(* Title: HOL/Tools/inductive_set_package.ML Author: Stefan Berghofer, TU Muenchen Wrapper for defining inductive sets using package for inductive predicates, including infrastructure for converting between predicates and sets. *) signature INDUCTIVE_SET_PACKAGE = sig val to_set_att: thm list -> attribute val to_pred_att: thm list -> attribute val pred_set_conv_att: attribute val add_inductive_i: InductivePackage.inductive_flags -> ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list -> thm list -> local_theory -> InductivePackage.inductive_result * local_theory val add_inductive: bool -> bool -> (binding * string option * mixfix) list -> (binding * string option * mixfix) list -> (Attrib.binding * string) list -> (Facts.ref * Attrib.src list) list -> bool -> local_theory -> InductivePackage.inductive_result * local_theory val codegen_preproc: theory -> thm list -> thm list val setup: theory -> theory end; structure InductiveSetPackage: INDUCTIVE_SET_PACKAGE = struct (**** simplify {(x1, ..., xn). (x1, ..., xn) : S} to S ****) val collect_mem_simproc = Simplifier.simproc (theory "Set") "Collect_mem" ["Collect t"] (fn thy => fn ss => fn S as Const ("Collect", Type ("fun", [_, T])) $ t => let val (u, Ts, ps) = HOLogic.strip_split t in case u of (c as Const ("op :", _)) $ q $ S' => (case try (HOLogic.dest_tuple' ps) q of NONE => NONE | SOME ts => if not (loose_bvar (S', 0)) andalso ts = map Bound (length ps downto 0) then let val simp = full_simp_tac (Simplifier.inherit_context ss (HOL_basic_ss addsimps [split_paired_all, split_conv])) 1 in SOME (Goal.prove (Simplifier.the_context ss) [] [] (Const ("==", T --> T --> propT) $ S $ S') (K (EVERY [rtac eq_reflection 1, rtac @{thm subset_antisym} 1, rtac subsetI 1, dtac CollectD 1, simp, rtac subsetI 1, rtac CollectI 1, simp]))) end else NONE) | _ => NONE end | _ => NONE); (***********************************************************************************) (* simplifies (%x y. (x, y) : S & P x y) to (%x y. (x, y) : S Int {(x, y). P x y}) *) (* and (%x y. (x, y) : S | P x y) to (%x y. (x, y) : S Un {(x, y). P x y}) *) (* used for converting "strong" (co)induction rules *) (***********************************************************************************) val anyt = Free ("t", TFree ("'t", [])); fun strong_ind_simproc tab = Simplifier.simproc_i @{theory HOL} "strong_ind" [anyt] (fn thy => fn ss => fn t => let fun close p t f = let val vs = Term.add_vars t [] in Drule.instantiate' [] (rev (map (SOME o cterm_of thy o Var) vs)) (p (fold (Logic.all o Var) vs t) f) end; fun mkop "op &" T x = SOME (Const (@{const_name "Int"}, T --> T --> T), x) | mkop "op |" T x = SOME (Const (@{const_name "Un"}, T --> T --> T), x) | mkop _ _ _ = NONE; fun mk_collect p T t = let val U = HOLogic.dest_setT T in HOLogic.Collect_const U $ HOLogic.ap_split' (HOLogic.prod_factors p) U HOLogic.boolT t end; fun decomp (Const (s, _) $ ((m as Const ("op :", Type (_, [_, Type (_, [T, _])]))) $ p $ S) $ u) = mkop s T (m, p, S, mk_collect p T (head_of u)) | decomp (Const (s, _) $ u $ ((m as Const ("op :", Type (_, [_, Type (_, [T, _])]))) $ p $ S)) = mkop s T (m, p, mk_collect p T (head_of u), S) | decomp _ = NONE; val simp = full_simp_tac (Simplifier.inherit_context ss (HOL_basic_ss addsimps [mem_Collect_eq, split_conv])) 1; fun mk_rew t = (case strip_abs_vars t of [] => NONE | xs => (case decomp (strip_abs_body t) of NONE => NONE | SOME (bop, (m, p, S, S')) => SOME (close (Goal.prove (Simplifier.the_context ss) [] []) (Logic.mk_equals (t, list_abs (xs, m $ p $ (bop $ S $ S')))) (K (EVERY [rtac eq_reflection 1, REPEAT (rtac ext 1), rtac iffI 1, EVERY [etac conjE 1, rtac IntI 1, simp, simp, etac IntE 1, rtac conjI 1, simp, simp] ORELSE EVERY [etac disjE 1, rtac UnI1 1, simp, rtac UnI2 1, simp, etac UnE 1, rtac disjI1 1, simp, rtac disjI2 1, simp]]))) handle ERROR _ => NONE)) in case strip_comb t of (h as Const (name, _), ts) => (case Symtab.lookup tab name of SOME _ => let val rews = map mk_rew ts in if forall is_none rews then NONE else SOME (fold (fn th1 => fn th2 => combination th2 th1) (map2 (fn SOME r => K r | NONE => reflexive o cterm_of thy) rews ts) (reflexive (cterm_of thy h))) end | NONE => NONE) | _ => NONE end); (* only eta contract terms occurring as arguments of functions satisfying p *) fun eta_contract p = let fun eta b (Abs (a, T, body)) = (case eta b body of body' as (f $ Bound 0) => if loose_bvar1 (f, 0) orelse not b then Abs (a, T, body') else incr_boundvars ~1 f | body' => Abs (a, T, body')) | eta b (t $ u) = eta b t $ eta (p (head_of t)) u | eta b t = t in eta false end; fun eta_contract_thm p = Conv.fconv_rule (Conv.then_conv (Thm.beta_conversion true, fn ct => Thm.transitive (Thm.eta_conversion ct) (Thm.symmetric (Thm.eta_conversion (cterm_of (theory_of_cterm ct) (eta_contract p (term_of ct))))))); (***********************************************************) (* rules for converting between predicate and set notation *) (* *) (* rules for converting predicates to sets have the form *) (* P (%x y. (x, y) : s) = (%x y. (x, y) : S s) *) (* *) (* rules for converting sets to predicates have the form *) (* S {(x, y). p x y} = {(x, y). P p x y} *) (* *) (* where s and p are parameters *) (***********************************************************) structure PredSetConvData = GenericDataFun ( type T = {(* rules for converting predicates to sets *) to_set_simps: thm list, (* rules for converting sets to predicates *) to_pred_simps: thm list, (* arities of functions of type t set => ... => u set *) set_arities: (typ * (int list list option list * int list list option)) list Symtab.table, (* arities of functions of type (t => ... => bool) => u => ... => bool *) pred_arities: (typ * (int list list option list * int list list option)) list Symtab.table}; val empty = {to_set_simps = [], to_pred_simps = [], set_arities = Symtab.empty, pred_arities = Symtab.empty}; val extend = I; fun merge _ ({to_set_simps = to_set_simps1, to_pred_simps = to_pred_simps1, set_arities = set_arities1, pred_arities = pred_arities1}, {to_set_simps = to_set_simps2, to_pred_simps = to_pred_simps2, set_arities = set_arities2, pred_arities = pred_arities2}) : T = {to_set_simps = Thm.merge_thms (to_set_simps1, to_set_simps2), to_pred_simps = Thm.merge_thms (to_pred_simps1, to_pred_simps2), set_arities = Symtab.merge_list op = (set_arities1, set_arities2), pred_arities = Symtab.merge_list op = (pred_arities1, pred_arities2)}; ); fun name_type_of (Free p) = SOME p | name_type_of (Const p) = SOME p | name_type_of _ = NONE; fun map_type f (Free (s, T)) = Free (s, f T) | map_type f (Var (ixn, T)) = Var (ixn, f