(* Title: HOL/int_factor_simprocs.ML ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 2000 University of Cambridge Factor cancellation simprocs for the integers (and for fields). This file can't be combined with int_arith1 because it requires IntDiv.thy. *) (*To quote from Provers/Arith/cancel_numeral_factor.ML: Cancels common coefficients in balanced expressions: u*#m ~~ u'*#m' == #n*u ~~ #n'*u' where ~~ is an appropriate balancing operation (e.g. =, <=, <, div, /) and d = gcd(m,m') and n=m/d and n'=m'/d. *) val rel_number_of = [@{thm eq_number_of_eq}, @{thm less_number_of}, @{thm le_number_of}]; local open Int_Numeral_Simprocs in structure CancelNumeralFactorCommon = struct val mk_coeff = mk_coeff val dest_coeff = dest_coeff 1 val trans_tac = K Arith_Data.trans_tac val norm_ss1 = HOL_ss addsimps minus_from_mult_simps @ mult_1s val norm_ss2 = HOL_ss addsimps simps @ mult_minus_simps val norm_ss3 = HOL_ss addsimps @{thms mult_ac} fun norm_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1)) THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2)) THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3)) val numeral_simp_ss = HOL_ss addsimps rel_number_of @ simps fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss)) val simplify_meta_eq = Arith_Data.simplify_meta_eq [@{thm add_0}, @{thm add_0_right}, @{thm mult_zero_left}, @{thm mult_zero_right}, @{thm mult_Bit1}, @{thm mult_1_right}]; end (*Version for integer division*) structure IntDivCancelNumeralFactor = CancelNumeralFactorFun (open CancelNumeralFactorCommon val prove_conv = Arith_Data.prove_conv val mk_bal = HOLogic.mk_binop @{const_name Divides.div} val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.intT val cancel = @{thm zdiv_zmult_zmult1} RS trans val neg_exchanges = false ) (*Version for fields*) structure DivideCancelNumeralFactor = CancelNumeralFactorFun (open CancelNumeralFactorCommon val prove_conv = Arith_Data.prove_conv val mk_bal = HOLogic.mk_binop @{const_name HOL.divide} val dest_bal = HOLogic.dest_bin @{const_name HOL.divide} Term.dummyT val cancel = @{thm mult_divide_mult_cancel_left} RS trans val neg_exchanges = false ) structure EqCancelNumeralFactor = CancelNumeralFactorFun (open CancelNumeralFactorCommon val prove_conv = Arith_Data.prove_conv val mk_bal = HOLogic.mk_eq val dest_bal = HOLogic.dest_bin "op =" Term.dummyT val cancel = @{thm mult_cancel_left} RS trans val neg_exchanges = false ) structure LessCancelNumeralFactor = CancelNumeralFactorFun (open CancelNumeralFactorCommon val prove_conv = Arith_Data.prove_conv val mk_bal = HOLogic.mk_binrel @{const_name HOL.less} val dest_bal = HOLogic.dest_bin @{const_name HOL.less} Term.dummyT val cancel = @{thm mult_less_cancel_left} RS trans val neg_exchanges = true ) structure LeCancelNumeralFactor = CancelNumeralFactorFun (open CancelNumeralFactorCommon val prove_conv = Arith_Data.prove_conv val mk_bal = HOLogic.mk_binrel @{const_name HOL.less_eq} val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} Term.dummyT val cancel = @{thm mult_le_cancel_left} RS trans val neg_exchanges = true ) val cancel_numeral_factors = map Arith_Data.prep_simproc [("ring_eq_cancel_numeral_factor", ["(l::'a::{idom,number_ring}) * m = n", "(l::'a::{idom,number_ring}) = m * n"], K EqCancelNumeralFactor.proc), ("ring_less_cancel_numeral_factor", ["(l::'a::{ordered_idom,number_ring}) * m < n", "(l::'a::{ordered_idom,number_ring}) < m * n"], K LessCancelNumeralFactor.proc), ("ring_le_cancel_numeral_factor", ["(l::'a::{ordered_idom,number_ring}) * m <= n", "(l::'a::{ordered_idom,number_ring}) <= m * n"], K LeCancelNumeralFactor.proc), ("int_div_cancel_numeral_factors", ["((l::int) * m) div n", "(l::int) div (m * n)"], K IntDivCancelNumeralFactor.proc), ("divide_cancel_numeral_factor", ["((l::'a::{division_by_zero,field,number_ring}) * m) / n", "(l::'a::{division_by_zero,field,number_ring}) / (m * n)", "((number_of v)::'a::{division_by_zero,field,number_ring}) / (number_of w)"], K DivideCancelNumeralFactor.proc)]; (* referenced