(* Title: HOL/Tools/Groebner_Basis/normalizer.ML Author: Amine Chaieb, TU Muenchen *) signature NORMALIZER = sig val semiring_normalize_conv : Proof.context -> conv val semiring_normalize_ord_conv : Proof.context -> (cterm -> cterm -> bool) -> conv val semiring_normalize_tac : Proof.context -> int -> tactic val semiring_normalize_wrapper : Proof.context -> NormalizerData.entry -> conv val semiring_normalizers_ord_wrapper : Proof.context -> NormalizerData.entry -> (cterm -> cterm -> bool) -> {add: conv, mul: conv, neg: conv, main: conv, pow: conv, sub: conv} val semiring_normalize_ord_wrapper : Proof.context -> NormalizerData.entry -> (cterm -> cterm -> bool) -> conv val semiring_normalizers_conv : cterm list -> cterm list * thm list -> cterm list * thm list -> cterm list * thm list -> (cterm -> bool) * conv * conv * conv -> (cterm -> cterm -> bool) -> {add: conv, mul: conv, neg: conv, main: conv, pow: conv, sub: conv} end structure Normalizer: NORMALIZER = struct open Conv; (* Very basic stuff for terms *) fun is_comb ct = (case Thm.term_of ct of _ $ _ => true | _ => false); val concl = Thm.cprop_of #> Thm.dest_arg; fun is_binop ct ct' = (case Thm.term_of ct' of c $ _ $ _ => term_of ct aconv c | _ => false); fun dest_binop ct ct' = if is_binop ct ct' then Thm.dest_binop ct' else raise CTERM ("dest_binop: bad binop", [ct, ct']) fun inst_thm inst = Thm.instantiate ([], inst); val dest_numeral = term_of #> HOLogic.dest_number #> snd; val is_numeral = can dest_numeral; val numeral01_conv = Simplifier.rewrite (HOL_basic_ss addsimps [@{thm numeral_1_eq_1}, @{thm numeral_0_eq_0}]); val zero1_numeral_conv = Simplifier.rewrite (HOL_basic_ss addsimps [@{thm numeral_1_eq_1} RS sym, @{thm numeral_0_eq_0} RS sym]); fun zerone_conv cv = zero1_numeral_conv then_conv cv then_conv numeral01_conv; val natarith = [@{thm "add_nat_number_of"}, @{thm "diff_nat_number_of"}, @{thm "mult_nat_number_of"}, @{thm "eq_nat_number_of"}, @{thm "less_nat_number_of"}]; val nat_add_conv = zerone_conv (Simplifier.rewrite (HOL_basic_ss addsimps @{thms arith_simps} @ natarith @ @{thms rel_simps} @ [if_False, if_True, @{thm add_0}, @{thm add_Suc}, @{thm add_number_of_left}, @{thm Suc_eq_add_numeral_1}] @ map (fn th => th RS sym) @{thms numerals})); val nat_mul_conv = nat_add_conv; val zeron_tm = @{cterm "0::nat"}; val onen_tm = @{cterm "1::nat"}; val true_tm = @{cterm "True"}; (* The main function! *) fun semiring_normalizers_conv vars (sr_ops, sr_rules) (r_ops, r_rules) (f_ops, f_rules) (is_semiring_constant, semiring_add_conv, semiring_mul_conv, semiring_pow_conv) = let val [pthm_02, pthm_03, pthm_04, pthm_05, pthm_07, pthm_08, pthm_09, pthm_10, pthm_11, pthm_12, pthm_13, pthm_14, pthm_15, pthm_16, pthm_17, pthm_18, pthm_19, pthm_21, pthm_22, pthm_23, pthm_24, pthm_25, pthm_26, pthm_27, pthm_28, pthm_29, pthm_30, pthm_31, pthm_32, pthm_33, pthm_34, pthm_35, pthm_36, pthm_37, pthm_38,pthm_39,pthm_40] = sr_rules; val [ca, cb, cc, cd, cm, cn, cp, cq, cx, cy, cz, clx, crx, cly, cry] = vars; val [add_pat, mul_pat, pow_pat, zero_tm, one_tm] = sr_ops; val [add_tm, mul_tm, pow_tm] = map (Thm.dest_fun o Thm.dest_fun) [add_pat, mul_pat, pow_pat]; val dest_add = dest_binop add_tm val dest_mul = dest_binop mul_tm fun dest_pow tm = let val (l,r) = dest_binop pow_tm tm in if is_numeral r then (l,r) else raise CTERM ("dest_pow",[tm]) end; val