T) | map_type f _ = error "map_type"; fun find_most_specific is_inst f eq xs T = find_first (fn U => is_inst (T, f U) andalso forall (fn U' => eq (f U, f U') orelse not (is_inst (T, f U') andalso is_inst (f U', f U))) xs) xs; fun lookup_arity thy arities (s, T) = case Symtab.lookup arities s of NONE => NONE | SOME xs => find_most_specific (Sign.typ_instance thy) fst (op =) xs T; fun lookup_rule thy f rules = find_most_specific (swap #> Pattern.matches thy) (f #> fst) (op aconv) rules; fun infer_arities thy arities (optf, t) fs = case strip_comb t of (Abs (s, T, u), []) => infer_arities thy arities (NONE, u) fs | (Abs _, _) => infer_arities thy arities (NONE, Envir.beta_norm t) fs | (u, ts) => (case Option.map (lookup_arity thy arities) (name_type_of u) of SOME (SOME (_, (arity, _))) => (fold (infer_arities thy arities) (arity ~~ List.take (ts, length arity)) fs handle Subscript => error "infer_arities: bad term") | _ => fold (infer_arities thy arities) (map (pair NONE) ts) (case optf of NONE => fs | SOME f => AList.update op = (u, the_default f (Option.map (curry op inter f) (AList.lookup op = fs u))) fs)); (**************************************************************) (* derive the to_pred equation from the to_set equation *) (* *) (* 1. instantiate each set parameter with {(x, y). p x y} *) (* 2. apply %P. {(x, y). P x y} to both sides of the equation *) (* 3. simplify *) (**************************************************************) fun mk_to_pred_inst thy fs = map (fn (x, ps) => let val U = HOLogic.dest_setT (fastype_of x); val x' = map_type (K (HOLogic.prodT_factors' ps U ---> HOLogic.boolT)) x in (cterm_of thy x, cterm_of thy (HOLogic.Collect_const U $ HOLogic.ap_split' ps U HOLogic.boolT x')) end) fs; fun mk_to_pred_eq p fs optfs' T thm = let val thy = theory_of_thm thm; val insts = mk_to_pred_inst thy fs; val thm' = Thm.instantiate ([], insts) thm; val thm'' = (case optfs' of NONE => thm' RS sym | SOME fs' => let val (_, U) = split_last (binder_types T); val Ts = HOLogic.prodT_factors' fs' U; (* FIXME: should cterm_instantiate increment indexes? *) val arg_cong' = Thm.incr_indexes (Thm.maxidx_of thm + 1) arg_cong; val (arg_cong_f, _) = arg_cong' |> cprop_of |> Drule.strip_imp_concl |> Thm.dest_comb |> snd |> Drule.strip_comb |> snd |> hd |> Thm.dest_comb in thm' RS (Drule.cterm_instantiate [(arg_cong_f, cterm_of thy (Abs ("P", Ts ---> HOLogic.boolT, HOLogic.Collect_const U $ HOLogic.ap_split' fs' U HOLogic.boolT (Bound 0))))] arg_cong' RS sym) end) in Simplifier.simplify (HOL_basic_ss addsimps [mem_Collect_eq, split_conv] addsimprocs [collect_mem_simproc]) thm'' |> zero_var_indexes |> eta_contract_thm (equal p) end; (**** declare rules for converting predicates to sets ****) fun add ctxt thm (tab as {to_set_simps, to_pred_simps, set_arities, pred_arities}) = case prop_of thm of Const ("Trueprop", _) $ (Const ("op =", Type (_, [T, _])) $ lhs $ rhs) => (case body_type T of Type ("bool", []) => let val thy = Context.theory_of ctxt; fun factors_of t fs = case strip_abs_body t of Const ("op :", _) $ u $ S => if is_Free S orelse is_Var S then let val ps = HOLogic.prod_factors u in (SOME ps, (S, ps) :: fs) end else (NONE, fs) | _ => (NONE, fs); val (h, ts) = strip_comb lhs val (pfs, fs) = fold_map factors_of ts []; val ((h', ts'), fs') = (case rhs