities : descr -> int list val get_rec_types : descr -> (string * sort) list -> typ list val check_nonempty : descr list -> unit val unfold_datatypes : theory -> descr -> (string * sort) list -> datatype_info Symtab.table -> descr -> int -> descr list * int end; structure DatatypeAux : DATATYPE_AUX = struct val quiet_mode = ref false; fun message s = if !quiet_mode then () else writeln s; fun add_path flat_names s = if flat_names then I else Sign.add_path s; fun parent_path flat_names = if flat_names then I else Sign.parent_path; (* store theorems in theory *) fun store_thmss_atts label tnames attss thmss = fold_map (fn ((tname, atts), thms) => Sign.add_path tname #> PureThy.add_thmss [((Binding.name label, thms), atts)] #-> (fn thm::_ => Sign.parent_path #> pair thm)) (tnames ~~ attss ~~ thmss) ##> Theory.checkpoint; fun store_thmss label tnames = store_thmss_atts label tnames (replicate (length tnames) []); fun store_thms_atts label tnames attss thmss = fold_map (fn ((tname, atts), thms) => Sign.add_path tname #> PureThy.add_thms [((Binding.name label, thms), atts)] #-> (fn thm::_ => Sign.parent_path #> pair thm)) (tnames ~~ attss ~~ thmss) ##> Theory.checkpoint; fun store_thms label tnames = store_thms_atts label tnames (replicate (length tnames) []); (* split theorem thm_1 & ... & thm_n into n theorems *) fun split_conj_thm th = ((th RS conjunct1)::(split_conj_thm (th RS conjunct2))) handle THM _ => [th]; val mk_conj = foldr1 (HOLogic.mk_binop "op &"); val mk_disj = foldr1 (HOLogic.mk_binop "op |"); fun app_bnds t i = list_comb (t, map Bound (i - 1 downto 0)); fun cong_tac i st = (case Logic.strip_assums_concl (List.nth (prems_of st, i - 1)) of _ $ (_ $ (f $ x) $ (g $ y)) => let val cong' = Thm.lift_rule (Thm.cprem_of st i) cong; val _ $ (_ $ (f' $ x') $ (g' $ y')) = Logic.strip_assums_concl (prop_of cong'); val insts = map (pairself (cterm_of (Thm.theory_of_thm st)) o apsnd (curry list_abs (Logic.strip_params (concl_of cong'))) o apfst head_of) [(f', f), (g', g), (x', x), (y', y)] in compose_tac (false, cterm_instantiate insts cong', 2) i st handle THM _ => no_tac st end | _ => no_tac st); (* instantiate induction rule *) fun indtac indrule indnames i st = let val ts = HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of indrule)); val ts' = HOLogic.dest_conj (HOLogic.dest_Trueprop (Logic.strip_imp_concl (List.nth (prems_of st, i - 1)))); val getP = if can HOLogic.dest_imp (hd ts) then (apfst SOME) o HOLogic.dest_imp else pair NONE; val flt = if null indnames then I else filter (fn Free (s, _) => s mem indnames | _ => false); fun abstr (t1, t2) = (case t1 of NONE => (case flt (OldTerm.term_frees t2) of [Free (s, T)] => SOME (absfree (s, T, t2)) | _ => NONE) | SOME (_ $ t') => SOME (Abs ("x", fastype_of t', abstract_over (t', t2)))) val cert = cterm_of (Thm.theory_of_thm st); val insts = List.mapPartial (fn (t, u) => case abstr (getP u) of NONE => NONE | SOME u' => SOME (t |> getP |> snd |> head_of |> cert, cert u')) (ts ~~ ts'); val indrule' = cterm_instantiate insts indrule in rtac indrule' i st end; (* perform exhaustive case analysis on last parameter of subgoal i *) fun exh_tac exh_thm_of i state = let val thy = Thm.theory_of_thm state; val prem = nth (prems_of state) (i - 1); val params = Logic.strip_params