by rat_arith.ML *) val field_cancel_numeral_factors = map Arith_Data.prep_simproc [("field_eq_cancel_numeral_factor", ["(l::'a::{field,number_ring}) * m = n", "(l::'a::{field,number_ring}) = m * n"], K EqCancelNumeralFactor.proc), ("field_cancel_numeral_factor", ["((l::'a::{division_by_zero,field,number_ring}) * m) / n", "(l::'a::{division_by_zero,field,number_ring}) / (m * n)", "((number_of v)::'a::{division_by_zero,field,number_ring}) / (number_of w)"], K DivideCancelNumeralFactor.proc)] end; Addsimprocs cancel_numeral_factors; (*examples: print_depth 22; set timing; set trace_simp; fun test s = (Goal s; by (Simp_tac 1)); test "9*x = 12 * (y::int)"; test "(9*x) div (12 * (y::int)) = z"; test "9*x < 12 * (y::int)"; test "9*x <= 12 * (y::int)"; test "-99*x = 132 * (y::int)"; test "(-99*x) div (132 * (y::int)) = z"; test "-99*x < 132 * (y::int)"; test "-99*x <= 132 * (y::int)"; test "999*x = -396 * (y::int)"; test "(999*x) div (-396 * (y::int)) = z"; test "999*x < -396 * (y::int)"; test "999*x <= -396 * (y::int)"; test "-99*x = -81 * (y::int)"; test "(-99*x) div (-81 * (y::int)) = z"; test "-99*x <= -81 * (y::int)"; test "-99*x < -81 * (y::int)"; test "-2 * x = -1 * (y::int)"; test "-2 * x = -(y::int)"; test "(-2 * x) div (-1 * (y::int)) = z"; test "-2 * x < -(y::int)"; test "-2 * x <= -1 * (y::int)"; test "-x < -23 * (y::int)"; test "-x <= -23 * (y::int)"; *) (*And the same examples for fields such as rat or real: test "0 <= (y::rat) * -2"; test "9*x = 12 * (y::rat)"; test "(9*x) / (12 * (y::rat)) = z"; test "9*x < 12 * (y::rat)"; test "9*x <= 12 * (y::rat)"; test "-99*x = 132 * (y::rat)"; test "(-99*x) / (132 * (y::rat)) = z"; test "-99*x < 132 * (y::rat)"; test "-99*x <= 132 * (y::rat)"; test "999*x = -396 * (y::rat)"; test "(999*x) / (-396 * (y::rat)) = z"; test "999*x < -396 * (y::rat)"; test "999*x <= -396 * (y::rat)"; test "(- ((2::rat) * x) <= 2 * y)"; test "-99*x = -81 * (y::rat)"; test "(-99*x) / (-81 * (y::rat)) = z"; test "-99*x <= -81 * (y::rat)"; test "-99*x < -81 * (y::rat)"; test "-2 * x = -1 * (y::rat)"; test "-2 * x = -(y::rat)"; test "(-2 * x) / (-1 * (y::rat)) = z"; test "-2 * x < -(y::rat)"; test "-2 * x <= -1 * (y::rat)"; test "-x < -23 * (y::rat)"; test "-x <= -23 * (y::rat)"; *) (** Declarations for ExtractCommonTerm **) local open Int_Numeral_Simprocs in (*Find first term that matches u*) fun find_first_t past u [] = raise TERM ("find_first_t", []) | find_first_t past u (t::terms) = if u aconv t then (rev past @ terms) else find_first_t (t::past) u terms handle TERM _ => find_first_t (t::past) u terms; (** Final simplification for the CancelFactor simprocs **) val simplify_one = Arith_Data.simplify_meta_eq [@{thm mult_1_left}, @{thm mult_1_right}, @{thm div_by_1}, @{thm numeral_1_eq_1}]; fun cancel_simplify_meta_eq ss cancel_th th = simplify_one ss (([th, cancel_th]) MRS trans); local val Tp_Eq = Thm.reflexive(Thm.cterm_of (@{theory HOL}) HOLogic.Trueprop) fun Eq_True_elim Eq = Thm.equal_elim (Thm.combination Tp_Eq (Thm.symmetric Eq)) @{thm TrueI} in fun sign_conv pos_th neg_th ss t = let val T = fastype_of t; val zero = Const(@{const_name HOL.zero}, T); val less = Const(@{const_name HOL.less}, [T,T] ---> HOLogic.boolT); val pos = less $ zero $ t and neg = less $ t $ zero fun prove p = Option.map Eq_True_elim (Lin_Arith.lin_arith_simproc ss p) handle THM _ => NONE in case prove pos of SOME th => SOME(th RS pos_th) | NONE => (case prove neg of SOME th => SOME(th RS neg_th) | NONE => NONE) end; end structure CancelFactorCommon = struct val mk_sum = long_mk_prod val dest_sum = dest_prod val mk_coeff = mk_coeff val dest_coeff = dest_coeff val find_first = find_first_t [] val trans_tac = K Arith_Data.trans_tac val norm_ss = HOL_ss addsimps mult_1s @ @{thms mult_ac} fun norm_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss)) val simplify_meta_eq = cancel_simplify_meta_eq end; (*mult_cancel_left requires a ring with no zero divisors.