(* Title: HOL/Tools/Qelim/generated_cooper.ML This file is generated from HOL/Decision_Procs/Cooper.thy. DO NOT EDIT. *) structure GeneratedCooper = struct type 'a eq = {eq : 'a -> 'a -> bool}; fun eq (A_:'a eq) = #eq A_; val eq_nat = {eq = (fn a => fn b => ((a : IntInf.int) = b))} : IntInf.int eq; fun eqop A_ a b = eq A_ a b; fun divmod n m = (if eqop eq_nat m 0 then (0, n) else IntInf.divMod (n, m)); fun snd (a, b) = b; fun mod_nat m n = snd (divmod m n); fun gcd m n = (if eqop eq_nat n 0 then m else gcd n (mod_nat m n)); fun fst (a, b) = a; fun div_nat m n = fst (divmod m n); fun lcm m n = div_nat (IntInf.* (m, n)) (gcd m n); fun leta s f = f s; fun suc n = IntInf.+ (n, 1); datatype num = Mul of IntInf.int * num | Sub of num * num | Add of num * num | Neg of num | Cn of IntInf.int * IntInf.int * num | Bound of IntInf.int | C of IntInf.int; datatype fm = NClosed of IntInf.int | Closed of IntInf.int | A of fm | E of fm | Iff of fm * fm | Imp of fm * fm | Or of fm * fm | And of fm * fm | Not of fm | NDvd of IntInf.int * num | Dvd of IntInf.int * num | NEq of num | Eq of num | Ge of num | Gt of num | Le of num | Lt of num | F | T; fun abs_int i = (if IntInf.< (i, (0 : IntInf.int)) then IntInf.~ i else i); fun zlcm i j = (lcm (IntInf.max (0, (abs_int i))) (IntInf.max (0, (abs_int j)))); fun map f [] = [] | map f (x :: xs) = f x :: map f xs; fun append [] ys = ys | append (x :: xs) ys = x :: append xs ys; fun disjuncts (Or (p, q)) = append (disjuncts p) (disjuncts q) | disjuncts F = [] | disjuncts T = [T] | disjuncts (Lt u) = [Lt u] | disjuncts (Le v) = [Le v] | disjuncts (Gt w) = [Gt w] | disjuncts (Ge x) = [Ge x] | disjuncts (Eq y) = [Eq y] | disjuncts (NEq z) = [NEq z] | disjuncts (Dvd (aa, ab)) = [Dvd (aa, ab)] | disjuncts (NDvd (ac, ad)) = [NDvd (ac, ad)] | disjuncts (Not ae) = [Not ae] | disjuncts (And (af, ag)) = [And (af, ag)] | disjuncts (Imp (aj, ak)) = [Imp (aj, ak)] | disjuncts (Iff (al, am)) = [Iff (al, am)] | disjuncts (E an) = [E an] | disjuncts (A ao) = [A ao] | disjuncts (Closed ap) = [Closed ap] | disjuncts (NClosed aq) = [NClosed aq]; fun fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (NClosed nat) = f19 nat | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (Closed nat) = f18 nat | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (A fm) = f17 fm | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (E fm) = f16 fm | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (Iff (fm1, fm2)) = f15 fm1 fm2 | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (Imp (fm1, fm2)) = f14 fm1 fm2 | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (Or (fm1, fm2)) = f13 fm1 fm2 | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (And (fm1, fm2)) = f12 fm1 fm2 | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (Not fm) = f11 fm | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (NDvd (inta, num)) = f10 inta num | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (Dvd (inta, num)) = f9 inta num | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (NEq num) = f8 num | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (Eq num) = f7 num | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (Ge num) = f6 num | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (Gt num) = f5 num | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (Le num) = f4 num | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 (Lt num) = f3 num | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 F = f2 | fm_case f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 T = f1; fun eq_num (Mul (c, d)) (Sub (a, b)) = false | eq_num (Mul (c, d)) (Add (a, b)) = false | eq_num (Sub (c, d)) (Add (a, b)) = false | eq_num (Mul (b, c)) (Neg a) = false | eq_num (Sub (b, c)) (Neg a) = false | eq_num (Add (b, c)) (Neg a) = false | eq_num (Mul (d, e)) (Cn (a, b, c)) = false | eq_num (Sub (d, e)) (Cn (a, b, c)) = false | eq_num (Add (d, e)) (Cn (a, b, c)) = false | eq_num (Neg d) (Cn (a, b, c)) = false | eq_num (Mul (b, c)) (Bound a) = false | eq_num (Sub (b, c)) (Bound a) = false | eq_num (Add (b, c)) (Bound a) = false | eq_num (Neg b) (Bound a) = false | eq_num (Cn (b, c, d)) (Bound a) = false | eq_num (Mul (b, c)) (C a) = false | eq_num (Sub (b, c)) (C a) = false | eq_num (Add (b, c)) (C a) = false | eq_num (Neg b) (C a) = false | eq_num (Cn (b, c, d)) (C a) = false | eq_num (Bound b) (C a) = false | eq_num (Sub (a, b)) (Mul (c, d)) = false | eq_num (Add (a, b)) (Mul (c, d)) = false | eq_num (Add (a, b)) (Sub (c, d)) = false | eq_num (Neg a) (Mul (b, c)) = false | eq_num (Neg a) (Sub (b, c)) = false | eq_num (Neg a) (Add (b, c)) = false | eq_num (Cn (a, b, c)) (Mul (d, e)) = false | eq_num (Cn (a, b, c)) (Sub (d, e)) = false | eq_num (Cn (a, b, c)) (Add (d, e)) = false | eq_num (Cn (a, b, c)) (Neg d) = false | eq_num (Bound a) (Mul (b, c)) = false | eq_num (Bound a) (Sub (b, c)) = false | eq_num (Bound a) (Add (b, c)) = false | eq_num (Bound a) (Neg b) = false | eq_num (Bound a) (Cn (b, c, d)) = false | eq_num (C a) (Mul (b, c)) = false | eq_num (C a) (Sub (b, c)) = false | eq_num (C a) (Add (b, c)) = false | eq_num (C a) (Neg b) = false | eq_num (C a) (Cn (b, c, d)) = false | eq_num (C a) (Bound b) = false | eq_num (Mul (inta, num)) (Mul (int', num')) = ((inta : IntInf.int) = int') andalso eq_num num num' | eq_num (Sub (num1, num2)) (Sub (num1', num2')) = eq_num num1 num1' andalso eq_num num2 num2' | eq_num (Add (num1, num2)) (Add (num1', num2')) = eq_num num1 num1' andalso eq_num num2 num2' | eq_num (Neg num) (Neg num') = eq_num num num' | eq_num (Cn (nat, inta, num)) (Cn (nat', int', num')) = ((nat : IntInf.int) = nat') andalso (((inta : IntInf.int) = int') andalso eq_num num num') | eq_num (Bound nat) (Bound nat') = ((nat : IntInf.int) = nat') | eq_num (C inta) (C int') = ((inta : IntInf.int) = int'); fun eq_fm (NClosed b) (Closed a) = false | eq_fm (NClosed b) (A a) = false | eq_fm (Closed b) (A a) = false | eq_fm (NClosed b) (E a) = false | eq_fm (Closed b) (E a) = false | eq_fm (A b) (E a) = false | eq_fm (NClosed c) (Iff (a, b)) = false | eq_fm (Closed c) (Iff (a, b)) = false | eq_fm (A c) (Iff (a, b)) = false | eq_fm (E c) (Iff (a, b)) = false | eq_fm (NClosed c) (Imp (a, b)) = false | eq_fm (Closed c) (Imp (a, b)) = false | eq_fm (A c) (Imp (a, b)) = false | eq_fm (E c) (Imp (a, b)) = false | eq_fm (Iff (c, d)) (Imp (a, b)) = false | eq_fm (NClosed c) (Or (a, b)) = false | eq_fm (Closed c) (Or (a, b)) = false | eq_fm (A c) (Or (a, b)) = false | eq_fm (E c) (Or (a, b)) = false | eq_fm (Iff (c, d)) (Or (a, b)) = false | eq_fm (Imp (c, d)) (Or (a, b)) = false | eq_fm (NClosed c) (And (a, b)) = false | eq_fm (Closed c) (And (a, b)) = false | eq_fm (A c) (And (a, b)) = false | eq_fm (E c) (And (a, b)) = false | eq_fm (Iff (c, d)) (And (a, b)) = false | eq_fm (Imp (c, d)) (And (a, b)) = false | eq_fm (Or (c, d)) (And (a, b)) = false | eq_fm (NClosed b) (Not a) = false | eq_fm (Closed b) (Not a) = false | eq_fm (A b) (Not a) = false | eq_fm (E b) (Not a) = false | eq_fm (Iff (b, c)) (Not a) = false | eq_fm (Imp (b, c)) (Not a) = false | eq_fm (Or (b, c)) (Not a) = false | eq_fm (And (b, c)) (Not a) = false | eq_fm (NClosed c) (NDvd (a, b)) = false | eq_fm (Closed c) (NDvd (a, b)) = false | eq_fm (A c) (NDvd (a, b)) = false | eq_fm (E c) (NDvd (a, b)) = false | eq_fm (Iff (c, d)) (NDvd (a, b)) = false | eq_fm (Imp (c, d)) (NDvd (a, b)) = false | eq_fm (Or (c, d)) (NDvd (a, b)) = false | eq_fm (And (c, d)) (NDvd (a, b)) = false | eq_fm (Not c) (NDvd (a, b)) = false | eq_fm (NClosed c) (Dvd (a, b)) = false | eq_fm (Closed c) (Dvd (a, b)) = false | eq_fm (A c) (Dvd (a, b)) = false | eq_fm (E c) (Dvd (a, b)) = false | eq_fm (Iff (c, d)) (Dvd (a, b)) = false | eq_fm (Imp (c, d)) (Dvd (a, b)) = false | eq_fm (Or (c, d)) (Dvd (a, b)) = false | eq_fm (And (c, d)) (Dvd (a, b)) = false | eq_fm (Not c) (Dvd (a, b)) = false | eq_fm (NDvd (c, d)) (Dvd (a, b)) = false | eq_fm (NClosed b) (NEq a) = false | eq_fm (Closed b) (NEq a) = false | eq_fm (A b) (NEq a) = false | eq_fm (E b) (NEq a) = false | eq_fm (Iff (b, c)) (NEq a) = false | eq_fm (Imp (b, c)) (NEq a) = false | eq_fm (Or (b, c)) (NEq a) = false | eq_fm (And (b, c)) (NEq a) = false | eq_fm (Not b) (NEq a) = false | eq_fm (NDvd (b, c)) (NEq a) = false | eq_fm (Dvd (b, c)) (NEq a) = false | eq_fm (NClosed b) (Eq a) = false | eq_fm (Closed b) (Eq a) = false | eq_fm (A b) (Eq a) = false | eq_fm (E b) (Eq a) = false | eq_fm (Iff (b, c)) (Eq a) = false | eq_fm (Imp (b, c)) (Eq a) = false | eq_fm (Or (b, c)) (Eq a) = false | eq_fm (And (b, c)) (Eq a) = false | eq_fm (Not b) (Eq a) = false | eq_fm (NDvd (b, c)) (Eq a) = false | eq_fm (Dvd (b, c)) (Eq a) = false | eq_fm (NEq b) (Eq a) = false | eq_fm (NClosed b) (Ge a) = false | eq_fm (Closed b) (Ge a) = false | eq_fm (A b) (Ge a) = false | eq_fm (E b) (Ge a) = false | eq_fm (Iff (b, c)) (Ge a) = false | eq_fm (Imp (b, c)) (Ge a) = false | eq_fm (Or (b, c)) (Ge a) = false | eq_fm (And (b, c)) (Ge a) = false | eq_fm (Not b) (Ge a) = false | eq_fm (NDvd (b, c)) (Ge a) = false | eq_fm (Dvd (b, c)) (Ge a) = false | eq_fm (NEq b) (Ge a) = false | eq_fm (Eq b) (Ge a) = false | eq_fm (NClosed b) (Gt a) = false | eq_fm (Closed b) (Gt a) = false | eq_fm (A b) (Gt a) = false | eq_fm (E b) (Gt a) = false | eq_fm (Iff (b, c)) (Gt a) = false | eq_fm (Imp (b, c)) (Gt a) = false | eq_fm (Or (b, c)) (Gt a) = false | eq_fm (And (b, c)) (Gt a) = false | eq_fm (Not b) (Gt a) = false | eq_fm (NDvd (b, c)) (Gt a) = false | eq_fm (Dvd (b, c)) (Gt a) = false | eq_fm (NEq b) (Gt a) = false | eq_fm (Eq b) (Gt a) = false | eq_fm (Ge b) (Gt a) = false | eq_fm (NClosed b) (Le a) = false | eq_fm (Closed b) (Le a) = false | eq_fm (A b) (Le a) = false | eq_fm (E b) (Le a) = false | eq_fm (Iff (b, c)) (Le a) = false | eq_fm (Imp (b, c)) (Le a) = false | eq_fm (Or (b, c)) (Le a) = false | eq_fm (And (b, c)) (Le a) = false | eq_fm (Not b) (Le a) = false | eq_fm (NDvd (b, c)) (Le a) = false | eq_fm (Dvd (b, c)) (Le a) = false | eq_fm (NEq b) (Le a) = false | eq_fm (Eq b) (Le a) = false | eq_fm (Ge b) (Le a) = false | eq_fm (Gt b) (Le a) = false | eq_fm (NClosed b) (Lt a) = false | eq_fm (Closed b) (Lt a) = false | eq_fm (A b) (Lt a) = false | eq_fm (E b) (Lt a) = false | eq_fm (Iff (b, c)) (Lt a) = false | eq_fm (Imp (b, c)) (Lt a) = false | eq_fm (Or (b, c)) (Lt a) = false | eq_fm (And (b, c)) (Lt a) = false | eq_fm (Not b) (Lt a) = false | eq_fm (NDvd (b, c)) (Lt a) = false | eq_fm (Dvd (b, c)) (Lt a) = false | eq_fm (NEq b) (Lt a) = false | eq_fm (Eq b) (Lt a) = false | eq_fm (Ge b) (Lt a) = false | eq_fm (Gt b) (Lt a) = false | eq_fm (Le b) (Lt a) = false | eq_fm (NClosed a) F = false | eq_fm (Closed a) F = false | eq_fm (A a) F = false | eq_fm (E a) F = false | eq_fm (Iff (a, b)) F = false | eq_fm (Imp (a, b)) F = false | eq_fm (Or (a, b)) F = false | eq_fm (And (a, b)) F = false | eq_fm (Not a) F = false | eq_fm (NDvd (a, b)) F = false | eq_fm (Dvd (a, b)) F = false | eq_fm (NEq a) F = false | eq_fm (Eq a) F = false | eq_fm (Ge a) F = false | eq_fm (Gt a) F = false | eq_fm (Le a) F = false | eq_fm (Lt a) F = false | eq_fm (NClosed a) T = false | eq_fm (Closed a) T = false | eq_fm (A a) T = false | eq_fm (E a) T = false | eq_fm (Iff (a, b)) T = false | eq_fm (Imp (a, b)) T = false | eq_fm (Or (a, b)) T = false | eq_fm (And (a, b)) T = false | eq_fm (Not a) T = false | eq_fm (NDvd (a, b)) T = false | eq_fm (Dvd (a, b)) T = false | eq_fm (NEq a) T = false | eq_fm (Eq a) T = false | eq_fm (Ge a) T = false | eq_fm (Gt a) T = false | eq_fm (Le a) T = false | eq_fm (Lt a) T = false | eq_fm F T = false | eq_fm (Closed a) (NClosed b) = false | eq_fm (A a) (NClosed b) = false | eq_fm (A a) (Closed b) = false | eq_fm (E a) (NClosed b) = false | eq_fm (E a) (Closed b) = false | eq_fm (E a) (A b) = false | eq_fm (Iff (a, b)) (NClosed c) = false | eq_fm (Iff (a, b)) (Closed c) = false | eq_fm (Iff (a, b)) (A c) = false | eq_fm (Iff (a, b)) (E c) = false | eq_fm (Imp (a, b)) (NClosed c) = false | eq_fm (Imp (a, b)) (Closed c) = false | eq_fm (Imp (a, b)) (A c) = false | eq_fm (Imp (a, b)) (E c) = false | eq_fm (Imp (a, b)) (Iff (c, d)) = false | eq_fm (Or (a, b)) (NClosed c) = false | eq_fm (Or (a, b)) (Closed c) = false | eq_fm (Or (a, b)) (A c) = false | eq_fm (Or (a, b)) (E c) = false | eq_fm (Or (a, b)) (Iff (c, d)) = false | eq_fm (Or (a, b)) (Imp (c, d)) = false | eq_fm (And (a, b)) (NClosed c) = false | eq_fm (And (a, b)) (Closed c) = false | eq_fm (And (a, b)) (A c) = false | eq_fm (And (a, b)) (E c) = false | eq_fm (And (a, b)) (Iff (c, d)) = false | eq_fm (And (a, b)) (Imp (c, d)) = false | eq_fm (And (a, b)) (Or (c, d)) = false | eq_fm (Not a) (NClosed b) = false | eq_fm (Not a) (Closed b) = false | eq_fm (Not a) (A b) = false | eq_fm (Not a) (E b) = false | eq_fm (Not a) (Iff (b, c)) = false | eq_fm (Not a) (Imp (b, c)) = false | eq_fm (Not a) (Or (b, c)) = false | eq_fm (Not a) (And (b, c)) = false | eq_fm (NDvd (a, b)) (NClosed c) = false | eq_fm (NDvd (a, b)) (Closed c) = false | eq_fm (NDvd (a, b)) (A c) = false | eq_fm (NDvd (a, b)) (E c) = false | eq_fm (NDvd (a, b)) (Iff (c, d)) = false | eq_fm (NDvd (a, b)) (Imp (c, d)) = false | eq_fm (NDvd (a, b)) (Or (c, d)) = false | eq_fm (NDvd (a, b)) (And (c, d)) = false | eq_fm (NDvd (a, b)) (Not c) = false | eq_fm (Dvd (a, b)) (NClosed c) = false | eq_fm (Dvd (a, b)) (Closed c) = false | eq_fm (Dvd (a, b)) (A c) = false | eq_fm (Dvd (a, b)) (E c) = false | eq_fm (Dvd (a, b)) (Iff (c, d)) = false | eq_fm (Dvd (a, b)) (Imp (c, d)) = false | eq_fm (Dvd (a, b)) (Or (c, d)) = false | eq_fm (Dvd (a, b)) (And (c, d)) = false | eq_fm (Dvd (a, b)) (Not c) = false | eq_fm (Dvd (a, b)) (NDvd (c, d)) = false | eq_fm (NEq a) (NClosed b) = false | eq_fm (NEq a) (Closed b) = false | eq_fm (NEq a) (A b) = false | eq_fm (NEq a) (E b) = false | eq_fm (NEq a) (Iff (b, c)) = false | eq_fm (NEq a) (Imp (b, c)) = false | eq_fm (NEq a) (Or (b, c)) = false | eq_fm (NEq a) (And (b, c)) = false | eq_fm (NEq a) (Not b) = false | eq_fm (NEq a) (NDvd (b, c)) = false | eq_fm (NEq a) (Dvd (b, c)) = false | eq_fm (Eq a) (NClosed b) = false | eq_fm (Eq a) (Closed b) = false | eq_fm (Eq a) (A b) = false | eq_fm (Eq a) (E b) = false | eq_fm (Eq a) (Iff (b, c)) = false | eq_fm (Eq a) (Imp (b, c)) = false | eq_fm (Eq a) (Or (b, c)) = false | eq_fm (Eq a) (And (b, c)) = false | eq_fm (Eq a) (Not b) = false | eq_fm (Eq a) (NDvd (b, c)) = false | eq_fm (Eq a) (Dvd (b, c)) = false | eq_fm (Eq a) (NEq b) = false | eq_fm (Ge a) (NClosed b) = false | eq_fm (Ge a) (Closed b) = false | eq_fm (Ge a) (A b) = false | eq_fm (Ge a) (E b) = false | eq_fm (Ge a) (Iff (b, c)) = false | eq_fm (Ge a) (Imp (b, c)) = false | eq_fm (Ge a) (Or (b, c)) = false | eq_fm (Ge a) (And (b, c)) = false | eq_fm (Ge a) (Not b) = false | eq_fm (Ge a) (NDvd (b, c)) = false | eq_fm (Ge a) (Dvd (b, c)) = false | eq_fm (Ge a) (NEq b) = false | eq_fm (Ge a) (Eq b) = false | eq_fm (Gt a) (NClosed b) = false | eq_fm (Gt a) (Closed b) = false | eq_fm (Gt a) (A b) = false | eq_fm (Gt a) (E b) = false | eq_fm (Gt a) (Iff (b, c)) = false | eq_fm (Gt a) (Imp (b, c)) = false | eq_fm (Gt a) (Or (b, c)) = false | eq_fm (Gt a) (And (b, c)) = false | eq_fm (Gt a) (Not b) = false | eq_fm (Gt a) (NDvd (b, c)) = false | eq_fm (Gt a) (Dvd (b, c)) = false | eq_fm (Gt a) (NEq b) = false | eq_fm (Gt a) (Eq b) = false | eq_fm (Gt a) (Ge b) = false | eq_fm (Le a) (NClosed b) = false | eq_fm (Le a) (Closed b) = false | eq_fm (Le a) (A b) = false | eq_fm (Le a) (E b) = false | eq_fm (Le a) (Iff (b, c)) = false | eq_fm (Le a) (Imp (b, c)) = false | eq_fm (Le a) (Or (b, c)) = false | eq_fm (Le a) (And (b, c)) = false | eq_fm (Le a) (Not b) = false | eq_fm (Le a) (NDvd (b, c)) = false | eq_fm (Le a) (Dvd (b, c)) = false | eq_fm (Le a) (NEq b) = false | eq_fm (Le a) (Eq b) = false | eq_fm (Le a) (Ge b) = false | eq_fm (Le a) (Gt b) = false | eq_fm (Lt a) (NClosed b) = false | eq_fm (Lt a) (Closed b) = false | eq_fm (Lt a) (A b) = false | eq_fm (Lt a) (E b) = false | eq_fm (Lt a) (Iff (b, c)) = false | eq_fm (Lt a) (Imp (b, c)) = false | eq_fm (Lt a) (Or (b, c)) = false | eq_fm (Lt a) (And (b, c)) = false | eq_fm (Lt a) (Not b) = false | eq_fm (Lt a) (NDvd (b, c)) = false | eq_fm (Lt a) (Dvd (b, c)) = false | eq_fm (Lt a) (NEq b) = false | eq_fm (Lt a) (Eq b) = false | eq_fm (Lt a) (Ge b) = false | eq_fm (Lt a) (Gt b) = false | eq_fm (Lt a) (Le b) = false | eq_fm F (NClosed a) = false | eq_fm F (Closed a) = false | eq_fm F (A a) = false | eq_fm F (E a) = false | eq_fm F (Iff (a, b)) = false | eq_fm F (Imp (a, b)) = false | eq_fm F (Or (a, b)) = false | eq_fm F (And (a, b)) = false | eq_fm F (Not a) = false | eq_fm F (NDvd (a, b)) = false | eq_fm F (Dvd (a, b)) = false | eq_fm F (NEq a) = false | eq_fm F (Eq a) = false | eq_fm F (Ge a) = false | eq_fm F (Gt a) = false | eq_fm F (Le a) = false | eq_fm F (Lt a) = false | eq_fm T (NClosed a) = false | eq_fm T (Closed a) = false | eq_fm T (A a) = false | eq_fm T (E a) = false | eq_fm T (Iff (a, b)) = false | eq_fm T (Imp (a, b)) = false | eq_fm T (Or (a, b)) = false | eq_fm T (And (a, b)) = false | eq_fm T (Not a) = false | eq_fm T (NDvd (a, b)) = false | eq_fm T (Dvd (a, b)) = false | eq_fm T (NEq a) = false | eq_fm T (Eq a) = false | eq_fm T (Ge a) = false | eq_fm T (Gt a) = false | eq_fm T (Le a) = false | eq_fm T (Lt a) = false | eq_fm T F = false | eq_fm (NClosed nat) (NClosed nat') = ((nat : IntInf.int) = nat') | eq_fm (Closed nat) (Closed nat') = ((nat : IntInf.int) = nat') | eq_fm (A fm) (A fm') = eq_fm fm fm' | eq_fm (E fm) (E fm') = eq_fm fm fm' | eq_fm (Iff (fm1, fm2)) (Iff (fm1', fm2')) = eq_fm fm1 fm1' andalso eq_fm fm2 fm2' | eq_fm (Imp (fm1, fm2)) (Imp (fm1', fm2')) = eq_fm fm1 fm1' andalso eq_fm fm2 fm2' | eq_fm (Or (fm1, fm2)) (Or (fm1', fm2')) = eq_fm fm1 fm1' andalso eq_fm fm2 fm2' | eq_fm (And (fm1, fm2)) (And (fm1', fm2')) = eq_fm fm1 fm1' andalso eq_fm fm2 fm2' | eq_fm (Not fm) (Not fm') = eq_fm fm fm' | eq_fm (NDvd (inta, num)) (NDvd (int', num')) = ((inta : IntInf.int) = int') andalso eq_num num num' | eq_fm (Dvd (inta, num)) (Dvd (int', num')) = ((inta : IntInf.int) = int') andalso eq_num num num' | eq_fm (NEq num) (NEq num') = eq_num num num' | eq_fm (Eq num) (Eq num') = eq_num num num' | eq_fm (Ge num) (Ge num') = eq_num num num' | eq_fm (Gt num) (Gt num') = eq_num num num' | eq_fm (Le num) (Le num') = eq_num num num' | eq_fm (Lt num) (Lt num') = eq_num num num' | eq_fm F F = true | eq_fm T T = true; val eq_fma = {eq = eq_fm} : fm eq; fun djf f p q = (if eqop eq_fma q T then T else (if eqop eq_fma q F then f p else let val a = f p; in (case a of T => T | F => q | Lt num => Or (f p, q) | Le num => Or (f p, q) | Gt num => Or (f p, q) | Ge num => Or (f p, q) | Eq num => Or (f p, q) | NEq num => Or (f p, q) | Dvd (inta, num) => Or (f p, q) | NDvd (inta, num) => Or (f p, q) | Not fm => Or (f p, q) | And (fm1, fm2) => Or (f p, q) | Or (fm1, fm2) => Or (f p, q) | Imp (fm1, fm2) => Or (f p, q) | Iff (fm1, fm2) => Or (f p, q) | E fm => Or (f p, q) | A fm => Or (f p, q) | Closed nat => Or (f p, q) | NClosed nat => Or (f p, q)) end)); fun foldr f [] a = a | foldr f (x :: xs) a = f x (foldr f xs a); fun evaldjf f ps = foldr (djf f) ps F; fun dj f p = evaldjf f (disjuncts p); fun disj p q = (if eqop eq_fma p T orelse eqop eq_fma q T then T else (if eqop eq_fma p F then q else (if eqop eq_fma q F then p else Or (p, q)))); fun minus_nat n m = IntInf.max (0, (IntInf.- (n, m))); fun decrnum (Bound n) = Bound (minus_nat n 1) | decrnum (Neg a) = Neg (decrnum a) | decrnum (Add (a, b)) = Add (decrnum a, decrnum b) | decrnum (Sub (a, b)) = Sub (decrnum a, decrnum b) | decrnum (Mul (c, a)) = Mul (c, decrnum a) | decrnum (Cn (n, i, a)) = Cn (minus_nat n 1, i, decrnum a) | decrnum (C u) = C u; fun decr (Lt a) = Lt (decrnum a) | decr (Le a) = Le (decrnum a) | decr (Gt a) = Gt (decrnum a) | decr (Ge a) = Ge (decrnum a) | decr (Eq a) = Eq (decrnum a) | decr (NEq a) = NEq (decrnum a) | decr (Dvd (i, a)) = Dvd (i, decrnum a) | decr (NDvd (i, a)) = NDvd (i, decrnum a) | decr (Not p) = Not (decr p) | decr (And (p, q)) = And (decr p, decr q) | decr (Or (p, q)) = Or (decr p, decr q) | decr (Imp (p, q)) = Imp (decr p, decr q) | decr (Iff (p, q)) = Iff (decr p, decr q) | decr T = T | decr F = F | decr (E ao) = E ao | decr (A ap) = A ap | decr (Closed aq) = Closed aq | decr (NClosed ar) = NClosed ar; fun concat [] = [] | concat (x :: xs) = append x (concat xs); fun split f (a, b) = f a b; fun numsubst0 t (C c) = C c | numsubst0 t (Bound n) = (if eqop eq_nat n 0 then t else Bound n) | numsubst0 t (Neg a) = Neg (numsubst0 t a) | numsubst0 t (Add (a, b)) = Add (numsubst0 t a, numsubst0 t b) | numsubst0 t (Sub (a, b)) = Sub (numsubst0 t a, numsubst0 t b) | numsubst0 t (Mul (i, a)) = Mul (i, numsubst0 t a) | numsubst0 t (Cn (v, i, a)) = (if eqop eq_nat v 0 then Add (Mul (i, t), numsubst0 t a) else Cn (suc (minus_nat v 1), i, numsubst0 t a)); fun subst0 t T = T | subst0 t F = F | subst0 t (Lt a) = Lt (numsubst0 t a) | subst0 t (Le a) = Le (numsubst0 t a) | subst0 t (Gt a) = Gt (numsubst0 t a) | subst0 t (Ge a) = Ge (numsubst0 t a) | subst0 t (Eq a) = Eq (numsubst0 t a) | subst0 t (NEq a) = NEq (numsubst0 t a) | subst0 t (Dvd (i, a)) = Dvd (i, numsubst0 t a) | subst0 t (NDvd (i, a)) = NDvd (i, numsubst0 t a) | subst0 t (Not p) = Not (subst0 t p) | subst0 t (And (p, q)) = And (subst0 t p, subst0 t q) | subst0 t (Or (p, q)) = Or (subst0 t p, subst0 t q) | subst0 t (Imp (p, q)) = Imp (subst0 t p, subst0 t q) | subst0 t (Iff (p, q)) = Iff (subst0 t p, subst0 t q) | subst0 t (Closed p) = Closed p | subst0 t (NClosed p) = NClosed p; fun minusinf (And (p, q)) = And (minusinf p, minusinf q) | minusinf (Or (p, q)) = Or (minusinf p, minusinf q) | minusinf T = T | minusinf F = F | minusinf (Lt (C bo)) = Lt (C bo) | minusinf (Lt (Bound bp)) = Lt (Bound bp) | minusinf (Lt (Neg bt)) = Lt (Neg bt) | minusinf (Lt (Add (bu, bv))) = Lt (Add (bu, bv)) | minusinf (Lt (Sub (bw, bx))) = Lt (Sub (bw, bx)) | minusinf (Lt (Mul (by, bz))) = Lt (Mul (by, bz)) | minusinf (Le (C co)) = Le (C co) | minusinf (Le (Bound cp)) = Le (Bound cp) | minusinf (Le (Neg ct)) = Le (Neg ct) | minusinf (Le (Add (cu, cv))) = Le (Add (cu, cv)) | minusinf (Le (Sub (cw, cx))) = Le (Sub (cw, cx)) | minusinf (Le (Mul (cy, cz))) = Le (Mul (cy, cz)) | minusinf (Gt (C doa)) = Gt (C doa) | minusinf (Gt (Bound dp)) = Gt (Bound dp) | minusinf (Gt (Neg dt)) = Gt (Neg dt) | minusinf (Gt (Add (du, dv))) = Gt (Add (du, dv)) | minusinf (Gt (Sub (dw, dx))) = Gt (Sub (dw, dx)) | minusinf (Gt (Mul (dy, dz))) = Gt (Mul (dy, dz)) | minusinf (Ge (C eo)) = Ge (C eo) | minusinf (Ge (Bound ep)) = Ge (Bound ep) | minusinf (Ge (Neg et)) = Ge (Neg et) | minusinf (Ge (Add (eu, ev))) = Ge (Add (eu, ev)) | minusinf (Ge (Sub (ew, ex))) = Ge (Sub (ew, ex)) | minusinf (Ge (Mul (ey, ez))) = Ge (Mul (ey, ez)) | minusinf (Eq (C fo)) = Eq (C fo) | minusinf (Eq (Bound fp)) = Eq (Bound fp) | minusinf (Eq (Neg ft)) = Eq (Neg ft) | minusinf (Eq (Add (fu, fv))) = Eq (Add (fu, fv)) | minusinf (Eq (Sub (fw, fx))) = Eq (Sub (fw, fx)) | minusinf (Eq (Mul (fy, fz))) = Eq (Mul (fy, fz)) | minusinf (NEq (C go)) = NEq (C go) | minusinf (NEq (Bound gp)) = NEq (Bound gp) | minusinf (NEq (Neg gt)) = NEq (Neg gt) | minusinf (NEq (Add (gu, gv))) = NEq (Add (gu, gv)) | minusinf (NEq (Sub (gw, gx))) = NEq (Sub (gw, gx)) | minusinf (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz)) | minusinf (Dvd (aa, ab)) = Dvd (aa, ab) | minusinf (NDvd (ac, ad)) = NDvd (ac, ad) | minusinf (Not ae) = Not ae | minusinf (Imp (aj, ak)) = Imp (aj, ak) | minusinf (Iff (al, am)) = Iff (al, am) | minusinf (E an) = E an | minusinf (A ao) = A ao | minusinf (Closed ap) = Closed ap | minusinf (NClosed aq) = NClosed aq | minusinf (Lt (Cn (cm, c, e))) = (if eqop eq_nat cm 0 then T else Lt (Cn (suc (minus_nat cm 1), c, e))) | minusinf (Le (Cn (dm, c, e))) = (if eqop eq_nat dm 0 then T else Le (Cn (suc (minus_nat dm 1), c, e))) | minusinf (Gt (Cn (em, c, e))) = (if eqop eq_nat em 0 then F else Gt (Cn (suc (minus_nat em 1), c, e))) | minusinf (Ge (Cn (fm, c, e))) = (if eqop eq_nat fm 0 then F else Ge (Cn (suc (minus_nat fm 1), c, e))) | minusinf (Eq (Cn (gm, c, e))) = (if eqop eq_nat gm 0 then F else Eq (Cn (suc (minus_nat gm 1), c, e))) | minusinf (NEq (Cn (hm, c, e))) = (if eqop eq_nat hm 0 then T else NEq (Cn (suc (minus_nat hm 1), c, e))); val eq_int = {eq = (fn a => fn b => ((a : IntInf.int) = b))} : IntInf.int eq; fun sgn_int i = (if eqop eq_int i (0 : IntInf.int) then (0 : IntInf.int) else (if IntInf.< ((0 : IntInf.int), i) then (1 : IntInf.int) else IntInf.~ (1 : IntInf.int))); fun apsnd f (x, y) = (x, f y); fun divmoda k l = (if eqop eq_int k (0 : IntInf.int) then ((0 : IntInf.int), (0 : IntInf.int)) else (if eqop eq_int l (0 : IntInf.int) then ((0 : IntInf.int), k) else apsnd (fn a => IntInf.* (sgn_int l, a)) (if eqop eq_int (sgn_int k) (sgn_int l) then (fn k => fn l => IntInf.divMod (IntInf.abs k, IntInf.abs l)) k l else let val a = (fn k => fn l => IntInf.divMod (IntInf.abs k, IntInf.abs l)) k l; val (r, s) = a; in (if eqop eq_int s (0 : IntInf.int) then (IntInf.~ r, (0 : IntInf.int)) else (IntInf.- (IntInf.~ r, (1 : IntInf.int)), IntInf.- (abs_int l, s))) end))); fun mod_int a b = snd (divmoda a b); fun num_case f1 f2 f3 f4 f5 f6 f7 (Mul (inta, num)) = f7 inta num | num_case f1 f2 f3 f4 f5 f6 f7 (Sub (num1, num2)) = f6 num1 num2 | num_case f1 f2 f3 f4 f5 f6 f7 (Add (num1, num2)) = f5 num1 num2 | num_case f1 f2 f3 f4 f5 f6 f7 (Neg num) = f4 num | num_case f1 f2 f3 f4 f5 f6 f7 (Cn (nat, inta, num)) = f3 nat inta num | num_case f1 f2 f3 f4 f5 f6 f7 (Bound nat) = f2 nat | num_case f1 f2 f3 f4 f5 f6 f7 (C inta) = f1 inta; fun nummul i (C j) = C (IntInf.* (i, j)) | nummul i (Cn (n, c, t)) = Cn (n, IntInf.* (c, i), nummul i t) | nummul i (Bound v) = Mul (i, Bound v) | nummul i (Neg v) = Mul (i, Neg v) | nummul i (Add (v, va)) = Mul (i, Add (v, va)) | nummul i (Sub (v, va)) = Mul (i, Sub (v, va)) | nummul i (Mul (v, va)) = Mul (i, Mul (v, va)); fun numneg t = nummul (IntInf.~ (1 : IntInf.int)) t; fun numadd (Cn (n1, c1, r1), Cn (n2, c2, r2)) = (if eqop eq_nat n1 n2 then let val c = IntInf.+ (c1, c2); in (if eqop eq_int c (0 : IntInf.int) then numadd (r1, r2) else Cn (n1, c, numadd (r1, r2))) end else (if IntInf.<= (n1, n2) then Cn (n1, c1, numadd (r1, Add (Mul (c2, Bound n2), r2))) else Cn (n2, c2, numadd (Add (Mul (c1, Bound n1), r1), r2)))) | numadd (Cn (n1, c1, r1), C dd) = Cn (n1, c1, numadd (r1, C dd)) | numadd (Cn (n1, c1, r1), Bound de) = Cn (n1, c1, numadd (r1, Bound de)) | numadd (Cn (n1, c1, r1), Neg di) = Cn (n1, c1, numadd (r1, Neg di)) | numadd (Cn (n1, c1, r1), Add (dj, dk)) = Cn (n1, c1, numadd (r1, Add (dj, dk))) | numadd (Cn (n1, c1, r1), Sub (dl, dm)) = Cn (n1, c1, numadd (r1, Sub (dl, dm))) | numadd (Cn (n1, c1, r1), Mul (dn, doa)) = Cn (n1, c1, numadd (r1, Mul (dn, doa))) | numadd (C w, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (C w, r2)) | numadd (Bound x, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Bound x, r2)) | numadd (Neg ac, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Neg ac, r2)) | numadd (Add (ad, ae), Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Add (ad, ae), r2)) | numadd (Sub (af, ag), Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Sub (af, ag), r2)) | numadd (Mul (ah, ai), Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Mul (ah, ai), r2)) | numadd (C b1, C b2) = C (IntInf.+ (b1, b2)) | numadd (C aj, Bound bi) = Add (C aj, Bound bi) | numadd (C aj, Neg bm) = Add (C aj, Neg bm) | numadd (C aj, Add (bn, bo)) = Add (C aj, Add (bn, bo)) | numadd (C aj, Sub (bp, bq)) = Add (C aj, Sub (bp, bq)) | numadd (C aj, Mul (br, bs)) = Add (C aj, Mul (br, bs)) | numadd (Bound ak, C cf) = Add (Bound ak, C cf) | numadd (Bound ak, Bound cg) = Add (Bound ak, Bound cg) | numadd (Bound ak, Neg ck) = Add (Bound ak, Neg ck) | numadd (Bound ak, Add (cl, cm)) = Add (Bound ak, Add (cl, cm)) | numadd (Bound ak, Sub (cn, co)) = Add (Bound ak, Sub (cn, co)) | numadd (Bound ak, Mul (cp, cq)) = Add (Bound ak, Mul (cp, cq)) | numadd (Neg ao, C en) = Add (Neg ao, C en) | numadd (Neg ao, Bound eo) = Add (Neg ao, Bound eo) | numadd (Neg ao, Neg es) = Add (Neg ao, Neg es) | numadd (Neg ao, Add (et, eu)) = Add (Neg ao, Add (et, eu)) | numadd (Neg ao, Sub (ev, ew)) = Add (Neg ao, Sub (ev, ew)) | numadd (Neg ao, Mul (ex, ey)) = Add (Neg ao, Mul (ex, ey)) | numadd (Add (ap, aq), C fl) = Add (Add (ap, aq), C fl) | numadd (Add (ap, aq), Bound fm) = Add (Add (ap, aq), Bound fm) | numadd (Add (ap, aq), Neg fq) = Add (Add (ap, aq), Neg fq) | numadd (Add (ap, aq), Add (fr, fs)) = Add (Add (ap, aq), Add (fr, fs)) | numadd (Add (ap, aq), Sub (ft, fu)) = Add (Add (ap, aq), Sub (ft, fu)) | numadd (Add (ap, aq), Mul (fv, fw)) = Add (Add (ap, aq), Mul (fv, fw)) | numadd (Sub (ar, asa), C gj) = Add (Sub (ar, asa), C gj) | numadd (Sub (ar, asa), Bound gk) = Add (Sub (ar, asa), Bound gk) | numadd (Sub (ar, asa), Neg go) = Add (Sub (ar, asa), Neg go) | numadd (Sub (ar, asa), Add (gp, gq)) = Add (Sub (ar, asa), Add (gp, gq)) | numadd (Sub (ar, asa), Sub (gr, gs)) = Add (Sub (ar, asa), Sub (gr, gs)) | numadd (Sub (ar, asa), Mul (gt, gu)) = Add (Sub (ar, asa), Mul (gt, gu)) | numadd (Mul (at, au), C hh) = Add (Mul (at, au), C hh) | numadd (Mul (at, au), Bound hi) = Add (Mul (at, au), Bound hi) | numadd (Mul (at, au), Neg hm) = Add (Mul (at, au), Neg hm) | numadd (Mul (at, au), Add (hn, ho)) = Add (Mul (at, au), Add (hn, ho)) | numadd (Mul (at, au), Sub (hp, hq)) = Add (Mul (at, au), Sub (hp, hq)) | numadd (Mul (at, au), Mul (hr, hs)) = Add (Mul (at, au), Mul (hr, hs)); val eq_numa = {eq = eq_num} : num eq; fun numsub s t = (if eqop eq_numa s t then C (0 : IntInf.int) else numadd (s, numneg t)); fun simpnum (C j) = C j | simpnum (Bound n) = Cn (n, (1 : IntInf.int), C (0 : IntInf.int)) | simpnum (Neg t) = numneg (simpnum t) | simpnum (Add (t, s)) = numadd (simpnum t, simpnum s) | simpnum (Sub (t, s)) = numsub (simpnum t) (simpnum s) | simpnum (Mul (i, t)) = (if eqop eq_int i (0 : IntInf.int) then C (0 : IntInf.int) else nummul i (simpnum t)) | simpnum (Cn (v, va, vb)) = Cn (v, va, vb); fun nota (Not p) = p | nota T = F | nota F = T | nota (Lt v) = Not (Lt v) | nota (Le v) = Not (Le v) | nota (Gt v) = Not (Gt v) | nota (Ge v) = Not (Ge v) | nota (Eq v) = Not (Eq v) | nota (NEq v) = Not (NEq v) | nota (Dvd (v, va)) = Not (Dvd (v, va)) | nota (NDvd (v, va)) = Not (NDvd (v, va)) | nota (And (v, va)) = Not (And (v, va)) | nota (Or (v, va)) = Not (Or (v, va)) | nota (Imp (v, va)) = Not (Imp (v, va)) | nota (Iff (v, va)) = Not (Iff (v, va)) | nota (E v) = Not (E v) | nota (A v) = Not (A v) | nota (Closed v) = Not (Closed v) | nota (NClosed v) = Not (NClosed v); fun iffa p q = (if eqop eq_fma p q then T else (if eqop eq_fma p (nota q) orelse eqop eq_fma (nota p) q then F else (if eqop eq_fma p F then nota q else (if eqop eq_fma q F then nota p else (if eqop eq_fma p T then q else (if eqop eq_fma q T then p else Iff (p, q))))))); fun impa p q = (if eqop eq_fma p F orelse eqop eq_fma q T then T else (if eqop eq_fma p T then q else (if eqop eq_fma q F then nota p else Imp (p, q)))); fun conj p q = (if eqop eq_fma p F orelse eqop eq_fma q F then F else (if eqop eq_fma p T then q else (if eqop eq_fma q T then p else And (p, q)))); fun simpfm (And (p, q)) = conj (simpfm p) (simpfm q) | simpfm (Or (p, q)) = disj (simpfm p) (simpfm q) | simpfm (Imp (p, q)) = impa (simpfm p) (simpfm q) | simpfm (Iff (p, q)) = iffa (simpfm p) (simpfm q) | simpfm (Not p) = nota (simpfm p) | simpfm (Lt a) = let val a' = simpnum a; in (case a' of C v => (if IntInf.