of Abs _ => (case strip_abs_body rhs of Const ("op :", _) $ u $ S => (strip_comb S, SOME (HOLogic.prod_factors u)) | _ => error "member symbol on right-hand side expected") | _ => (strip_comb rhs, NONE)) in case (name_type_of h, name_type_of h') of (SOME (s, T), SOME (s', T')) => if exists (fn (U, _) => Sign.typ_instance thy (T', U) andalso Sign.typ_instance thy (U, T')) (Symtab.lookup_list set_arities s') then (warning ("Ignoring conversion rule for operator " ^ s'); tab) else {to_set_simps = thm :: to_set_simps, to_pred_simps = mk_to_pred_eq h fs fs' T' thm :: to_pred_simps, set_arities = Symtab.insert_list op = (s', (T', (map (AList.lookup op = fs) ts', fs'))) set_arities, pred_arities = Symtab.insert_list op = (s, (T, (pfs, fs'))) pred_arities} | _ => error "set / predicate constant expected" end | _ => error "equation between predicates expected") | _ => error "equation expected"; val pred_set_conv_att = Thm.declaration_attribute (fn thm => fn ctxt => PredSetConvData.map (add ctxt thm) ctxt); (**** convert theorem in set notation to predicate notation ****) fun is_pred tab t = case Option.map (Symtab.lookup tab o fst) (name_type_of t) of SOME (SOME _) => true | _ => false; fun to_pred_simproc rules = let val rules' = map mk_meta_eq rules in Simplifier.simproc_i @{theory HOL} "to_pred" [anyt] (fn thy => K (lookup_rule thy (prop_of #> Logic.dest_equals) rules')) end; fun to_pred_proc thy rules t = case lookup_rule thy I rules t of NONE => NONE | SOME (lhs, rhs) => SOME (Envir.subst_vars (Pattern.match thy (lhs, t) (Vartab.empty, Vartab.empty)) rhs); fun to_pred thms ctxt thm = let val thy = Context.theory_of ctxt; val {to_pred_simps, set_arities, pred_arities, ...} = fold (add ctxt) thms (PredSetConvData.get ctxt); val fs = filter (is_Var o fst) (infer_arities thy set_arities (NONE, prop_of thm) []); (* instantiate each set parameter with {(x, y). p x y} *) val insts = mk_to_pred_inst thy fs in thm |> Thm.instantiate ([], insts) |> Simplifier.full_simplify (HOL_basic_ss addsimprocs [to_pred_simproc (mem_Collect_eq :: split_conv :: to_pred_simps)]) |> eta_contract_thm (is_pred pred_arities) |> RuleCases.save thm end; val to_pred_att = Thm.rule_attribute o to_pred; (**** convert theorem in predicate notation to set notation ****) fun to_set thms ctxt thm = let val thy = Context.theory_of ctxt; val {to_set_simps, pred_arities, ...} = fold (add ctxt) thms (PredSetConvData.get ctxt); val fs = filter (is_Var o fst) (infer_arities thy pred_arities (NONE, prop_of thm) []); (* instantiate each predicate parameter with %x y. (x, y) : s *) val insts = map (fn (x, ps) => let val Ts = binder_types (fastype_of x); val T = HOLogic.mk_tupleT ps Ts; val x' = map_type (K (HOLogic.mk_setT T)) x in (cterm_of thy x, cterm_of thy (list_abs (map (pair "x") Ts, HOLogic.mk_mem (HOLogic.mk_tuple' ps T (map Bound (length ps downto 0)), x')))) end) fs in thm |> Thm.instantiate ([], insts) |> Simplifier.full_simplify (HOL_basic_ss addsimps to_set_simps addsimprocs [strong_ind_simproc pred_arities, collect_mem_simproc]) |> RuleCases.save thm end; val to_set_att = Thm.rule_attribute o to_set; (**** preprocessor for code generator ****) fun codegen_preproc thy = let val {to_pred_simps, set_arities, pred_arities, ...