*) structure EqCancelFactor = ExtractCommonTermFun (open CancelFactorCommon val prove_conv = Arith_Data.prove_conv val mk_bal = HOLogic.mk_eq val dest_bal = HOLogic.dest_bin "op =" Term.dummyT val simp_conv = K (K (SOME @{thm mult_cancel_left})) ); (*for ordered rings*) structure LeCancelFactor = ExtractCommonTermFun (open CancelFactorCommon val prove_conv = Arith_Data.prove_conv val mk_bal = HOLogic.mk_binrel @{const_name HOL.less_eq} val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} Term.dummyT val simp_conv = sign_conv @{thm mult_le_cancel_left_pos} @{thm mult_le_cancel_left_neg} ); (*for ordered rings*) structure LessCancelFactor = ExtractCommonTermFun (open CancelFactorCommon val prove_conv = Arith_Data.prove_conv val mk_bal = HOLogic.mk_binrel @{const_name HOL.less} val dest_bal = HOLogic.dest_bin @{const_name HOL.less} Term.dummyT val simp_conv = sign_conv @{thm mult_less_cancel_left_pos} @{thm mult_less_cancel_left_neg} ); (*zdiv_zmult_zmult1_if is for integer division (div).*) structure IntDivCancelFactor = ExtractCommonTermFun (open CancelFactorCommon val prove_conv = Arith_Data.prove_conv val mk_bal = HOLogic.mk_binop @{const_name Divides.div} val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.intT val simp_conv = K (K (SOME @{thm zdiv_zmult_zmult1_if})) ); structure IntModCancelFactor = ExtractCommonTermFun (open CancelFactorCommon val prove_conv = Arith_Data.prove_conv val mk_bal = HOLogic.mk_binop @{const_name Divides.mod} val dest_bal = HOLogic.dest_bin @{const_name Divides.mod} HOLogic.intT val simp_conv = K (K (SOME @{thm zmod_zmult_zmult1})) ); structure IntDvdCancelFactor = ExtractCommonTermFun (open CancelFactorCommon val prove_conv = Arith_Data.prove_conv val mk_bal = HOLogic.mk_binrel @{const_name Ring_and_Field.dvd} val dest_bal = HOLogic.dest_bin @{const_name Ring_and_Field.dvd} Term.dummyT val simp_conv = K (K (SOME @{thm dvd_mult_cancel_left})) ); (*Version for all fields, including unordered ones (type complex).*) structure DivideCancelFactor = ExtractCommonTermFun (open CancelFactorCommon val prove_conv = Arith_Data.prove_conv val mk_bal = HOLogic.mk_binop @{const_name HOL.divide} val dest_bal = HOLogic.dest_bin @{const_name HOL.divide} Term.dummyT val simp_conv = K (K (SOME @{thm mult_divide_mult_cancel_left_if})) ); val cancel_factors = map Arith_Data.prep_simproc [("ring_eq_cancel_factor", ["(l::'a::{idom}) * m = n", "(l::'a::{idom}) = m * n"], K EqCancelFactor.proc), ("ordered_ring_le_cancel_factor", ["(l::'a::ordered_ring) * m <= n", "(l::'a::ordered_ring) <= m * n"], K LeCancelFactor.proc), ("ordered_ring_less_cancel_factor", ["(l::'a::ordered_ring) * m < n", "(l::'a::ordered_ring) < m * n"], K LessCancelFactor.proc), ("int_div_cancel_factor", ["((l::int) * m) div n", "(l::int) div (m * n)"], K IntDivCancelFactor.proc), ("int_mod_cancel_factor", ["((l::int) * m) mod n", "(l::int) mod (m * n)"], K IntModCancelFactor.proc), ("dvd_cancel_factor", ["((l::'a::idom) * m) dvd n", "(l::'a::idom) dvd (m * n)"], K IntDvdCancelFactor.proc), ("divide_cancel_factor", ["((l::'a::{division_by_zero,field}) * m) / n", "(l::'a::{division_by_zero,field}) / (m * n)"], K DivideCancelFactor.proc)]; end; Addsimprocs cancel_factors; (*examples: print_depth 22; set timing; set trace_simp; fun test s = (Goal s; by (Asm_simp_tac 1)); test "x*k = k*(y::int)"; test "k = k*(y::int)"; test "a*(b*c) = (b::int)"; test "a*(b*c) = d*(b::int)*(x*a)"; test "(x*k) div (k*(y::int)) = (uu::int)"; test "(k) div (k*(y::int)) = (uu::int)"; test "(a*(b*c)) div ((b::int)) = (uu::int)"; test "(a*(b*c)) div (d*(b::int)*(x*a)) = (uu::int)"; *) (*And the same examples for fields such as rat or real: print_depth 22; set timing; set trace_simp; fun test s = (Goal s; by (Asm_simp_tac 1)); test "x*k = k*(y::rat)"; test "k = k*(y::rat)"; test "a*(b*c) = (b::rat)"; test "a*(b*c) = d*(b::rat)*(x*a)"; test "(x*k) / (k*(y::rat)) = (uu::rat)"; test "(k) / (k*(y::rat)) = (uu::rat)"; test "(a*(b*c)) / ((b::rat)) = (uu::rat)"; test "(a*(b*c)) / (d*(b::rat)*(x*a)) = (uu::rat)"; (*FIXME: what do we do about this?*) test "a*(b*c)/(y*z) = d*(b::rat)*(x*a)/z"; *)