< (v, (0 : IntInf.int)) then T else F) | Bound nat => Lt a' | Cn (nat, inta, num) => Lt a' | Neg num => Lt a' | Add (num1, num2) => Lt a' | Sub (num1, num2) => Lt a' | Mul (inta, num) => Lt a') end | simpfm (Le a) = let val a' = simpnum a; in (case a' of C v => (if IntInf.<= (v, (0 : IntInf.int)) then T else F) | Bound nat => Le a' | Cn (nat, inta, num) => Le a' | Neg num => Le a' | Add (num1, num2) => Le a' | Sub (num1, num2) => Le a' | Mul (inta, num) => Le a') end | simpfm (Gt a) = let val a' = simpnum a; in (case a' of C v => (if IntInf.< ((0 : IntInf.int), v) then T else F) | Bound nat => Gt a' | Cn (nat, inta, num) => Gt a' | Neg num => Gt a' | Add (num1, num2) => Gt a' | Sub (num1, num2) => Gt a' | Mul (inta, num) => Gt a') end | simpfm (Ge a) = let val a' = simpnum a; in (case a' of C v => (if IntInf.<= ((0 : IntInf.int), v) then T else F) | Bound nat => Ge a' | Cn (nat, inta, num) => Ge a' | Neg num => Ge a' | Add (num1, num2) => Ge a' | Sub (num1, num2) => Ge a' | Mul (inta, num) => Ge a') end | simpfm (Eq a) = let val a' = simpnum a; in (case a' of C v => (if eqop eq_int v (0 : IntInf.int) then T else F) | Bound nat => Eq a' | Cn (nat, inta, num) => Eq a' | Neg num => Eq a' | Add (num1, num2) => Eq a' | Sub (num1, num2) => Eq a' | Mul (inta, num) => Eq a') end | simpfm (NEq a) = let val a' = simpnum a; in (case a' of C v => (if not (eqop eq_int v (0 : IntInf.int)) then T else F) | Bound nat => NEq a' | Cn (nat, inta, num) => NEq a' | Neg num => NEq a' | Add (num1, num2) => NEq a' | Sub (num1, num2) => NEq a' | Mul (inta, num) => NEq a') end | simpfm (Dvd (i, a)) = (if eqop eq_int i (0 : IntInf.int) then simpfm (Eq a) else (if eqop eq_int (abs_int i) (1 : IntInf.int) then T else let val a' = simpnum a; in (case a' of C v => (if eqop eq_int (mod_int v i) (0 : IntInf.int) then T else F) | Bound nat => Dvd (i, a') | Cn (nat, inta, num) => Dvd (i, a') | Neg num => Dvd (i, a') | Add (num1, num2) => Dvd (i, a') | Sub (num1, num2) => Dvd (i, a') | Mul (inta, num) => Dvd (i, a')) end)) | simpfm (NDvd (i, a)) = (if eqop eq_int i (0 : IntInf.int) then simpfm (NEq a) else (if eqop eq_int (abs_int i) (1 : IntInf.int) then F else let val a' = simpnum a; in (case a' of C v => (if not (eqop eq_int (mod_int v i) (0 : IntInf.int)) then T else F) | Bound nat => NDvd (i, a') | Cn (nat, inta, num) => NDvd (i, a') | Neg num => NDvd (i, a') | Add (num1, num2) => NDvd (i, a') | Sub (num1, num2) => NDvd (i, a') | Mul (inta, num) => NDvd (i, a')) end)) | simpfm T = T | simpfm F = F | simpfm (E v) = E v | simpfm (A v) = A v | simpfm (Closed v) = Closed v | simpfm (NClosed v) = NClosed v; fun iupt i j = (if IntInf.< (j, i) then [] else i :: iupt (IntInf.+ (i, (1 : IntInf.int))) j); fun mirror (And (p, q)) = And (mirror p, mirror q) | mirror (Or (p, q)) = Or (mirror p, mirror q) | mirror T = T | mirror F = F | mirror (Lt (C bo)) = Lt (C bo) | mirror (Lt (Bound bp)) = Lt (Bound bp) | mirror (Lt (Neg bt)) = Lt (Neg bt) | mirror (Lt (Add (bu, bv))) = Lt (Add (bu, bv)) | mirror (Lt (Sub (bw, bx))) = Lt (Sub (bw, bx)) | mirror (Lt (Mul (by, bz))) = Lt (Mul (by, bz)) | mirror (Le (C co)) = Le (C co) | mirror (Le (Bound cp)) = Le (Bound cp) | mirror (Le (Neg ct)) = Le (Neg ct) | mirror (Le (Add (cu, cv))) = Le (Add (cu, cv)) | mirror (Le (Sub (cw, cx))) = Le (Sub (cw, cx)) | mirror (Le (Mul (cy, cz))) = Le (Mul (cy, cz)) | mirror (Gt (C doa)) = Gt (C doa) | mirror (Gt (Bound dp)) = Gt (Bound dp) | mirror (Gt (Neg dt)) = Gt (Neg dt) | mirror (Gt (Add (du, dv))) = Gt (Add (du, dv)) | mirror (Gt (Sub (dw, dx))) = Gt (Sub (dw, dx)) | mirror (Gt (Mul (dy, dz))) = Gt (Mul (dy, dz)) | mirror (Ge (C eo)) = Ge (C eo) | mirror (Ge (Bound ep)) = Ge (Bound ep) | mirror (Ge (Neg et)) = Ge (Neg et) | mirror (Ge (Add (eu, ev))) = Ge (Add (eu, ev)) | mirror (Ge (Sub (ew, ex))) = Ge (Sub (ew, ex)) | mirror (Ge (Mul (ey, ez))) = Ge (Mul (ey, ez)) | mirror (Eq (C fo)) = Eq (C fo) | mirror (Eq (Bound fp)) = Eq (Bound fp) | mirror (Eq (Neg ft)) = Eq (Neg ft) | mirror (Eq (Add (fu, fv))) = Eq (Add (fu, fv)) | mirror (Eq (Sub (fw, fx))) = Eq (Sub (fw, fx)) | mirror (Eq (Mul (fy, fz))) = Eq (Mul (fy, fz)) | mirror (NEq (C go)) = NEq (C go) | mirror (NEq (Bound gp)) = NEq (Bound gp) | mirror (NEq (Neg gt)) = NEq (Neg gt) | mirror (NEq (Add (gu, gv))) = NEq (Add (gu, gv)) | mirror (NEq (Sub (gw, gx))) = NEq (Sub (gw, gx)) | mirror (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz)) | mirror (Dvd (aa, C ho)) = Dvd (aa, C ho) | mirror (Dvd (aa, Bound hp)) = Dvd (aa, Bound hp) | mirror (Dvd (aa, Neg ht)) = Dvd (aa, Neg ht) | mirror (Dvd (aa, Add (hu, hv))) = Dvd (aa, Add (hu, hv)) | mirror (Dvd (aa, Sub (hw, hx))) = Dvd (aa, Sub (hw, hx)) | mirror (Dvd (aa, Mul (hy, hz))) = Dvd (aa, Mul (hy, hz)) | mirror (NDvd (ac, C io)) = NDvd (ac, C io) | mirror (NDvd (ac, Bound ip)) = NDvd (ac, Bound ip) | mirror (NDvd (ac, Neg it)) = NDvd (ac, Neg it) | mirror (NDvd (ac, Add (iu, iv))) = NDvd (ac, Add (iu, iv)) | mirror (NDvd (ac, Sub (iw, ix))) = NDvd (ac, Sub (iw, ix)) | mirror (NDvd (ac, Mul (iy, iz))) = NDvd (ac, Mul (iy, iz)) | mirror (Not ae) = Not ae | mirror (Imp (aj, ak)) = Imp (aj, ak) | mirror (Iff (al, am)) = Iff (al, am) | mirror (E an) = E an | mirror (A ao) = A ao | mirror (Closed ap) = Closed ap | mirror (NClosed aq) = NClosed aq | mirror (Lt (Cn (cm, c, e))) = (if eqop eq_nat cm 0 then Gt (Cn (0, c, Neg e)) else Lt (Cn (suc (minus_nat cm 1), c, e))) | mirror (Le (Cn (dm, c, e))) = (if eqop eq_nat dm 0 then Ge (Cn (0, c, Neg e)) else Le (Cn (suc (minus_nat dm 1), c, e))) | mirror (Gt (Cn (em, c, e))) = (if eqop eq_nat em 0 then Lt (Cn (0, c, Neg e)) else Gt (Cn (suc (minus_nat em 1), c, e))) | mirror (Ge (Cn (fm, c, e))) = (if eqop eq_nat fm 0 then Le (Cn (0, c, Neg e)) else Ge (Cn (suc (minus_nat fm 1), c, e))) | mirror (Eq (Cn (gm, c, e))) = (if eqop eq_nat gm 0 then Eq (Cn (0, c, Neg e)) else Eq (Cn (suc (minus_nat gm 1), c, e))) | mirror (NEq (Cn (hm, c, e))) = (if eqop eq_nat hm 0 then NEq (Cn (0, c, Neg e)) else NEq (Cn (suc (minus_nat hm 1), c, e))) | mirror (Dvd (i, Cn (im, c, e))) = (if eqop eq_nat im 0 then Dvd (i, Cn (0, c, Neg e)) else Dvd (i, Cn (suc (minus_nat im 1), c, e))) | mirror (NDvd (i, Cn (jm, c, e))) = (if eqop eq_nat jm 0 then NDvd (i, Cn (0, c, Neg e)) else NDvd (i, Cn (suc (minus_nat jm 1), c, e))); fun size_list [] = 0 | size_list (a :: lista) = IntInf.