} = PredSetConvData.get (Context.Theory thy); fun preproc thm = if exists_Const (fn (s, _) => case Symtab.lookup set_arities s of NONE => false | SOME arities => exists (fn (_, (xs, _)) => forall is_none xs) arities) (prop_of thm) then thm |> Simplifier.full_simplify (HOL_basic_ss addsimprocs [to_pred_simproc (mem_Collect_eq :: split_conv :: to_pred_simps)]) |> eta_contract_thm (is_pred pred_arities) else thm in map preproc end; fun code_ind_att optmod = to_pred_att [] #> InductiveCodegen.add optmod NONE; (**** definition of inductive sets ****) fun add_ind_set_def {quiet_mode, verbose, kind, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono} cs intros monos params cnames_syn ctxt = let val thy = ProofContext.theory_of ctxt; val {set_arities, pred_arities, to_pred_simps, ...} = PredSetConvData.get (Context.Proof ctxt); fun infer (Abs (_, _, t)) = infer t | infer (Const ("op :", _) $ t $ u) = infer_arities thy set_arities (SOME (HOLogic.prod_factors t), u) | infer (t $ u) = infer t #> infer u | infer _ = I; val new_arities = filter_out (fn (x as Free (_, T), _) => x mem params andalso length (binder_types T) > 1 | _ => false) (fold (snd #> infer) intros []); val params' = map (fn x => (case AList.lookup op = new_arities x of SOME fs => let val T = HOLogic.dest_setT (fastype_of x); val Ts = HOLogic.prodT_factors' fs T; val x' = map_type (K (Ts ---> HOLogic.boolT)) x in (x, (x', (HOLogic.Collect_const T $ HOLogic.ap_split' fs T HOLogic.boolT x', list_abs (map (pair "x") Ts, HOLogic.mk_mem (HOLogic.mk_tuple' fs T (map Bound (length fs downto 0)), x))))) end | NONE => (x, (x, (x, x))))) params; val (params1, (params2, params3)) = params' |> map snd |> split_list ||> split_list; val paramTs = map fastype_of params; (* equations for converting sets to predicates *) val ((cs', cs_info), eqns) = cs |> map (fn c as Free (s, T) => let val fs = the_default [] (AList.lookup op = new_arities c); val (Us, U) = split_last (binder_types T); val _ = Us = paramTs orelse error (Pretty.string_of (Pretty.chunks [Pretty.str "Argument types", Pretty.block (Pretty.commas (map (Syntax.pretty_typ ctxt) Us)), Pretty.str ("of " ^ s ^ " do not agree with types"), Pretty.block (Pretty.commas (map (Syntax.pretty_typ ctxt) paramTs)), Pretty.str "of declared parameters"])); val Ts = HOLogic.prodT_factors' fs U; val c' = Free (s ^ "p", map fastype_of params1 @ Ts ---> HOLogic.boolT) in ((c', (fs, U, Ts)), (list_comb (c, params2), HOLogic.Collect_const U $ HOLogic.ap_split' fs U HOLogic.boolT (list_comb (c', params1)))) end) |> split_list |>> split_list; val eqns' = eqns @ map (prop_of #> HOLogic.dest_Trueprop #> HOLogic.dest_eq) (mem_Collect_eq :: split_conv :: to_pred_simps); (* predicate version of the introduction rules *) val intros' = map (fn (name_atts, t) => (name_atts, t |> map_aterms (fn u => (case AList.lookup op = params' u of SOME (_, (u', _)) => u' | NONE => u)) |> Pattern.rewrite_term thy [] [to_pred_proc thy eqns'] |> eta_contract (member op = cs' orf is_pred pred_arities))) intros; val cnames_syn' = map (fn (b, _) => (Binding.suffix_name "p" b, NoSyn)) cnames_syn; val monos' = map (to_pred [] (Context.Proof ctxt)) monos; val ({preds, intrs, elims, raw_induct, ...