(* Title: HOL/Tools/datatype_case.ML Author: Konrad Slind, Cambridge University Computer Laboratory Author: Stefan Berghofer, TU Muenchen Nested case expressions on datatypes. *) signature DATATYPE_CASE = sig val make_case: (string -> DatatypeAux.datatype_info option) -> Proof.context -> bool -> string list -> term -> (term * term) list -> term * (term * (int * bool)) list val dest_case: (string -> DatatypeAux.datatype_info option) -> bool -> string list -> term -> (term * (term * term) list) option val strip_case: (string -> DatatypeAux.datatype_info option) -> bool -> term -> (term * (term * term) list) option val case_tr: bool -> (theory -> string -> DatatypeAux.datatype_info option) -> Proof.context -> term list -> term val case_tr': (theory -> string -> DatatypeAux.datatype_info option) -> string -> Proof.context -> term list -> term end; structure DatatypeCase : DATATYPE_CASE = struct exception CASE_ERROR of string * int; fun match_type thy pat ob = Sign.typ_match thy (pat, ob) Vartab.empty; (*--------------------------------------------------------------------------- * Get information about datatypes *---------------------------------------------------------------------------*) fun ty_info (tab : string -> DatatypeAux.datatype_info option) s = case tab s of SOME {descr, case_name, index, sorts, ...} => let val (_, (tname, dts, constrs)) = nth descr index; val mk_ty = DatatypeAux.typ_of_dtyp descr sorts; val T = Type (tname, map mk_ty dts) in SOME {case_name = case_name, constructors = map (fn (cname, dts') => Const (cname, Logic.varifyT (map mk_ty dts' ---> T))) constrs} end | NONE => NONE; (*--------------------------------------------------------------------------- * Each pattern carries with it a tag (i,b) where * i is the clause it came from and * b=true indicates that clause was given by the user * (or is an instantiation of a user supplied pattern) * b=false --> i = ~1 *---------------------------------------------------------------------------*) fun pattern_subst theta (tm, x) = (subst_free theta tm, x); fun row_of_pat x = fst (snd x); fun add_row_used ((prfx, pats), (tm, tag)) = fold Term.add_free_names (tm :: pats @ prfx); (* try to preserve names given by user *) fun default_names names ts = map (fn ("", Free (name', _)) => name' | (name, _) => name) (names ~~ ts); fun strip_constraints (Const ("_constrain", _) $ t $ tT) = strip_constraints t ||> cons tT | strip_constraints t = (t, []); fun mk_fun_constrain tT t = Syntax.const "_constrain" $ t $ (Syntax.free "fun" $ tT $ Syntax.free "dummy"); (*--------------------------------------------------------------------------- * Produce an instance of a constructor, plus genvars for its arguments. *---------------------------------------------------------------------------*) fun fresh_constr ty_match ty_inst colty used c = let val (_, Ty) = dest_Const c val Ts = binder_types Ty; val names = Name.variant_list used (DatatypeProp.make_tnames (map Logic.unvarifyT Ts)); val ty = body_type Ty; val ty_theta = ty_match ty colty handle Type.TYPE_MATCH => raise CASE_ERROR ("type mismatch", ~1) val c' = ty_inst ty_theta c val gvars = map (ty_inst ty_theta o Free) (names ~~ Ts) in (c', gvars) end; (*--------------------------------------------------------------------------- * Goes through a list of rows and picks out the ones beginning with a * pattern with constructor = name. *---------------------------------------------------------------------------*) fun mk_group (name, T) rows = let val k = length (binder_types T) in fold (fn (row as ((prfx, p :: rst), rhs as (_, (i, _)))) => fn ((in_group, not_in_group), (names, cnstrts)) => (case strip_comb p of (Const (name', _), args) => if name = name' then if length args = k then let val (args', cnstrts') = split_list (map strip_constraints args) in ((((prfx, args' @ rst), rhs) :: in_group, not_in_group), (default_names names args', map2 append cnstrts cnstrts')) end else raise CASE_ERROR ("Wrong number of arguments for constructor " ^ name, i) else ((in_group, row :: not_in_group), (names, cnstrts)) | _ => raise CASE_ERROR ("Not a constructor pattern", i))) rows (([], []), (replicate k "", replicate k [])) |>> pairself rev end; (*--------------------------------------------------------------------------- * Partition the rows. Not efficient: we should use hashing. *---------------------------------------------------------------------------*) fun partition _ _ _ _ _ _ _ [] = raise CASE_ERROR ("partition: no rows", ~1) | partition ty_match ty_inst type_of used constructors colty res_ty (rows as (((prfx, _ :: rstp), _) :: _)) = let fun part {constrs = [], rows = [], A} = rev A | part {constrs = [], rows = (_, (_, (i, _))) :: _, A} = raise CASE_ERROR ("Not a constructor pattern", i) | part {constrs = c :: crst, rows, A} = let val ((in_group, not_in_group), (names, cnstrts)) = mk_group (dest_Const c) rows; val used' = fold add_row_used in_group used; val (c', gvars) = fresh_constr ty_match ty_inst colty used' c; val in_group' = if null in_group (* Constructor not given *) then let val Ts = map type_of rstp; val xs = Name.variant_list (fold Term.add_free_names gvars used') (replicate (length rstp) "x") in [((prfx, gvars @ map Free (xs ~~ Ts)), (Const ("HOL.undefined", res_ty), (~1, false)))] end else in_group in part{constrs = crst, rows = not_in_group, A = {constructor = c', new_formals = gvars, names = names, constraints = cnstrts, group = in_group'} :: A} end in part {constrs = constructors, rows = rows, A = []} end; (*--------------------------------------------------------------------------- * Misc. routines used in mk_case *---------------------------------------------------------------------------*) fun mk_pat ((c, c'), l) = let val L = length (binder_types (fastype_of c)) fun build (prfx, tag, plist) = let val (args, plist') = chop L plist in (prfx, tag, list_comb (c', args) :: plist') end in map build l end; fun v_to_prfx (prfx, v::pats) = (v::prfx,pats) | v_to_prfx _ = raise CASE_ERROR ("mk_case: v_to_prfx", ~1); fun v_to_pats (v::prfx,tag, pats) = (prfx, tag, v::pats) | v_to_pats _ = raise CASE_ERROR ("mk_case: v_to_pats", ~1); (*---------------------------------------------------------------------------- * Translation of pattern terms into nested case expressions. * * This performs the translation and also builds the full set of patterns. * Thus it supports the construction of induction theorems even when an * incomplete set of patterns is given. *---------------------------------------------------------------------------*) fun mk_case tab ctxt ty_match ty_inst type_of used range_ty = let val name = Name.variant used "a"; fun expand constructors used ty ((_, []), _) = raise CASE_ERROR ("mk_case: expand_var_row", ~1) | expand constructors used ty (row as ((prfx, p :: rst), rhs)) = if is_Free p then let val used' = add_row_used row used; fun expnd c = let val capp = list_comb (fresh_constr ty_match ty_inst ty used' c) in ((prfx, capp :: rst), pattern_subst [(p, capp)] rhs) end in map expnd constructors end else [row] fun mk {rows = [], ...} = raise CASE_ERROR ("no rows", ~1) | mk {path = [], rows = ((prfx, []), (tm, tag)) :: _} = (* Done *) ([(prfx, tag, [])], tm) | mk {path, rows as ((row as ((_, [Free _]), _)) :: _ :: _)} = mk {path = path, rows = [row]} | mk {path = u :: rstp, rows as ((_, _ :: _), _) :: _} = let val col0 = map (fn ((_, p :: _), (_, (i, _))) => (p, i)) rows in case Option.map (apfst head_of) (find_first (not o is_Free o fst) col0) of NONE => let val rows' = map (fn ((v, _), row) => row ||> pattern_subst [(v, u)] |>> v_to_prfx) (col0 ~~ rows); val (pref_patl, tm) = mk {path = rstp, rows = rows'} in (map v_to_pats pref_patl, tm) end | SOME (Const (cname, cT), i) => (case ty_info tab cname of NONE => raise CASE_ERROR ("Not a datatype constructor: " ^ cname, i) | SOME {case_name, constructors} => let val pty = body_type cT; val used' = fold Term.add_free_names rstp used; val nrows = maps (expand constructors used' pty) rows; val subproblems = partition ty_match ty_inst type_of used' constructors pty range_ty nrows; val new_formals = map #new_formals subproblems val constructors' = map #constructor subproblems val news = map (fn {new_formals, group, ...