+ (size_list lista, suc 0); fun alpha (And (p, q)) = append (alpha p) (alpha q) | alpha (Or (p, q)) = append (alpha p) (alpha q) | alpha T = [] | alpha F = [] | alpha (Lt (C bo)) = [] | alpha (Lt (Bound bp)) = [] | alpha (Lt (Neg bt)) = [] | alpha (Lt (Add (bu, bv))) = [] | alpha (Lt (Sub (bw, bx))) = [] | alpha (Lt (Mul (by, bz))) = [] | alpha (Le (C co)) = [] | alpha (Le (Bound cp)) = [] | alpha (Le (Neg ct)) = [] | alpha (Le (Add (cu, cv))) = [] | alpha (Le (Sub (cw, cx))) = [] | alpha (Le (Mul (cy, cz))) = [] | alpha (Gt (C doa)) = [] | alpha (Gt (Bound dp)) = [] | alpha (Gt (Neg dt)) = [] | alpha (Gt (Add (du, dv))) = [] | alpha (Gt (Sub (dw, dx))) = [] | alpha (Gt (Mul (dy, dz))) = [] | alpha (Ge (C eo)) = [] | alpha (Ge (Bound ep)) = [] | alpha (Ge (Neg et)) = [] | alpha (Ge (Add (eu, ev))) = [] | alpha (Ge (Sub (ew, ex))) = [] | alpha (Ge (Mul (ey, ez))) = [] | alpha (Eq (C fo)) = [] | alpha (Eq (Bound fp)) = [] | alpha (Eq (Neg ft)) = [] | alpha (Eq (Add (fu, fv))) = [] | alpha (Eq (Sub (fw, fx))) = [] | alpha (Eq (Mul (fy, fz))) = [] | alpha (NEq (C go)) = [] | alpha (NEq (Bound gp)) = [] | alpha (NEq (Neg gt)) = [] | alpha (NEq (Add (gu, gv))) = [] | alpha (NEq (Sub (gw, gx))) = [] | alpha (NEq (Mul (gy, gz))) = [] | alpha (Dvd (aa, ab)) = [] | alpha (NDvd (ac, ad)) = [] | alpha (Not ae) = [] | alpha (Imp (aj, ak)) = [] | alpha (Iff (al, am)) = [] | alpha (E an) = [] | alpha (A ao) = [] | alpha (Closed ap) = [] | alpha (NClosed aq) = [] | alpha (Lt (Cn (cm, c, e))) = (if eqop eq_nat cm 0 then [e] else []) | alpha (Le (Cn (dm, c, e))) = (if eqop eq_nat dm 0 then [Add (C (~1 : IntInf.int), e)] else []) | alpha (Gt (Cn (em, c, e))) = (if eqop eq_nat em 0 then [] else []) | alpha (Ge (Cn (fm, c, e))) = (if eqop eq_nat fm 0 then [] else []) | alpha (Eq (Cn (gm, c, e))) = (if eqop eq_nat gm 0 then [Add (C (~1 : IntInf.int), e)] else []) | alpha (NEq (Cn (hm, c, e))) = (if eqop eq_nat hm 0 then [e] else []); fun beta (And (p, q)) = append (beta p) (beta q) | beta (Or (p, q)) = append (beta p) (beta q) | beta T = [] | beta F = [] | beta (Lt (C bo)) = [] | beta (Lt (Bound bp)) = [] | beta (Lt (Neg bt)) = [] | beta (Lt (Add (bu, bv))) = [] | beta (Lt (Sub (bw, bx))) = [] | beta (Lt (Mul (by, bz))) = [] | beta (Le (C co)) = [] | beta (Le (Bound cp)) = [] | beta (Le (Neg ct)) = [] | beta (Le (Add (cu, cv))) = [] | beta (Le (Sub (cw, cx))) = [] | beta (Le (Mul (cy, cz))) = [] | beta (Gt (C doa)) = [] | beta (Gt (Bound dp)) = [] | beta (Gt (Neg dt)) = [] | beta (Gt (Add (du, dv))) = [] | beta (Gt (Sub (dw, dx))) = [] | beta (Gt (Mul (dy, dz))) = [] | beta (Ge (C eo)) = [] | beta (Ge (Bound ep)) = [] | beta (Ge (Neg et)) = [] | beta (Ge (Add (eu, ev))) = [] | beta (Ge (Sub (ew, ex))) = [] | beta (Ge (Mul (ey, ez))) = [] | beta (Eq (C fo)) = [] | beta (Eq (Bound fp)) = [] | beta (Eq (Neg ft)) = [] | beta (Eq (Add (fu, fv))) = [] | beta (Eq (Sub (fw, fx))) = [] | beta (Eq (Mul (fy, fz))) = [] | beta (NEq (C go)) = [] | beta (NEq (Bound gp)) = [] | beta (NEq (Neg gt)) = [] | beta (NEq (Add (gu, gv))) = [] | beta (NEq (Sub (gw, gx))) = [] | beta (NEq (Mul (gy, gz))) = [] | beta (Dvd (aa, ab)) = [] | beta (NDvd (ac, ad)) = [] | beta (Not ae) = [] | beta (Imp (aj, ak)) = [] | beta (Iff (al, am)) = [] | beta (E an) = [] | beta (A ao) = [] | beta (Closed ap) = [] | beta (NClosed aq) = [] | beta (Lt (Cn (cm, c, e))) = (if eqop eq_nat cm 0 then [] else []) | beta (Le (Cn (dm, c, e))) = (if eqop eq_nat dm 0 then [] else []) | beta (Gt (Cn (em, c, e))) = (if eqop eq_nat em 0 then [Neg e] else []) | beta (Ge (Cn (fm, c, e))) = (if eqop eq_nat fm 0 then [Sub (C (~1 : IntInf.int), e)] else []) | beta (Eq (Cn (gm, c, e))) = (if eqop eq_nat gm 0 then [Sub (C (~1 : IntInf.int), e)] else []) | beta (NEq (Cn (hm, c, e))) = (if eqop eq_nat hm 0 then [Neg e] else []); fun member A_ x [] = false | member A_ x (y :: ys) = eqop A_ x y orelse member A_ x ys; fun remdups A_ [] = [] | remdups A_ (x :: xs) = (if member A_ x xs then remdups A_ xs else x :: remdups A_ xs); fun delta (And (p, q)) = zlcm (delta p) (delta q) | delta (Or (p, q)) = zlcm (delta p) (delta q) | delta T = (1 : IntInf.int) | delta F = (1 : IntInf.int) | delta (Lt u) = (1 : IntInf.int) | delta (Le v) = (1 : IntInf.int) | delta (Gt w) = (1 : IntInf.int) | delta (Ge x) = (1 : IntInf.int) | delta (Eq y) = (1 : IntInf.int) | delta (NEq z) = (1 : IntInf.int) | delta (Dvd (aa, C bo)) = (1 : IntInf.int) | delta (Dvd (aa, Bound bp)) = (1 : IntInf.int) | delta (Dvd (aa, Neg bt)) = (1 : IntInf.int) | delta (Dvd (aa, Add (bu, bv))) = (1 : IntInf.int) | delta (Dvd (aa, Sub (bw, bx))) = (1 : IntInf.int) | delta (Dvd (aa, Mul (by, bz))) = (1 : IntInf.int) | delta (NDvd (ac, C co)) = (1 : IntInf.int) | delta (NDvd (ac, Bound cp)) = (1 : IntInf.int) | delta (NDvd (ac, Neg ct)) = (1 : IntInf.int) | delta (NDvd (ac, Add (cu, cv))) = (1 : IntInf.int) | delta (NDvd (ac, Sub (cw, cx))) = (1 : IntInf.int) | delta (NDvd (ac, Mul (cy, cz))) = (1 : IntInf.int) | delta (Not ae) = (1 : IntInf.int) | delta (Imp (aj, ak)) = (1 : IntInf.int) | delta (Iff (al, am)) = (1 : IntInf.int) | delta (E an) = (1 : IntInf.int) | delta (A ao) = (1 : IntInf.int) | delta (Closed ap) = (1 : IntInf.int) | delta (NClosed aq) = (1 : IntInf.int) | delta (Dvd (i, Cn (cm, c, e))) = (if eqop eq_nat cm 0 then i else (1 : IntInf.int)) | delta (NDvd (i, Cn (dm, c, e))) = (if eqop eq_nat dm 0 then i else (1 : IntInf.int)); fun div_int a b = fst (divmoda a b); fun a_beta (And (p, q)) = (fn k => And (a_beta p k, a_beta q k)) | a_beta (Or (p, q)) = (fn k => Or (a_beta p k, a_beta q k)) | a_beta T = (fn k => T) | a_beta F = (fn k => F) | a_beta (Lt (C bo)) = (fn k => Lt (C bo)) | a_beta (Lt (Bound bp)) = (fn k => Lt (Bound bp)) | a_beta (Lt (Neg bt)) = (fn k => Lt (Neg bt)) | a_beta (Lt (Add (bu, bv))) = (fn k => Lt (Add (bu, bv))) | a_beta (Lt (Sub (bw, bx))) = (fn k => Lt (Sub (bw, bx))) | a_beta (Lt (Mul (by, bz))) = (fn k => Lt (Mul (by, bz))) | a_beta (Le (C co)) = (fn k => Le (C co)) | a_beta (Le (Bound cp)) = (fn k => Le (Bound cp)) | a_beta (Le (Neg ct)) = (fn k => Le (Neg ct)) | a_beta (Le (Add (cu, cv))) = (fn k => Le (Add (cu, cv))) | a_beta (Le (Sub (cw, cx))) = (fn k => Le (Sub (cw, cx))) | a_beta (Le (Mul (cy, cz))) = (fn k => Le (Mul (cy, cz))) | a_beta (Gt (C doa)) = (fn k => Gt (C doa)) | a_beta (Gt (Bound dp)) = (fn k => Gt (Bound dp)) | a_beta (Gt (Neg dt)) = (fn k => Gt (Neg dt)) | a_beta (Gt (Add (du, dv))) = (fn k => Gt (Add (du, dv))) | a_beta (Gt (Sub (dw, dx))) = (fn k => Gt (Sub (dw, dx))) | a_beta (Gt (Mul (dy, dz))) = (fn k => Gt (Mul (dy, dz))) | a_beta (Ge (C eo)) = (fn k => Ge (C eo)) | a_beta (Ge (Bound ep)) = (fn k => Ge (Bound ep)) | a_beta (Ge (Neg et)) = (fn k => Ge (Neg et)) | a_beta (Ge (Add (eu, ev))) = (fn k => Ge (Add (eu, ev))) | a_beta (Ge (Sub (ew, ex))) = (fn k => Ge (Sub (ew, ex))) | a_beta (Ge (Mul (ey, ez))) = (fn k => Ge (Mul (ey, ez))) | a_beta (Eq (C fo)) = (fn k => Eq (C fo)) | a_beta (Eq (Bound fp)) = (fn k => Eq (Bound fp)) | a_beta (Eq (Neg ft)) = (fn k => Eq (Neg ft)) | a_beta (Eq (Add (fu, fv))) = (fn k => Eq (Add (fu, fv))) | a_beta (Eq (Sub (fw, fx))) = (fn k => Eq (Sub (fw, fx))) | a_beta (Eq (Mul (fy, fz))) = (fn k => Eq (Mul (fy, fz))) | a_beta (NEq (C go)) = (fn k => NEq (C go)) | a_beta (NEq (Bound gp)) = (fn k => NEq (Bound gp)) | a_beta (NEq (Neg gt)) = (fn k => NEq (Neg gt)) | a_beta (NEq (Add (gu, gv))) = (fn k => NEq (Add (gu, gv))) | a_beta (NEq (Sub (gw, gx))) = (fn k => NEq (Sub (gw, gx))) | a_beta (NEq (Mul (gy, gz))) = (fn k => NEq (Mul (gy, gz))) | a_beta (Dvd (aa, C ho)) = (fn k => Dvd (aa, C ho)) | a_beta (Dvd (aa, Bound hp)) = (fn k => Dvd (aa, Bound hp)) | a_beta (Dvd (aa, Neg ht)) = (fn k => Dvd (aa, Neg ht)) | a_beta (Dvd (aa, Add (hu, hv))) = (fn k => Dvd (aa, Add (hu, hv))) | a_beta (Dvd (aa, Sub (hw, hx))) = (fn k => Dvd (aa, Sub (hw, hx))) | a_beta (Dvd (aa, Mul (hy, hz))) = (fn k => Dvd (aa, Mul (hy, hz))) | a_beta (NDvd (ac, C io)) = (fn k => NDvd (ac, C io)) | a_beta (NDvd (ac, Bound ip)) = (fn k => NDvd (ac, Bound ip)) | a_beta (NDvd (ac, Neg it)) = (fn k => NDvd (ac, Neg it)) | a_beta (NDvd (ac, Add (iu, iv))) = (fn k => NDvd (ac, Add (iu, iv))) | a_beta (NDvd (ac, Sub (iw, ix))) = (fn k => NDvd (ac, Sub (iw, ix))) | a_beta (NDvd (ac, Mul (iy, iz))) = (fn k => NDvd (ac, Mul (iy, iz))) | a_beta (Not ae) = (fn k => Not ae) | a_beta (Imp (aj, ak)) = (fn k => Imp (aj, ak)) | a_beta (Iff (al, am)) = (fn k => Iff (al, am)) | a_beta (E an) = (fn k => E an) | a_beta (A ao) = (fn k => A ao) | a_beta (Closed ap) = (fn k => Closed ap) | a_beta (NClosed aq) = (fn k => NClosed aq) | a_beta (Lt (Cn (cm, c, e))) = (if eqop eq_nat cm 0 then (fn k => Lt (Cn (0, (1 : IntInf.int), Mul (div_int k c, e)))) else (fn k => Lt (Cn (suc (minus_nat cm 1), c, e)))) | a_beta (Le (Cn (dm, c, e))) = (if eqop eq_nat dm 0 then (fn k => Le (Cn (0, (1 : IntInf.int), Mul (div_int k c, e)))) else (fn k => Le (Cn (suc (minus_nat dm 1), c, e)))) | a_beta (Gt (Cn (em, c, e))) = (if eqop eq_nat em 0 then (fn k => Gt (Cn (0, (1 : IntInf.int), Mul (div_int k c, e)))) else (fn k => Gt (Cn (suc (minus_nat em 1), c, e)))) | a_beta (Ge (Cn (fm, c, e))) = (if eqop eq_nat fm 0 then (fn k => Ge (Cn (0, (1 : IntInf.int), Mul (div_int k c, e)))) else (fn k => Ge (Cn (suc (minus_nat fm 1), c, e)))) | a_beta (Eq (Cn (gm, c, e))) = (if eqop eq_nat gm 0 then (fn k => Eq (Cn (0, (1 : IntInf.int), Mul (div_int k c, e)))) else (fn k => Eq (Cn (suc (minus_nat gm 1), c, e)))) | a_beta (NEq (Cn (hm, c, e))) = (if eqop eq_nat hm 0 then (fn k => NEq (Cn (0, (1 : IntInf.int), Mul (div_int k c, e)))) else (fn k => NEq (Cn (suc (minus_nat hm 1), c, e)))) | a_beta (Dvd (i, Cn (im, c, e))) = (if eqop eq_nat im 0 then (fn k => Dvd (IntInf.* (div_int k c, i), Cn (0, (1 : IntInf.int), Mul (div_int k c, e)))) else (fn k => Dvd (i, Cn (suc (minus_nat im 1), c, e)))) | a_beta (NDvd (i, Cn (jm, c, e))) = (if eqop eq_nat jm 0 then (fn k => NDvd (IntInf.* (div_int k c, i), Cn (0, (1 : IntInf.int), Mul (div_int k c, e)))) else (fn k => NDvd (i, Cn (suc (minus_nat jm 1), c, e)))); fun zeta (And (p, q)) = zlcm (zeta p) (zeta q) | zeta (Or (p, q)) = zlcm (zeta p) (zeta q) | zeta T = (1 : IntInf.int) | zeta F = (1 : IntInf.int) | zeta (Lt (C bo)) = (1 : IntInf.int) | zeta (Lt (Bound bp)) = (1 : IntInf.int) | zeta (Lt (Neg bt)) = (1 : IntInf.int) | zeta (Lt (Add (bu, bv))) = (1 : IntInf.int) | zeta (Lt (Sub (bw, bx))) = (1 : IntInf.int) | zeta (Lt (Mul (by, bz))) = (1 : IntInf.int) | zeta (Le (C co)) = (1 : IntInf.int) | zeta (Le (Bound cp)) = (1 : IntInf.int) | zeta (Le (Neg ct)) = (1 : IntInf.int) | zeta (Le (Add (cu, cv))) = (1 : IntInf.int) | zeta (Le (Sub (cw, cx))) = (1 : IntInf.int) | zeta (Le (Mul (cy, cz))) = (1 : IntInf.int) | zeta (Gt (C doa)) = (1 : IntInf.int) | zeta (Gt (Bound dp)) = (1 : IntInf.int) | zeta (Gt (Neg dt)) = (1 : IntInf.int) | zeta (Gt (Add (du, dv))) = (1 : IntInf.int) | zeta (Gt (Sub (dw, dx))) = (1 : IntInf.int) | zeta (Gt (Mul (dy, dz))) = (1 : IntInf.int) | zeta (Ge (C eo)) = (1 : IntInf.int) | zeta (Ge (Bound ep)) = (1 : IntInf.int) | zeta (Ge (Neg et)) = (1 : IntInf.int) | zeta (Ge (Add (eu, ev))) = (1 : IntInf.int) | zeta (Ge (Sub (ew, ex))) = (1 : IntInf.int) | zeta (Ge (Mul (ey, ez))) = (1 : IntInf.int) | zeta (Eq (C fo)) = (1 : IntInf.int) | zeta (Eq (Bound fp)) = (1 : IntInf.int) | zeta (Eq (Neg ft)) = (1 : IntInf.int) | zeta (Eq (Add (fu, fv))) = (1 : IntInf.int) | zeta (Eq (Sub (fw, fx))) = (1 : IntInf.int) | zeta (Eq (Mul (fy, fz))) = (1 : IntInf.int) | zeta (NEq (C go)) = (1 : IntInf.int) | zeta (NEq (Bound gp)) = (1 : IntInf.int) | zeta (NEq (Neg gt)) = (1 : IntInf.int) | zeta (NEq (Add (gu, gv))) = (1 : IntInf.int) | zeta (NEq (Sub (gw, gx))) = (1 : IntInf.int) | zeta (NEq (Mul (gy, gz))) = (1 : IntInf.int) | zeta (Dvd (aa, C ho)) = (1 : IntInf.int) | zeta (Dvd (aa, Bound hp)) = (1 : IntInf.int) | zeta (Dvd (aa, Neg ht)) = (1 : IntInf.int) | zeta (Dvd (aa, Add (hu, hv))) = (1 : IntInf.int) | zeta (Dvd (aa, Sub (hw, hx))) = (1 : IntInf.int) | zeta (Dvd (aa, Mul (hy, hz))) = (1 : IntInf.int) | zeta (NDvd (ac, C io)) = (1 : IntInf.int) | zeta (NDvd (ac, Bound ip)) = (1 : IntInf.int) | zeta (NDvd (ac, Neg it)) = (1 : IntInf.int) | zeta (NDvd (ac, Add (iu, iv))) = (1 : IntInf.int) | zeta (NDvd (ac, Sub (iw, ix))) = (1 : IntInf.int) | zeta (NDvd (ac, Mul (iy, iz))) = (1 : IntInf.int) | zeta (Not ae) = (1 : IntInf.int) | zeta (Imp (aj, ak)) = (1 : IntInf.int) | zeta (Iff (al, am)) = (1 : IntInf.int) | zeta (E an) = (1 : IntInf.int) | zeta (A ao) = (1 : IntInf.int) | zeta (Closed ap) = (1 : IntInf.int) | zeta (NClosed aq) = (1 : IntInf.int) | zeta (Lt (Cn (cm, c, e))) = (if eqop eq_nat cm 0 then c else (1 : IntInf.int)) | zeta (Le (Cn (dm, c, e))) = (if eqop eq_nat dm 0 then c else (1 : IntInf.int)) | zeta (Gt (Cn (em, c, e))) = (if eqop eq_nat em 0 then c else (1 : IntInf.int)) | zeta (Ge (Cn (fm, c, e))) = (if eqop eq_nat fm 0 then c else (1 : IntInf.int)) | zeta (Eq (Cn (gm, c, e))) = (if eqop eq_nat gm 0 then c else (1 : IntInf.int)) | zeta (NEq (Cn (hm, c, e))) = (if eqop eq_nat hm 0 then c else (1 : IntInf.int)) | zeta (Dvd (i, Cn (im, c, e))) = (if eqop eq_nat im 0 then c else (1 : IntInf.int)) | zeta (NDvd (i, Cn (jm, c, e))) = (if eqop eq_nat jm 0 then c else (1 : IntInf.int)); fun zsplit0 (C c) = ((0 : IntInf.int), C c) | zsplit0 (Bound n) = (if eqop eq_nat n 0 then ((1 : IntInf.int), C (0 : IntInf.int)) else ((0 : IntInf.int), Bound n)) | zsplit0 (Cn (n, i, a)) = let val aa = zsplit0 a; val (i', a') = aa; in (if eqop eq_nat n 0 then (IntInf.+ (i, i'), a') else (i', Cn (n, i, a'))) end | zsplit0 (Neg a) = let val aa = zsplit0 a; val (i', a') = aa; in (IntInf.~ i', Neg a') end | zsplit0 (Add (a, b)) = let val aa = zsplit0 a; val (ia, a') = aa; val ab = zsplit0 b; val (ib, b') = ab; in (IntInf.+ (ia, ib), Add (a', b')) end | zsplit0 (Sub (a, b)) = let val aa = zsplit0 a; val (ia, a') = aa; val ab = zsplit0 b; val (ib, b') = ab; in (IntInf.- (ia, ib), Sub (a', b')) end | zsplit0 (Mul (i, a)) = let val aa = zsplit0 a; val (i', a') = aa; in (IntInf.* (i, i'), Mul (i, a')) end; fun zlfm (And (p, q)) = And (zlfm p, zlfm q) | zlfm (Or (p, q)) = Or (zlfm p, zlfm q) | zlfm (Imp (p, q)) = Or (zlfm (Not p), zlfm q) | zlfm (Iff (p, q)) = Or (And (zlfm p, zlfm q), And (zlfm (Not p), zlfm (Not q))) | zlfm (Lt a) = let val aa = zsplit0 a; val (c, r) = aa; in (if eqop eq_int c (0 : IntInf.int) then Lt r else (if IntInf.< ((0 : IntInf.int), c) then Lt (Cn (0, c, r)) else Gt (Cn (0, IntInf.~ c, Neg r)))) end | zlfm (Le a) = let val aa = zsplit0 a; val (c, r) = aa; in (if eqop eq_int c (0 : IntInf.int) then Le r else (if IntInf.< ((0 : IntInf.int), c) then Le (Cn (0, c, r)) else Ge (Cn (0, IntInf.~ c, Neg r)))) end | zlfm (Gt a) = let val aa = zsplit0 a; val (c, r) = aa; in (if eqop eq_int c (0 : IntInf.int) then Gt r else (if IntInf.< ((0 : IntInf.int), c) then Gt (Cn (0, c, r)) else Lt (Cn (0, IntInf.~ c, Neg r)))) end | zlfm (Ge a) = let val aa = zsplit0 a; val (c, r) = aa; in (if eqop eq_int c (0 : IntInf.int) then Ge r else (if IntInf.< ((0 : IntInf.int), c) then Ge (Cn (0, c, r)) else Le (Cn (0, IntInf.~ c, Neg r)))) end | zlfm (Eq a) = let val aa = zsplit0 a; val (c, r) = aa; in (if eqop eq_int c (0 : IntInf.int) then Eq r else (if IntInf.< ((0 : IntInf.int), c) then Eq (Cn (0, c, r)) else Eq (Cn (0, IntInf.~ c, Neg r)))) end | zlfm (NEq a) = let val aa = zsplit0 a; val (c, r) = aa; in (if eqop eq_int c (0 : IntInf.int) then NEq r else (if IntInf.< ((0 : IntInf.int), c) then NEq (Cn (0, c, r)) else NEq (Cn (0, IntInf.~ c, Neg r)))) end | zlfm (Dvd (i, a)) = (if eqop eq_int i (0 : IntInf.int) then zlfm (Eq a) else let val aa = zsplit0 a; val (c, r) = aa; in (if eqop eq_int c (0 : IntInf.int) then Dvd (abs_int i, r) else (if IntInf.< ((0 : IntInf.int), c) then Dvd (abs_int i, Cn (0, c, r)) else Dvd (abs_int i, Cn (0, IntInf.