}, ctxt1) = InductivePackage.add_ind_def {quiet_mode = quiet_mode, verbose = verbose, kind = kind, alt_name = Binding.empty, coind = coind, no_elim = no_elim, no_ind = no_ind, skip_mono = skip_mono, fork_mono = fork_mono} cs' intros' monos' params1 cnames_syn' ctxt; (* define inductive sets using previously defined predicates *) val (defs, ctxt2) = fold_map (LocalTheory.define Thm.internalK) (map (fn ((c_syn, (fs, U, _)), p) => (c_syn, (Attrib.empty_binding, fold_rev lambda params (HOLogic.Collect_const U $ HOLogic.ap_split' fs U HOLogic.boolT (list_comb (p, params3)))))) (cnames_syn ~~ cs_info ~~ preds)) ctxt1; (* prove theorems for converting predicate to set notation *) val ctxt3 = fold (fn (((p, c as Free (s, _)), (fs, U, Ts)), (_, (_, def))) => fn ctxt => let val conv_thm = Goal.prove ctxt (map (fst o dest_Free) params) [] (HOLogic.mk_Trueprop (HOLogic.mk_eq (list_comb (p, params3), list_abs (map (pair "x") Ts, HOLogic.mk_mem (HOLogic.mk_tuple' fs U (map Bound (length fs downto 0)), list_comb (c, params)))))) (K (REPEAT (rtac ext 1) THEN simp_tac (HOL_basic_ss addsimps [def, mem_Collect_eq, split_conv]) 1)) in ctxt |> LocalTheory.note kind ((Binding.name (s ^ "p_" ^ s ^ "_eq"), [Attrib.internal (K pred_set_conv_att)]), [conv_thm]) |> snd end) (preds ~~ cs ~~ cs_info ~~ defs) ctxt2; (* convert theorems to set notation *) val rec_name = if Binding.is_empty alt_name then Binding.name (space_implode "_" (map (Binding.name_of o fst) cnames_syn)) else alt_name; val cnames = map (LocalTheory.full_name ctxt3 o #1) cnames_syn; (* FIXME *) val (intr_names, intr_atts) = split_list (map fst intros); val raw_induct' = to_set [] (Context.Proof ctxt3) raw_induct; val (intrs', elims', induct, ctxt4) = InductivePackage.declare_rules kind rec_name coind no_ind cnames (map (to_set [] (Context.Proof ctxt3)) intrs) intr_names intr_atts (map (fn th => (to_set [] (Context.Proof ctxt3) th, map fst (fst (RuleCases.get th)))) elims) raw_induct' ctxt3 in ({intrs = intrs', elims = elims', induct = induct, raw_induct = raw_induct', preds = map fst defs}, ctxt4) end; val add_inductive_i = InductivePackage.gen_add_inductive_i add_ind_set_def; val add_inductive = InductivePackage.gen_add_inductive add_ind_set_def; val mono_add_att = to_pred_att [] #> InductivePackage.mono_add; val mono_del_att = to_pred_att [] #> InductivePackage.mono_del; (** package setup **) (* setup theory *) val setup = Attrib.setup @{binding pred_set_conv} (Scan.succeed pred_set_conv_att) "declare rules for converting between predicate and set notation" #> Attrib.setup @{binding to_set} (Attrib.thms >> to_set_att) "convert rule to set notation" #> Attrib.setup @{binding to_pred} (Attrib.thms >> to_pred_att) "convert rule to predicate notation" #> Code.add_attribute ("ind_set", Scan.option (Args.$$$ "target" |-- Args.colon |-- Args.name) >> code_ind_att) #> Codegen.add_preprocessor codegen_preproc #> Attrib.setup @{binding mono_set} (Attrib.add_del mono_add_att mono_del_att) "declaration of monotonicity rule for set operators" #> Context.theory_map (Simplifier.map_ss (fn ss => ss addsimprocs [collect_mem_simproc])); (* outer syntax *) local structure P = OuterParse and K = OuterKeyword in val ind_set_decl = InductivePackage.gen_ind_decl add_ind_set_def; val _ = OuterSyntax.local_theory' "inductive_set" "define inductive sets" K.thy_decl (ind_set_decl false); val _ = OuterSyntax.local_theory' "coinductive_set" "define coinductive sets" K.thy_decl (ind_set_decl true); end; end;