prem; val (_, Type (tname, _)) = hd (rev params); val exhaustion = Thm.lift_rule (Thm.cprem_of state i) (exh_thm_of tname); val prem' = hd (prems_of exhaustion); val _ $ (_ $ lhs $ _) = hd (rev (Logic.strip_assums_hyp prem')); val exhaustion' = cterm_instantiate [(cterm_of thy (head_of lhs), cterm_of thy (List.foldr (fn ((_, T), t) => Abs ("z", T, t)) (Bound 0) params))] exhaustion in compose_tac (false, exhaustion', nprems_of exhaustion) i state end; (* handling of distinctness theorems *) datatype simproc_dist = FewConstrs of thm list | ManyConstrs of thm * simpset; (********************** Internal description of datatypes *********************) datatype dtyp = DtTFree of string | DtType of string * (dtyp list) | DtRec of int; (* information about datatypes *) (* index, datatype name, type arguments, constructor name, types of constructor's arguments *) type descr = (int * (string * dtyp list * (string * dtyp list) list)) list; type datatype_info = {index : int, alt_names : string list option, descr : descr, sorts : (string * sort) list, rec_names : string list, rec_rewrites : thm list, case_name : string, case_rewrites : thm list, induction : thm, exhaustion : thm, distinct : simproc_dist, inject : thm list, nchotomy : thm, case_cong : thm, weak_case_cong : thm}; fun mk_Free s T i = Free (s ^ (string_of_int i), T); fun subst_DtTFree _ substs (T as (DtTFree name)) = AList.lookup (op =) substs name |> the_default T | subst_DtTFree i substs (DtType (name, ts)) = DtType (name, map (subst_DtTFree i substs) ts) | subst_DtTFree i _ (DtRec j) = DtRec (i + j); exception Datatype; exception Datatype_Empty of string; fun dest_DtTFree (DtTFree a) = a | dest_DtTFree _ = raise Datatype; fun dest_DtRec (DtRec i) = i | dest_DtRec _ = raise Datatype; fun is_rec_type (DtType (_, dts)) = exists is_rec_type dts | is_rec_type (DtRec _) = true | is_rec_type _ = false; fun strip_dtyp (DtType ("fun", [T, U])) = apfst (cons T) (strip_dtyp U) | strip_dtyp T = ([], T); val body_index = dest_DtRec o snd o strip_dtyp; fun mk_fun_dtyp [] U = U | mk_fun_dtyp (T :: Ts) U = DtType ("fun", [T, mk_fun_dtyp Ts U]); fun name_of_typ (Type (s, Ts)) = let val s' = Long_Name.base_name s in space_implode "_" (List.filter (not o equal "") (map name_of_typ Ts) @ [if Syntax.is_identifier s' then s' else "x"]) end | name_of_typ _ = ""; fun dtyp_of_typ _ (TFree (n, _)) = DtTFree n | dtyp_of_typ _ (TVar _) = error "Illegal schematic type variable(s)" | dtyp_of_typ new_dts (Type (tname, Ts)) = (case AList.lookup (op =) new_dts tname of NONE => DtType (tname, map (dtyp_of_typ new_dts) Ts) | SOME vs => if map (try (fst o dest_TFree)) Ts = map SOME vs then DtRec (find_index (curry op = tname o fst) new_dts) else error ("Illegal occurrence of recursive type " ^ tname)); fun typ_of_dtyp descr sorts (DtTFree a) = TFree (a, (the o AList.lookup (op =) sorts) a) | typ_of_dtyp descr sorts (DtRec i) = let val (s, ds, _) = (the o AList.lookup (op =) descr) i in Type (s, map (typ_of_dtyp descr sorts) ds) end | typ_of_dtyp descr sorts (DtType (s, ds)) = Type (s, map (typ_of_dtyp descr sorts) ds); (* find all non-recursive types in datatype description *) fun get_nonrec_types descr sorts = map (typ_of_dtyp descr sorts) (Library.foldl (fn (Ts, (_, (_, _, constrs))) => Library.foldl (fn (Ts', (_, cargs)) => filter_out is_rec_type cargs union Ts') (Ts, constrs)) ([], descr)); (* get all recursive types in datatype description *) fun get_rec_types descr sorts = map (fn (_ , (s, ds, _)) => Type (s, map (typ_of_dtyp descr sorts) ds)) descr; (* get all branching types *) fun get_branching_types descr sorts = map (typ_of_dtyp descr sorts) (fold (fn (_, (_, _, constrs)) => fold (fn (_, cargs) => fold (strip_dtyp #> fst #> fold (insert op =)) cargs) constrs) descr []); fun get_arities descr = fold (fn (_, (_, _, constrs)) => fold (fn (_, cargs) => fold (insert op =) (map (length o fst o strip_dtyp) (List.filter is_rec_type cargs))) constrs) descr []; (* nonemptiness check for datatypes *) fun check_nonempty descr = let val descr' = List.concat descr; fun is_nonempty_dt is i = let val (_, _, constrs) = (the o AList.lookup (op =) descr') i; fun arg_nonempty (_, DtRec i) = if i mem is then false else is_nonempty_dt (i::is) i | arg_nonempty _ = true; in exists ((forall (arg_nonempty o strip_dtyp)) o snd) constrs end in assert_all (fn (i, _) => is_nonempty_dt [i] i) (hd descr) (fn (_, (s, _, _)) => raise Datatype_Empty s) end; (* unfold a list of mutually recursive datatype specifications *) (* all types of the form DtType (dt_name, [..., DtRec _, ...]) *) (* need to be unfolded *) fun unfold_datatypes sign orig_descr sorts (dt_info : datatype_info Symtab.table) descr i = let fun typ_error T msg = error ("Non-admissible type expression\n" ^ Syntax.string_of_typ_global sign (typ_of_dtyp (orig_descr @ descr) sorts T) ^ "\n" ^ msg); fun get_dt_descr T i tname dts = (case Symtab.lookup dt_info tname of NONE => typ_error T (tname ^ " is not a datatype - can't use it in\ \ nested recursion") | (SOME {index, descr, ...}) => let val (_, vars, _) = (the o AList.lookup (op =) descr) index; val subst = ((map dest_DtTFree vars) ~~ dts) handle Library.UnequalLengths => typ_error T ("Type constructor " ^ tname ^ " used with wrong\ \ number of arguments") in (i + index, map (fn (j, (tn, args, cs)) => (i + j, (tn, map (subst_DtTFree i subst) args, map (apsnd (map (subst_DtTFree i subst))) cs))) descr) end); (* unfold a single constructor argument *) fun unfold_arg ((i, Ts, descrs), T) = if is_rec_type T then let val (Us, U) = strip_dtyp T in if exists is_rec_type Us then typ_error T "Non-strictly positive recursive occurrence of type" else (case U of DtType (tname, dts) => let val (index, descr) = get_dt_descr T i tname dts; val (descr', i') = unfold_datatypes sign orig_descr sorts dt_info descr (i + length descr) in (i', Ts @ [mk_fun_dtyp Us (DtRec index)], descrs @ descr') end | _ => (i, Ts @ [T], descrs)) end else (i, Ts @ [T], descrs); (* unfold a constructor *) fun unfold_constr ((i, constrs, descrs), (cname, cargs)) = let val (i', cargs', descrs') = Library.foldl unfold_arg ((i, [], descrs), cargs) in (i', constrs @ [(cname, cargs')], descrs') end; (* unfold a single datatype *) fun unfold_datatype ((i, dtypes, descrs), (j, (tname, tvars, constrs))) = let val (i', constrs', descrs') = Library.foldl unfold_constr ((i, [], descrs), constrs) in (i', dtypes @ [(j, (tname, tvars, constrs'))], descrs') end; val (i', descr', descrs) = Library.foldl unfold_datatype ((i, [],[]), descr); in (descr' :: descrs, i') end; end;