~ c, Neg r)))) end) | zlfm (NDvd (i, a)) = (if eqop eq_int i (0 : IntInf.int) then zlfm (NEq a) else let val aa = zsplit0 a; val (c, r) = aa; in (if eqop eq_int c (0 : IntInf.int) then NDvd (abs_int i, r) else (if IntInf.< ((0 : IntInf.int), c) then NDvd (abs_int i, Cn (0, c, r)) else NDvd (abs_int i, Cn (0, IntInf.~ c, Neg r)))) end) | zlfm (Not (And (p, q))) = Or (zlfm (Not p), zlfm (Not q)) | zlfm (Not (Or (p, q))) = And (zlfm (Not p), zlfm (Not q)) | zlfm (Not (Imp (p, q))) = And (zlfm p, zlfm (Not q)) | zlfm (Not (Iff (p, q))) = Or (And (zlfm p, zlfm (Not q)), And (zlfm (Not p), zlfm q)) | zlfm (Not (Not p)) = zlfm p | zlfm (Not T) = F | zlfm (Not F) = T | zlfm (Not (Lt a)) = zlfm (Ge a) | zlfm (Not (Le a)) = zlfm (Gt a) | zlfm (Not (Gt a)) = zlfm (Le a) | zlfm (Not (Ge a)) = zlfm (Lt a) | zlfm (Not (Eq a)) = zlfm (NEq a) | zlfm (Not (NEq a)) = zlfm (Eq a) | zlfm (Not (Dvd (i, a))) = zlfm (NDvd (i, a)) | zlfm (Not (NDvd (i, a))) = zlfm (Dvd (i, a)) | zlfm (Not (Closed p)) = NClosed p | zlfm (Not (NClosed p)) = Closed p | zlfm T = T | zlfm F = F | zlfm (Not (E ci)) = Not (E ci) | zlfm (Not (A cj)) = Not (A cj) | zlfm (E ao) = E ao | zlfm (A ap) = A ap | zlfm (Closed aq) = Closed aq | zlfm (NClosed ar) = NClosed ar; fun unita p = let val p' = zlfm p; val l = zeta p'; val q = And (Dvd (l, Cn (0, (1 : IntInf.int), C (0 : IntInf.int))), a_beta p' l); val d = delta q; val b = remdups eq_numa (map simpnum (beta q)); val a = remdups eq_numa (map simpnum (alpha q)); in (if IntInf.<= (size_list b, size_list a) then (q, (b, d)) else (mirror q, (a, d))) end; fun cooper p = let val a = unita p; val (q, aa) = a; val (b, d) = aa; val js = iupt (1 : IntInf.int) d; val mq = simpfm (minusinf q); val md = evaldjf (fn j => simpfm (subst0 (C j) mq)) js; in (if eqop eq_fma md T then T else let val qd = evaldjf (fn ab as (ba, j) => simpfm (subst0 (Add (ba, C j)) q)) (concat (map (fn ba => map (fn ab => (ba, ab)) js) b)); in decr (disj md qd) end) end; fun prep (E T) = T | prep (E F) = F | prep (E (Or (p, q))) = Or (prep (E p), prep (E q)) | prep (E (Imp (p, q))) = Or (prep (E (Not p)), prep (E q)) | prep (E (Iff (p, q))) = Or (prep (E (And (p, q))), prep (E (And (Not p, Not q)))) | prep (E (Not (And (p, q)))) = Or (prep (E (Not p)), prep (E (Not q))) | prep (E (Not (Imp (p, q)))) = prep (E (And (p, Not q))) | prep (E (Not (Iff (p, q)))) = Or (prep (E (And (p, Not q))), prep (E (And (Not p, q)))) | prep (E (Lt ef)) = E (prep (Lt ef)) | prep (E (Le eg)) = E (prep (Le eg)) | prep (E (Gt eh)) = E (prep (Gt eh)) | prep (E (Ge ei)) = E (prep (Ge ei)) | prep (E (Eq ej)) = E (prep (Eq ej)) | prep (E (NEq ek)) = E (prep (NEq ek)) | prep (E (Dvd (el, em))) = E (prep (Dvd (el, em))) | prep (E (NDvd (en, eo))) = E (prep (NDvd (en, eo))) | prep (E (Not T)) = E (prep (Not T)) | prep (E (Not F)) = E (prep (Not F)) | prep (E (Not (Lt gw))) = E (prep (Not (Lt gw))) | prep (E (Not (Le gx))) = E (prep (Not (Le gx))) | prep (E (Not (Gt gy))) = E (prep (Not (Gt gy))) | prep (E (Not (Ge gz))) = E (prep (Not (Ge gz))) | prep (E (Not (Eq ha))) = E (prep (Not (Eq ha))) | prep (E (Not (NEq hb))) = E (prep (Not (NEq hb))) | prep (E (Not (Dvd (hc, hd)))) = E (prep (Not (Dvd (hc, hd)))) | prep (E (Not (NDvd (he, hf)))) = E (prep (Not (NDvd (he, hf)))) | prep (E (Not (Not hg))) = E (prep (Not (Not hg))) | prep (E (Not (Or (hj, hk)))) = E (prep (Not (Or (hj, hk)))) | prep (E (Not (E hp))) = E (prep (Not (E hp))) | prep (E (Not (A hq))) = E (prep (Not (A hq))) | prep (E (Not (Closed hr))) = E (prep (Not (Closed hr))) | prep (E (Not (NClosed hs))) = E (prep (Not (NClosed hs))) | prep (E (And (eq, er))) = E (prep (And (eq, er))) | prep (E (E ey)) = E (prep (E ey)) | prep (E (A ez)) = E (prep (A ez)) | prep (E (Closed fa)) = E (prep (Closed fa)) | prep (E (NClosed fb)) = E (prep (NClosed fb)) | prep (A (And (p, q))) = And (prep (A p), prep (A q)) | prep (A T) = prep (Not (E (Not T))) | prep (A F) = prep (Not (E (Not F))) | prep (A (Lt jn)) = prep (Not (E (Not (Lt jn)))) | prep (A (Le jo)) = prep (Not (E (Not (Le jo)))) | prep (A (Gt jp)) = prep (Not (E (Not (Gt jp)))) | prep (A (Ge jq)) = prep (Not (E (Not (Ge jq)))) | prep (A (Eq jr)) = prep (Not (E (Not (Eq jr)))) | prep (A (NEq js)) = prep (Not (E (Not (NEq js)))) | prep (A (Dvd (jt, ju))) = prep (Not (E (Not (Dvd (jt, ju))))) | prep (A (NDvd (jv, jw))) = prep (Not (E (Not (NDvd (jv, jw))))) | prep (A (Not jx)) = prep (Not (E (Not (Not jx)))) | prep (A (Or (ka, kb))) = prep (Not (E (Not (Or (ka, kb))))) | prep (A (Imp (kc, kd))) = prep (Not (E (Not (Imp (kc, kd))))) | prep (A (Iff (ke, kf))) = prep (Not (E (Not (Iff (ke, kf))))) | prep (A (E kg)) = prep (Not (E (Not (E kg)))) | prep (A (A kh)) = prep (Not (E (Not (A kh)))) | prep (A (Closed ki)) = prep (Not (E (Not (Closed ki)))) | prep (A (NClosed kj)) = prep (Not (E (Not (NClosed kj)))) | prep (Not (Not p)) = prep p | prep (Not (And (p, q))) = Or (prep (Not p), prep (Not q)) | prep (Not (A p)) = prep (E (Not p)) | prep (Not (Or (p, q))) = And (prep (Not p), prep (Not q)) | prep (Not (Imp (p, q))) = And (prep p, prep (Not q)) | prep (Not (Iff (p, q))) = Or (prep (And (p, Not q)), prep (And (Not p, q))) | prep (Not T) = Not (prep T) | prep (Not F) = Not (prep F) | prep (Not (Lt bo)) = Not (prep (Lt bo)) | prep (Not (Le bp)) = Not (prep (Le bp)) | prep (Not (Gt bq)) = Not (prep (Gt bq)) | prep (Not (Ge br)) = Not (prep (Ge br)) | prep (Not (Eq bs)) = Not (prep (Eq bs)) | prep (Not (NEq bt)) = Not (prep (NEq bt)) | prep (Not (Dvd (bu, bv))) = Not (prep (Dvd (bu, bv))) | prep (Not (NDvd (bw, bx))) = Not (prep (NDvd (bw, bx))) | prep (Not (E ch)) = Not (prep (E ch)) | prep (Not (Closed cj)) = Not (prep (Closed cj)) | prep (Not (NClosed ck)) = Not (prep (NClosed ck)) | prep (Or (p, q)) = Or (prep p, prep q) | prep (And (p, q)) = And (prep p, prep q) | prep (Imp (p, q)) = prep (Or (Not p, q)) | prep (Iff (p, q)) = Or (prep (And (p, q)), prep (And (Not p, Not q))) | prep T = T | prep F = F | prep (Lt u) = Lt u | prep (Le v) = Le v | prep (Gt w) = Gt w | prep (Ge x) = Ge x | prep (Eq y) = Eq y | prep (NEq z) = NEq z | prep (Dvd (aa, ab)) = Dvd (aa, ab) | prep (NDvd (ac, ad)) = NDvd (ac, ad) | prep (Closed ap) = Closed ap | prep (NClosed aq) = NClosed aq; fun qelim (E p) = (fn qe => dj qe (qelim p qe)) | qelim (A p) = (fn qe => nota (qe (qelim (Not p) qe))) | qelim (Not p) = (fn qe => nota (qelim p qe)) | qelim (And (p, q)) = (fn qe => conj (qelim p qe) (qelim q qe)) | qelim (Or (p, q)) = (fn qe => disj (qelim p qe) (qelim q qe)) | qelim (Imp (p, q)) = (fn qe => impa (qelim p qe) (qelim q qe)) | qelim (Iff (p, q)) = (fn qe => iffa (qelim p qe) (qelim q qe)) | qelim T = (fn y => simpfm T) | qelim F = (fn y => simpfm F) | qelim (Lt u) = (fn y => simpfm (Lt u)) | qelim (Le v) = (fn y => simpfm (Le v)) | qelim (Gt w) = (fn y => simpfm (Gt w)) | qelim (Ge x) = (fn y => simpfm (Ge x)) | qelim (Eq y) = (fn ya => simpfm (Eq y)) | qelim (NEq z) = (fn y => simpfm (NEq z)) | qelim (Dvd (aa, ab)) = (fn y => simpfm (Dvd (aa, ab))) | qelim (NDvd (ac, ad)) = (fn y => simpfm (NDvd (ac, ad))) | qelim (Closed ap) = (fn y => simpfm (Closed ap)) | qelim (NClosed aq) = (fn y => simpfm (NClosed aq)); fun pa p = qelim (prep p) cooper; fun neg z = IntInf.< (z, (0 : IntInf.int)); fun nat_aux i n = (if IntInf.<= (i, (0 : IntInf.int)) then n else nat_aux (IntInf.- (i, (1 : IntInf.int))) (suc n)); fun adjust b = (fn a as (q, r) => (if IntInf.<= ((0 : IntInf.int), IntInf.- (r, b)) then (IntInf.+ (IntInf.* ((2 : IntInf.int), q), (1 : IntInf.int)), IntInf.- (r, b)) else (IntInf.* ((2 : IntInf.int), q), r))); fun posDivAlg a b = (if IntInf.< (a, b) orelse IntInf.<= (b, (0 : IntInf.int)) then ((0 : IntInf.int), a) else adjust b (posDivAlg a (IntInf.* ((2 : IntInf.int), b)))); end; (*struct GeneratedCooper*)