is_add = is_binop add_tm val is_mul = is_binop mul_tm fun is_pow tm = is_binop pow_tm tm andalso is_numeral(Thm.dest_arg tm); val (neg_mul,sub_add,sub_tm,neg_tm,dest_sub,is_sub,cx',cy') = (case (r_ops, r_rules) of ([sub_pat, neg_pat], [neg_mul, sub_add]) => let val sub_tm = Thm.dest_fun (Thm.dest_fun sub_pat) val neg_tm = Thm.dest_fun neg_pat val dest_sub = dest_binop sub_tm val is_sub = is_binop sub_tm in (neg_mul,sub_add,sub_tm,neg_tm,dest_sub,is_sub, neg_mul |> concl |> Thm.dest_arg, sub_add |> concl |> Thm.dest_arg |> Thm.dest_arg) end | _ => (TrueI, TrueI, true_tm, true_tm, (fn t => (t,t)), K false, true_tm, true_tm)); val (divide_inverse, inverse_divide, divide_tm, inverse_tm, is_divide) = (case (f_ops, f_rules) of ([divide_pat, inverse_pat], [div_inv, inv_div]) => let val div_tm = funpow 2 Thm.dest_fun divide_pat val inv_tm = Thm.dest_fun inverse_pat in (div_inv, inv_div, div_tm, inv_tm, is_binop div_tm) end | _ => (TrueI, TrueI, true_tm, true_tm, K false)); in fn variable_order => let (* Conversion for "x^n * x^m", with either x^n = x and/or x^m = x possible. *) (* Also deals with "const * const", but both terms must involve powers of *) (* the same variable, or both be constants, or behaviour may be incorrect. *) fun powvar_mul_conv tm = let val (l,r) = dest_mul tm in if is_semiring_constant l andalso is_semiring_constant r then semiring_mul_conv tm else ((let val (lx,ln) = dest_pow l in ((let val (rx,rn) = dest_pow r val th1 = inst_thm [(cx,lx),(cp,ln),(cq,rn)] pthm_29 val (tm1,tm2) = Thm.dest_comb(concl th1) in transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end) handle CTERM _ => (let val th1 = inst_thm [(cx,lx),(cq,ln)] pthm_31 val (tm1,tm2) = Thm.dest_comb(concl th1) in transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)) end) handle CTERM _ => ((let val (rx,rn) = dest_pow r val th1 = inst_thm [(cx,rx),(cq,rn)] pthm_30 val (tm1,tm2) = Thm.dest_comb(concl th1) in transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end) handle CTERM _ => inst_thm [(cx,l)] pthm_32 )) end; (* Remove "1 * m" from a monomial, and just leave m. *) fun monomial_deone th = (let val (l,r) = dest_mul(concl th) in if l aconvc one_tm then transitive th (inst_thm [(ca,r)] pthm_13) else th end) handle CTERM _ => th; (* Conversion for "(monomial)^n", where n is a numeral. *) val monomial_pow_conv = let fun monomial_pow tm bod ntm = if not(is_comb bod) then reflexive tm else if is_semiring_constant bod then semiring_pow_conv tm else let val (lopr,r) = Thm.dest_comb bod in if not(is_comb lopr) then reflexive tm else let val (opr,l) = Thm.dest_comb lopr in if opr aconvc pow_tm andalso is_numeral r then let val th1 = inst_thm [(cx,l),(cp,r),(cq,ntm)] pthm_34 val (l,r) = Thm.dest_comb(concl th1) in transitive th1 (Drule.arg_cong_rule l (nat_mul_conv r)) end else if opr aconvc mul_tm then let val th1 = inst_thm [(cx,l),(cy,r),(cq,ntm)] pthm_33 val (xy,z) = Thm.dest_comb(concl th1) val (x,y) = Thm.dest_comb xy val thl = monomial_pow y l ntm val thr = monomial_pow z r ntm in transitive th1 (combination (Drule.arg_cong_rule x thl) thr) end else reflexive tm end end in fn tm => let val (lopr,r) = Thm.dest_comb tm val (opr,l) = Thm.dest_comb lopr in if not (opr aconvc pow_tm) orelse not(is_numeral r) then raise CTERM ("monomial_pow_conv", [tm]) else if r aconvc zeron_tm then inst_thm [(cx,l)] pthm_35 else