} => {path = new_formals @ rstp, rows = group}) subproblems; val (pat_rect, dtrees) = split_list (map mk news); val case_functions = map2 (fn {new_formals, names, constraints, ...} => fold_rev (fn ((x as Free (_, T), s), cnstrts) => fn t => Abs (if s = "" then name else s, T, abstract_over (x, t)) |> fold mk_fun_constrain cnstrts) (new_formals ~~ names ~~ constraints)) subproblems dtrees; val types = map type_of (case_functions @ [u]); val case_const = Const (case_name, types ---> range_ty) val tree = list_comb (case_const, case_functions @ [u]) val pat_rect1 = flat (map mk_pat (constructors ~~ constructors' ~~ pat_rect)) in (pat_rect1, tree) end) | SOME (t, i) => raise CASE_ERROR ("Not a datatype constructor: " ^ Syntax.string_of_term ctxt t, i) end | mk _ = raise CASE_ERROR ("Malformed row matrix", ~1) in mk end; fun case_error s = error ("Error in case expression:\n" ^ s); (* Repeated variable occurrences in a pattern are not allowed. *) fun no_repeat_vars ctxt pat = fold_aterms (fn x as Free (s, _) => (fn xs => if member op aconv xs x then case_error (quote s ^ " occurs repeatedly in the pattern " ^ quote (Syntax.string_of_term ctxt pat)) else x :: xs) | _ => I) pat []; fun gen_make_case ty_match ty_inst type_of tab ctxt err used x clauses = let fun string_of_clause (pat, rhs) = Syntax.string_of_term ctxt (Syntax.const "_case1" $ pat $ rhs); val _ = map (no_repeat_vars ctxt o fst) clauses; val rows = map_index (fn (i, (pat, rhs)) => (([], [pat]), (rhs, (i, true)))) clauses; val rangeT = (case distinct op = (map (type_of o snd) clauses) of [] => case_error "no clauses given" | [T] => T | _ => case_error "all cases must have the same result type"); val used' = fold add_row_used rows used; val (patts, case_tm) = mk_case tab ctxt ty_match ty_inst type_of used' rangeT {path = [x], rows = rows} handle CASE_ERROR (msg, i) => case_error (msg ^ (if i < 0 then "" else "\nIn clause\n" ^ string_of_clause (nth clauses i))); val patts1 = map (fn (_, tag, [pat]) => (pat, tag) | _ => case_error "error in pattern-match translation") patts; val patts2 = Library.sort (Library.int_ord o Library.pairself row_of_pat) patts1 val finals = map row_of_pat patts2 val originals = map (row_of_pat o #2) rows val _ = case originals \\ finals of [] => () | is => (if err then case_error else warning) ("The following clauses are redundant (covered by preceding clauses):\n" ^ cat_lines (map (string_of_clause o nth clauses) is)); in (case_tm, patts2) end; fun make_case tab ctxt = gen_make_case (match_type (ProofContext.theory_of ctxt)) Envir.subst_TVars fastype_of tab ctxt; val make_case_untyped = gen_make_case (K (K Vartab.empty)) (K (Term.map_types (K dummyT))) (K dummyT); (* parse translation *) fun case_tr err tab_of ctxt [t, u] = let val thy = ProofContext.theory_of ctxt; (* replace occurrences of dummy_pattern by distinct variables *) (* internalize constant names *) fun prep_pat ((c as Const ("_constrain", _)) $ t $ tT) used = let val (t', used') = prep_pat t used in (c $ t' $ tT, used') end | prep_pat (Const ("dummy_pattern", T)) used = let val x = Name.variant used "x" in (Free (x, T), x :: used) end | prep_pat (Const (s, T)) used = (case try (unprefix Syntax.constN) s of SOME c => (Const (c, T), used) | NONE => (Const (Sign.intern_const thy s, T), used)) | prep_pat (v as Free (s, T)) used = let val s' = Sign.intern_const thy s in if Sign.declared_const thy s' then (Const (s', T), used) else (v, used) end | prep_pat (t $ u) used = let val (t', used') = prep_pat t used; val (u', used'') = prep_pat u used' in (t' $ u', used'') end | prep_pat t used = case_error ("Bad pattern: " ^ Syntax.string_of_term ctxt t); fun dest_case1 (t as Const ("_case1", _) $ l $ r) = let val (l', cnstrts) = strip_constraints l in ((fst (prep_pat l' (Term.add_free_names t [])), r), cnstrts) end | dest_case1 t = case_error "dest_case1"; fun dest_case2 (Const ("_case2", _) $ t $ u) = t :: dest_case2 u | dest_case2 t = [t]; val (cases, cnstrts) = split_list (map dest_case1 (dest_case2 u)); val (case_tm, _) = make_case_untyped (tab_of thy) ctxt err [] (fold (fn tT => fn t => Syntax.const "_constrain" $ t $ tT) (flat cnstrts) t) cases; in case_tm end | case_tr _ _ _ ts = case_error "case_tr"; (*--------------------------------------------------------------------------- * Pretty printing of nested case expressions *---------------------------------------------------------------------------*) (* destruct one level of pattern matching *) fun gen_dest_case name_of type_of tab d used t = case apfst name_of (strip_comb t) of (SOME cname, ts as _ :: _) => let val (fs, x) = split_last ts; fun strip_abs i t = let val zs = strip_abs_vars t; val _ = if length zs < i then raise CASE_ERROR ("", 0) else (); val (xs, ys) = chop i zs; val u = list_abs (ys, strip_abs_body t); val xs' = map Free (Name.variant_list (OldTerm.add_term_names (u, used)) (map fst xs) ~~ map snd xs) in (xs', subst_bounds (rev xs', u)) end; fun is_dependent i t = let val k = length (strip_abs_vars t) - i in k < 0 orelse exists (fn j => j >= k) (loose_bnos (strip_abs_body t)) end; fun count_cases (_, _, true) = I | count_cases (c, (_, body), false) = AList.map_default op aconv (body, []) (cons c); val is_undefined = name_of #> equal (SOME "HOL.undefined"); fun mk_case (c, (xs, body), _) = (list_comb (c, xs), body) in case ty_info tab cname of SOME {constructors, case_name} => if length fs = length constructors then let val cases = map (fn (Const (s, U), t) => let val k = length (binder_types U); val p as (xs, _) = strip_abs k t in (Const (s, map type_of xs ---> type_of x), p, is_dependent k t) end) (constructors ~~ fs); val cases' = sort (int_ord o swap o pairself (length o snd)) (fold_rev count_cases cases []); val R = type_of t; val dummy = if d then Const ("dummy_pattern", R) else Free (Name.variant used "x", R) in SOME (x, map mk_case (case find_first (is_undefined o fst) cases' of SOME (_, cs) => if length cs = length constructors then [hd cases] else filter_out (fn (_, (_, body), _) => is_undefined body) cases | NONE => case cases' of [] => cases | (default, cs) :: _ => if length cs = 1 then cases else if length cs = length constructors then [hd cases, (dummy, ([], default), false)] else filter_out (fn (c, _, _) => member op aconv cs c) cases @ [(dummy, ([], default), false)])) end handle CASE_ERROR _ => NONE else NONE | _ => NONE end | _ => NONE; val dest_case = gen_dest_case (try (dest_Const #> fst)) fastype_of; val dest_case' = gen_dest_case (try (dest_Const #> fst #> unprefix Syntax.constN)) (K dummyT); (* destruct nested patterns *) fun strip_case'' dest (pat, rhs) = case dest (Term.add_free_names pat []) rhs of SOME (exp as Free _, clauses) => if member op aconv (OldTerm.term_frees pat) exp andalso not (exists (fn (_, rhs') => member op aconv (OldTerm.term_frees rhs') exp) clauses) then maps (strip_case'' dest) (map (fn (pat', rhs') => (subst_free [(exp, pat')] pat, rhs')) clauses) else [(pat, rhs)] | _ => [(pat, rhs)]; fun gen_strip_case dest t = case dest [] t of SOME (x, clauses) => SOME (x, maps (strip_case'' dest) clauses) | NONE => NONE; val strip_case = gen_strip_case oo dest_case; val strip_case' = gen_strip_case oo dest_case'; (* print translation *) fun case_tr' tab_of cname ctxt ts = let val thy = ProofContext.theory_of ctxt; val consts = ProofContext.consts_of ctxt; fun mk_clause (pat, rhs) = let val xs = Term.add_frees pat [] in Syntax.const "_case1" $ map_aterms (fn Free p => Syntax.mark_boundT p | Const (s, _) => Const (Consts.extern_early consts s, dummyT) | t => t) pat $ map_aterms (fn x as Free (s, T) => if member (op =) xs (s, T) then Syntax.mark_bound s else x | t => t) rhs end in case strip_case' (tab_of thy) true (list_comb (Syntax.const cname, ts)) of SOME (x, clauses) => Syntax.const "_case_syntax" $ x $ foldr1 (fn (t, u) => Syntax.const "_case2" $ t $ u) (map mk_clause clauses) | NONE => raise Match end; end;