(* Title: HOL/Tools/function_package/size.ML Author: Stefan Berghofer, Florian Haftmann & Alexander Krauss, TU Muenchen Size functions for datatypes. *) signature SIZE = sig val size_thms: theory -> string -> thm list val setup: theory -> theory end; structure Size: SIZE = struct open DatatypeAux; structure SizeData = TheoryDataFun ( type T = (string * thm list) Symtab.table; val empty = Symtab.empty; val copy = I val extend = I fun merge _ = Symtab.merge (K true); ); val lookup_size = SizeData.get #> Symtab.lookup; fun plus (t1, t2) = Const ("HOL.plus_class.plus", HOLogic.natT --> HOLogic.natT --> HOLogic.natT) $ t1 $ t2; fun size_of_type f g h (T as Type (s, Ts)) = (case f s of SOME t => SOME t | NONE => (case g s of SOME size_name => SOME (list_comb (Const (size_name, map (fn U => U --> HOLogic.natT) Ts @ [T] ---> HOLogic.natT), map (size_of_type' f g h) Ts)) | NONE => NONE)) | size_of_type f g h (TFree (s, _)) = h s and size_of_type' f g h T = (case size_of_type f g h T of NONE => Abs ("x", T, HOLogic.zero) | SOME t => t); fun is_poly thy (DtType (name, dts)) = (case DatatypePackage.get_datatype thy name of NONE => false | SOME _ => exists (is_poly thy) dts) | is_poly _ _ = true; fun constrs_of thy name = let val {descr, index, ...} = DatatypePackage.the_datatype thy name val SOME (_, _, constrs) = AList.lookup op = descr index in constrs end; val app = curry (list_comb o swap); fun prove_size_thms (info : datatype_info) new_type_names thy = let val {descr, alt_names, sorts, rec_names, rec_rewrites, induction, ...} = info; val l = length new_type_names; val alt_names' = (case alt_names of NONE => replicate l NONE | SOME names => map SOME names); val descr' = List.take (descr, l); val (rec_names1, rec_names2) = chop l rec_names; val recTs = get_rec_types descr sorts; val (recTs1, recTs2) = chop l recTs; val (_, (_, paramdts, _)) :: _ = descr; val paramTs = map (typ_of_dtyp descr sorts) paramdts; val ((param_size_fs, param_size_fTs), f_names) = paramTs |> map (fn T as TFree (s, _) => let val name = "f" ^ implode (tl (explode s)); val U = T --> HOLogic.natT in (((s, Free (name, U)), U), name) end) |> split_list |>> split_list; val param_size = AList.lookup op = param_size_fs; val extra_rewrites = descr |> map (#1 o snd) |> distinct op = |> map_filter (Option.map snd o lookup_size thy) |> flat; val extra_size = Option.map fst o lookup_size thy; val (((size_names, size_fns), def_names), def_names') = recTs1 ~~ alt_names' |> map (fn (T as Type (s, _), optname) => let val s' = the_default (Long_Name.base_name s) optname ^ "_size"; val s'' = Sign.full_bname thy s' in (s'', (list_comb (Const (s'', param_size_fTs @ [T] ---> HOLogic.natT), map snd param_size_fs), (s' ^ "_def", s' ^ "_overloaded_def"))) end) |> split_list ||>> split_list ||>> split_list; val overloaded_size_fns = map HOLogic.size_const recTs1; (* instantiation for primrec combinator *) fun size_of_constr b size_ofp ((_, cargs), (_, cargs')) = let val Ts = map (typ_of_dtyp descr sorts) cargs; val k = length (filter is_rec_type cargs); val (ts, _, _) = fold_rev (fn ((dt, dt'), T) => fn (us, i, j) => if is_rec_type dt then (Bound i :: us, i + 1, j + 1) else (if b andalso is_poly thy dt' then case size_of_type (K NONE) extra_size size_ofp T of NONE => us | SOME sz => sz $ Bound j :: us else us, i, j + 1)) (cargs ~~ cargs' ~~ Ts) ([], 0, k); val t = if null ts andalso (not b orelse not (exists (is_poly thy) cargs')) then HOLogic.zero else foldl1 plus (ts @ [HOLogic.Suc_zero]) in List.foldr (fn (T, t') => Abs ("x", T, t')) t (Ts @ replicate k HOLogic.natT) end; val fs = maps (fn (_, (name, _, constrs)) => map (size_of_constr true param_size) (constrs ~~ constrs_of thy name)) descr; val fs' = maps (fn (n, (name, _, constrs)) => map (size_of_constr (l <= n) (K NONE)) (constrs ~~ constrs_of thy name)) descr; val fTs = map fastype_of fs; val (rec_combs1, rec_combs2) = chop l (map (fn (T, rec_name) => Const (rec_name, fTs @ [T] ---> HOLogic.natT)) (recTs ~~ rec_names)); fun define_overloaded (def_name, eq) lthy = let val (Free (c, _), rhs) = (Logic.dest_equals o Syntax.check_term lthy) eq; val ((_, (_, thm)), lthy') = lthy |> LocalTheory.define Thm.definitionK ((Binding.name c, NoSyn), ((Binding.name def_name, []), rhs)); val ctxt_thy = ProofContext.init (ProofContext.theory_of lthy'); val thm' = singleton (ProofContext.export lthy' ctxt_thy) thm; in (thm', lthy') end; val ((size_def_thms, size_def_thms'), thy') = thy |> Sign.add_consts_i (map (fn (s, T) => (Binding.name (Long_Name.base_name s), param_size_fTs @ [T] ---> HOLogic.natT, NoSyn)) (size_names ~~ recTs1)) |> PureThy.add_defs false (map (Thm.no_attributes o apsnd (Logic.mk_equals o apsnd (app fs))) (map Binding.name def_names ~~ (size_fns ~~ rec_combs1))) ||> TheoryTarget.instantiation (map (#1 o snd) descr', map dest_TFree paramTs, [HOLogic.class_size]) ||>> fold_map define_overloaded (def_names' ~~ map Logic.mk_equals (overloaded_size_fns ~~ map (app fs') rec_combs1)) ||> Class.prove_instantiation_instance (K (Class.intro_classes_tac [])) ||> LocalTheory.exit_global; val ctxt = ProofContext.init thy'; val simpset1 = HOL_basic_ss addsimps @{thm add_0} :: @{thm add_0_right} :: size_def_thms @ size_def_thms' @ rec_rewrites @ extra_rewrites; val xs = map (fn i => "x" ^ string_of_int i) (1 upto length recTs2); fun mk_unfolded_size_eq tab size_ofp fs (p as (x, T), r) = HOLogic.mk_eq (app fs r $ Free p, the (size_of_type tab extra_size size_ofp T) $ Free p); fun prove_unfolded_size_eqs size_ofp fs = if null recTs2 then [] else split_conj_thm (SkipProof.prove ctxt xs [] (HOLogic.mk_Trueprop (mk_conj (replicate l HOLogic.true_const @ map (mk_unfolded_size_eq (AList.lookup op = (new_type_names ~~ map (app fs) rec_combs1)) size_ofp fs) (xs ~~ recTs2 ~~ rec_combs2)))) (fn _ => (indtac induction xs THEN_ALL_NEW asm_simp_tac simpset1) 1)); val unfolded_size_eqs1 = prove_unfolded_size_eqs param_size fs; val unfolded_size_eqs2 = prove_unfolded_size_eqs (K NONE) fs'; (* characteristic equations for size functions *) fun gen_mk_size_eq p size_of size_ofp size_const T (cname, cargs) = let val Ts = map (typ_of_dtyp descr sorts) cargs; val tnames = Name.variant_list f_names (DatatypeProp.make_tnames Ts); val ts = map_filter (fn (sT as (s, T), dt) => Option.map (fn sz => sz $ Free sT) (if p dt then size_of_type size_of extra_size size_ofp T else NONE)) (tnames ~~ Ts ~~ cargs) in HOLogic.mk_Trueprop (HOLogic.mk_eq (size_const $ list_comb (Const (cname, Ts ---> T), map2 (curry Free) tnames Ts), if null ts then HOLogic.zero else foldl1 plus (ts @ [HOLogic.Suc_zero]))) end; val simpset2 = HOL_basic_ss addsimps rec_rewrites @ size_def_thms @ unfolded_size_eqs1; val simpset3 = HOL_basic_ss addsimps rec_rewrites @ size_def_thms' @ unfolded_size_eqs2; fun prove_size_eqs p size_fns size_ofp simpset = maps (fn (((_, (_, _, constrs)), size_const), T) => map (fn constr => standard (SkipProof.prove ctxt [] [] (gen_mk_size_eq p (AList.lookup op = (new_type_names ~~ size_fns)) size_ofp size_const T constr) (fn _ => simp_tac simpset 1))) constrs) (descr' ~~ size_fns ~~ recTs1); val size_eqns = prove_size_eqs (is_poly thy') size_fns param_size simpset2 @ prove_size_eqs is_rec_type overloaded_size_fns (K NONE) simpset3; val ([size_thms], thy'') = PureThy.add_thmss [((Binding.name "size", size_eqns), [Simplifier.simp_add, Nitpick_Const_Simp_Thms.add, Thm.declaration_attribute (fn thm => Context.mapping (Code.add_default_eqn thm) I)])] thy' in SizeData.map (fold (Symtab.update_new o apsnd (rpair size_thms)) (new_type_names ~~ size_names)) thy'' end; fun add_size_thms (new_type_names as name :: _) thy = let val info as {descr, alt_names, ...} = DatatypePackage.the_datatype thy name; val prefix = Long_Name.map_base_name (K (space_implode "_" (the_default (map Long_Name.base_name new_type_names) alt_names))) name; val no_size = exists (fn (_, (_, _, constrs)) => exists (fn (_, cargs) => exists (fn dt => is_rec_type dt andalso not (null (fst (strip_dtyp dt)))) cargs) constrs) descr in if no_size then thy else thy |> Sign.root_path |> Sign.add_path prefix |> Theory.checkpoint |> prove_size_thms info new_type_names |> Sign.restore_naming thy end; val size_thms = snd oo (the oo lookup_size); val setup = DatatypePackage.interpretation add_size_thms; end;