if r aconvc onen_tm then inst_thm [(cx,l)] pthm_36 else monomial_deone(monomial_pow tm l r) end end; (* Multiplication of canonical monomials. *) val monomial_mul_conv = let fun powvar tm = if is_semiring_constant tm then one_tm else ((let val (lopr,r) = Thm.dest_comb tm val (opr,l) = Thm.dest_comb lopr in if opr aconvc pow_tm andalso is_numeral r then l else raise CTERM ("monomial_mul_conv",[tm]) end) handle CTERM _ => tm) (* FIXME !? *) fun vorder x y = if x aconvc y then 0 else if x aconvc one_tm then ~1 else if y aconvc one_tm then 1 else if variable_order x y then ~1 else 1 fun monomial_mul tm l r = ((let val (lx,ly) = dest_mul l val vl = powvar lx in ((let val (rx,ry) = dest_mul r val vr = powvar rx val ord = vorder vl vr in if ord = 0 then let val th1 = inst_thm [(clx,lx),(cly,ly),(crx,rx),(cry,ry)] pthm_15 val (tm1,tm2) = Thm.dest_comb(concl th1) val (tm3,tm4) = Thm.dest_comb tm1 val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2 val th3 = transitive th1 th2 val (tm5,tm6) = Thm.dest_comb(concl th3) val (tm7,tm8) = Thm.dest_comb tm6 val th4 = monomial_mul tm6 (Thm.dest_arg tm7) tm8 in transitive th3 (Drule.arg_cong_rule tm5 th4) end else let val th0 = if ord < 0 then pthm_16 else pthm_17 val th1 = inst_thm [(clx,lx),(cly,ly),(crx,rx),(cry,ry)] th0 val (tm1,tm2) = Thm.dest_comb(concl th1) val (tm3,tm4) = Thm.dest_comb tm2 in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4)) end end) handle CTERM _ => (let val vr = powvar r val ord = vorder vl vr in if ord = 0 then let val th1 = inst_thm [(clx,lx),(cly,ly),(crx,r)] pthm_18 val (tm1,tm2) = Thm.dest_comb(concl th1) val (tm3,tm4) = Thm.dest_comb tm1 val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2 in transitive th1 th2 end else if ord < 0 then let val th1 = inst_thm [(clx,lx),(cly,ly),(crx,r)] pthm_19 val (tm1,tm2) = Thm.dest_comb(concl th1) val (tm3,tm4) = Thm.dest_comb tm2 in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4)) end else inst_thm [(ca,l),(cb,r)] pthm_09 end)) end) handle CTERM _ => (let val vl = powvar l in ((let val (rx,ry) = dest_mul r val vr = powvar rx val ord = vorder vl vr in if ord = 0 then let val th1 = inst_thm [(clx,l),(crx,rx),(cry,ry)] pthm_21 val (tm1,tm2) = Thm.dest_comb(concl th1) val (tm3,tm4) = Thm.dest_comb tm1 in transitive th1 (Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2) end else if ord > 0 then let val th1 = inst_thm [(clx,l),(crx,rx),(cry,ry)] pthm_22 val (tm1,tm2) = Thm.dest_comb(concl th1) val (tm3,tm4) = Thm.dest_comb tm2 in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4)) end else reflexive tm end) handle CTERM _ => (let val vr = powvar r val ord = vorder vl vr in if ord = 0 then powvar_mul_conv tm else if ord > 0 then inst_thm [(ca,l),(cb,r)] pthm_09 else reflexive tm end)) end)) in fn tm => let val (l,r) = dest_mul tm in monomial_deone(monomial_mul tm l r) end end; (* Multiplication by monomial of a polynomial. *) val polynomial_monomial_mul_conv = let fun pmm_conv tm = let val (l,r) = dest_mul tm in ((let val (y,z) = dest_add r val th1 = inst_thm [(cx,l),(cy,y),(cz,z)] pthm_37 val (tm1,tm2) = Thm.dest_comb(concl th1) val (tm3,tm4) = Thm.dest_comb tm1 val th2 = combination (Drule.arg_cong_rule tm3 (monomial_mul_conv tm4)) (pmm_conv tm2) in transitive th1 th2 end) handle CTERM _ => monomial_mul_conv tm) end in pmm_conv end; (* Addition of two monomials identical except for constant multiples. *) fun monomial_add_conv tm = let val (l,r) = dest_add tm in if is_semiring_constant l andalso is_semiring_constant r then semiring_add_conv tm else let val th1 = if is_mul l andalso is_semiring_constant(Thm.dest_arg1 l) then if is_mul r andalso is_semiring_constant(Thm.dest_arg1 r) then inst_thm [(ca,Thm.dest_arg1 l),(cm,Thm.dest_arg r), (cb,Thm.dest_arg1 r)] pthm_02 else inst_thm [(ca,Thm.dest_arg1 l),(cm,r)] pthm_03 else if is_mul r andalso is_semiring_constant(Thm.dest_arg1 r) then inst_thm [(cm,l),(ca,Thm.dest_arg1 r)] pthm_04 else inst_thm [(cm,r)] pthm_05 val (tm1,tm2) = Thm.dest_comb(concl th1) val (tm3,tm4) = Thm.dest_comb tm1 val th2 = Drule.arg_cong_rule tm3 (semiring_add_conv tm4) val th3 = transitive th1 (Drule.fun_cong_rule th2 tm2) val tm5 = concl th3 in if (Thm.dest_arg1 tm5) aconvc zero_tm then transitive th3 (inst_thm [(ca,Thm.dest_arg tm5)] pthm_11) else monomial_deone th3 end end; (* Ordering on monomials. *) fun striplist dest = let fun strip x acc = ((let val (l,r) = dest x in strip l (strip r acc) end) handle CTERM _ => x::acc) (* FIXME !? *) in fn x => strip x [] end; fun powervars tm = let val ptms = striplist dest_mul tm in if is_semiring_constant (hd ptms) then tl ptms else ptms end; val num_0 = 0; val num_1 = 1; fun dest_varpow tm = ((let val (x,n) = dest_pow tm in (x,dest_numeral n) end) handle CTERM _ => (tm,(if is_semiring_constant tm then num_0 else num_1))); val morder = let fun lexorder l1 l2 = case (l1,l2) of ([],[]) => 0 | (vps,[]) => ~1 | ([],vps) => 1 | (((x1,n1)::vs1),((x2,n2)::vs2)) => if variable_order x1 x2 then 1 else if variable_order x2 x1 then ~1 else if n1 < n2 then ~1 else if n2 < n1 then 1 else lexorder vs1 vs2 in fn tm1 => fn tm2 => let val vdegs1 = map dest_varpow (powervars tm1) val vdegs2 = map dest_varpow (powervars tm2) val deg1 = fold_rev ((curry (op +)) o snd) vdegs1 num_0 val deg2 = fold_rev ((curry (op +)) o snd) vdegs2 num_0 in if deg1 < deg2 then ~1 else if deg1 > deg2 then 1 else lexorder vdegs1 vdegs2 end end; (* Addition of two polynomials. *) val polynomial_add_conv = let fun dezero_rule th = let val tm = concl th in if not(is_add tm) then th else let val (lopr,r) = Thm.dest_comb tm val l = Thm.dest_arg lopr in if l aconvc zero_tm then transitive th (inst_thm [(ca,r)] pthm_07) else if r aconvc zero_tm then transitive th (inst_thm [(ca,l)] pthm_08) else th end end fun padd tm = let val (l,r) = dest_add tm in if l aconvc zero_tm then inst_thm [(ca,r)] pthm_07 else if r aconvc zero_tm then inst_thm [(ca,l)] pthm_08 else if is_add l then let val (a,b) = dest_add l in if is_add r then let val (c,d) = dest_add r val ord = morder a c in if ord = 0 then let val th1 = inst_thm [(ca,a),(cb,b),(cc,c),(cd,d)] pthm_23 val (tm1,tm2) = Thm.dest_comb(concl th1) val (tm3,tm4) = Thm.dest_comb tm1 val th2 = Drule.arg_cong_rule tm3 (monomial_add_conv tm4) in dezero_rule (transitive th1 (combination th2 (padd tm2))) end else (* ord <> 0*) let val th1 = if ord > 0 then inst_thm [(ca,a),(cb,b),(cc,r)] pthm_24 else inst_thm [(ca,l),(cc,c),(cd,d)] pthm_25 val (tm1,tm2) = Thm.dest_comb(concl th1) in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2))) end end else (* not (is_add r)*) let val ord = morder a r in if ord = 0 then let val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_26 val (tm1,tm2) = Thm.dest_comb(concl th1) val (tm3,tm4) = Thm.dest_comb tm1 val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (monomial_add_conv tm4)) tm2 in dezero_rule (transitive th1 th2) end else (* ord <> 0*) if ord > 0 then let val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_24 val (tm1,tm2) = Thm.dest_comb(concl th1) in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2))) end else dezero_rule (inst_thm [(ca,l),(cc,r)] pthm_27) end end else (* not (is_add l)*) if is_add r then let val (c,d) = dest_add r val ord = morder l c in if ord = 0 then let val th1 = inst_thm [(ca,l),(cc,c),(cd,d)] pthm_28 val (tm1,tm2) = Thm.dest_comb(concl th1) val (tm3,tm4) = Thm.dest_comb tm1 val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (monomial_add_conv tm4)) tm2 in dezero_rule (transitive th1 th2) end else if ord > 0 then reflexive tm else let val th1 = inst_thm [(ca,l),(cc,c),(cd,d)] pthm_25 val (tm1,tm2) = Thm.dest_comb(concl th1) in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2))) end end else let val ord = morder l r in if ord = 0 then monomial_add_conv tm else if ord > 0 then dezero_rule(reflexive tm) else dezero_rule (inst_thm [(ca,l),(cc,r)] pthm_27) end end in padd end; (* Multiplication of two polynomials. *) val polynomial_mul_conv = let fun pmul tm = let val (l,r) = dest_mul tm in if not(is_add l) then polynomial_monomial_mul_conv tm else if not(is_add r) then let val th1 = inst_thm [(ca,l),(cb,r)] pthm_09 in transitive th1 (polynomial_monomial_mul_conv(concl th1)) end else let val (a,b) = dest_add l val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_10 val (tm1,tm2) = Thm.dest_comb(concl th1) val (tm3,tm4) = Thm.dest_comb tm1 val th2 = Drule.arg_cong_rule tm3 (polynomial_monomial_mul_conv tm4) val th3 = transitive th1 (combination th2 (pmul tm2)) in transitive th3 (polynomial_add_conv (concl th3)) end end in fn tm => let val (l,r) = dest_mul tm in if l aconvc zero_tm then inst_thm [(ca,r)] pthm_11 else if r aconvc zero_tm then inst_thm [(ca,l)] pthm_12 else if l aconvc one_tm then inst_thm [(ca,r)] pthm_13 else if r aconvc one_tm then inst_thm [(ca,l)] pthm_14 else pmul tm end end; (* Power of polynomial (optimized for the monomial and trivial cases). *) fun num_conv n = nat_add_conv (Thm.capply @{cterm Suc} (Numeral.mk_cnumber @{ctyp nat} (dest_numeral n - 1))) |> Thm.symmetric; val polynomial_pow_conv = let fun ppow tm = let val (l,n) = dest_pow tm in if n aconvc zeron_tm then inst_thm [(cx,l)] pthm_35 else if n aconvc onen_tm then inst_thm [(cx,l)] pthm_36 else let val th1 = num_conv n val th2 = inst_thm [(cx,l),(cq,Thm.dest_arg (concl th1))] pthm_38 val (tm1,tm2) = Thm.dest_comb(concl th2) val th3 = transitive th2 (Drule.arg_cong_rule tm1 (ppow tm2)) val th4 = transitive (Drule.arg_cong_rule (Thm.dest_fun tm) th1) th3 in transitive th4 (polynomial_mul_conv (concl th4)) end end in fn tm => if is_add(Thm.dest_arg1 tm) then ppow tm else monomial_pow_conv tm end; (* Negation. *) fun polynomial_neg_conv tm = let val (l,r) = Thm.dest_comb tm in if not (l aconvc neg_tm) then raise CTERM ("polynomial_neg_conv",[tm]) else let val th1 = inst_thm [(cx',r)] neg_mul val th2 = transitive th1 (arg1_conv semiring_mul_conv (concl th1)) in transitive th2 (polynomial_monomial_mul_conv (concl th2)) end end; (* Subtraction. *) fun polynomial_sub_conv tm = let val (l,r) = dest_sub tm val th1 = inst_thm [(cx',l),(cy',r)] sub_add val (tm1,tm2) = Thm.dest_comb(concl th1) val th2 = Drule.arg_cong_rule tm1 (polynomial_neg_conv tm2) in transitive th1 (transitive th2 (polynomial_add_conv (concl th2))) end; (* Conversion from HOL term. *) fun polynomial_conv tm = if is_semiring_constant tm then semiring_add_conv tm else if not(is_comb tm) then reflexive tm else let val (lopr,r) = Thm.dest_comb tm in if lopr aconvc neg_tm then let val th1 = Drule.arg_cong_rule lopr (polynomial_conv r) in transitive th1 (polynomial_neg_conv (concl th1)) end else if lopr aconvc inverse_tm then let val th1 = Drule.arg_cong_rule lopr (polynomial_conv r) in transitive th1 (semiring_mul_conv (concl th1)) end else if not(is_comb lopr) then reflexive tm else let val (opr,l) = Thm.dest_comb lopr in if opr aconvc pow_tm andalso is_numeral r then let val th1 = Drule.fun_cong_rule (Drule.arg_cong_rule opr (polynomial_conv l)) r in transitive th1 (polynomial_pow_conv (concl th1)) end else if opr aconvc divide_tm then let val th1 = combination (Drule.arg_cong_rule opr (polynomial_conv l)) (polynomial_conv r) val th2 = (rewr_conv divide_inverse then_conv polynomial_mul_conv) (Thm.rhs_of th1) in transitive th1 th2 end else if opr aconvc add_tm orelse opr aconvc mul_tm orelse opr aconvc sub_tm then let val th1 = combination (Drule.arg_cong_rule opr (polynomial_conv l)) (polynomial_conv r) val f = if opr aconvc add_tm then polynomial_add_conv else if opr aconvc mul_tm then polynomial_mul_conv else polynomial_sub_conv in transitive th1 (f (concl th1)) end else reflexive tm end end; in {main = polynomial_conv, add = polynomial_add_conv, mul = polynomial_mul_conv, pow = polynomial_pow_conv, neg = polynomial_neg_conv, sub = polynomial_sub_conv} end end; val nat_arith = @{thms "nat_arith"}; val nat_exp_ss = HOL_basic_ss addsimps (@{thms nat_number} @ nat_arith @ @{thms arith_simps} @ @{thms rel_simps}) addsimps [Let_def, if_False, if_True, @{thm add_0}, @{thm add_Suc}]; fun simple_cterm_ord t u = TermOrd.term_ord (term_of t, term_of u) = LESS; fun semiring_normalizers_ord_wrapper ctxt ({vars, semiring, ring, field, idom, ideal}, {conv, dest_const, mk_const, is_const}) ord = let val pow_conv = arg_conv (Simplifier.rewrite nat_exp_ss) then_conv Simplifier.rewrite (HOL_basic_ss addsimps [nth (snd semiring) 31, nth (snd semiring) 34]) then_conv conv ctxt val dat = (is_const, conv ctxt, conv ctxt, pow_conv) in semiring_normalizers_conv vars semiring ring field dat ord end; fun semiring_normalize_ord_wrapper ctxt ({vars, semiring, ring, field, idom, ideal}, {conv, dest_const, mk_const, is_const}) ord = #main (semiring_normalizers_ord_wrapper ctxt ({vars = vars, semiring = semiring, ring = ring, field = field, idom = idom, ideal = ideal},{conv = conv, dest_const = dest_const, mk_const = mk_const, is_const = is_const}) ord); fun semiring_normalize_wrapper ctxt data = semiring_normalize_ord_wrapper ctxt data simple_cterm_ord; fun semiring_normalize_ord_conv ctxt ord tm = (case NormalizerData.match ctxt tm of NONE => reflexive tm | SOME res => semiring_normalize_ord_wrapper ctxt res ord tm); fun semiring_normalize_conv ctxt = semiring_normalize_ord_conv ctxt simple_cterm_ord; fun semiring_normalize_tac ctxt = SUBGOAL (fn (goal, i) => rtac (semiring_normalize_conv ctxt (cterm_of (ProofContext.theory_of ctxt) (fst (Logic.dest_equals goal)))) i); end;