Theory Big_Operators

Up to index of Isabelle/HOL

theory Big_Operators
imports Plain
(*  Title:      HOL/Big_Operators.thy
Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
with contributions by Jeremy Avigad
*)


header {* Big operators and finite (non-empty) sets *}

theory Big_Operators
imports Plain
begin


subsection {* Generic monoid operation over a set *}

no_notation times (infixl "*" 70)
no_notation Groups.one ("1")

locale comm_monoid_big = comm_monoid +
fixes F :: "('b => 'a) => 'b set => 'a"
assumes F_eq: "F g A = (if finite A then fold_image (op *) g 1 A else 1)"


sublocale comm_monoid_big < folding_image proof
qed (simp add: F_eq)

context comm_monoid_big
begin


lemma infinite [simp]:
"¬ finite A ==> F g A = 1"

by (simp add: F_eq)

lemma F_cong:
assumes "A = B" "!!x. x ∈ B ==> h x = g x"
shows "F h A = F g B"

proof cases
assume "finite A"
with assms show ?thesis unfolding `A = B` by (simp cong: cong)
next
assume "¬ finite A"
then show ?thesis unfolding `A = B` by simp
qed

lemma If_cases:
fixes P :: "'b => bool" and g h :: "'b => 'a"
assumes fA: "finite A"
shows "F (λx. if P x then h x else g x) A =
F h (A ∩ {x. P x}) * F g (A ∩ - {x. P x})"

proof-
have a: "A = A ∩ {x. P x} ∪ A ∩ -{x. P x}"
"(A ∩ {x. P x}) ∩ (A ∩ -{x. P x}) = {}"

by blast+
from fA
have f: "finite (A ∩ {x. P x})" "finite (A ∩ -{x. P x})" by auto
let ?g = "λx. if P x then h x else g x"
from union_disjoint[OF f a(2), of ?g] a(1)
show ?thesis
by (subst (1 2) F_cong) simp_all
qed

end

text {* for ad-hoc proofs for @{const fold_image} *}

lemma (in comm_monoid_add) comm_monoid_mult:
"class.comm_monoid_mult (op +) 0"

proof qed (auto intro: add_assoc add_commute)

notation times (infixl "*" 70)
notation Groups.one ("1")


subsection {* Generalized summation over a set *}

definition (in comm_monoid_add) setsum :: "('b => 'a) => 'b set => 'a" where
"setsum f A = (if finite A then fold_image (op +) f 0 A else 0)"


sublocale comm_monoid_add < setsum!: comm_monoid_big "op +" 0 setsum proof
qed (fact setsum_def)

abbreviation
Setsum ("∑_" [1000] 999) where
"∑A == setsum (%x. x) A"


text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is
written @{text"∑x∈A. e"}. *}


syntax
"_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3SUM _:_. _)" [0, 51, 10] 10)

syntax (xsymbols)
"_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3∑_∈_. _)" [0, 51, 10] 10)

syntax (HTML output)
"_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3∑_∈_. _)" [0, 51, 10] 10)


translations -- {* Beware of argument permutation! *}
"SUM i:A. b" == "CONST setsum (%i. b) A"
"∑i∈A. b" == "CONST setsum (%i. b) A"


text{* Instead of @{term"∑x∈{x. P}. e"} we introduce the shorter
@{text"∑x|P. e"}. *}


syntax
"_qsetsum" :: "pttrn => bool => 'a => 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)

syntax (xsymbols)
"_qsetsum" :: "pttrn => bool => 'a => 'a" ("(3∑_ | (_)./ _)" [0,0,10] 10)

syntax (HTML output)
"_qsetsum" :: "pttrn => bool => 'a => 'a" ("(3∑_ | (_)./ _)" [0,0,10] 10)


translations
"SUM x|P. t" => "CONST setsum (%x. t) {x. P}"
"∑x|P. t" => "CONST setsum (%x. t) {x. P}"


print_translation {*
let
fun setsum_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] =
if x <> y then raise Match
else
let
val x' = Syntax_Trans.mark_bound x;
val t' = subst_bound (x', t);
val P' = subst_bound (x', P);
in Syntax.const @{syntax_const "_qsetsum"} $ Syntax_Trans.mark_bound x $ P' $ t' end
| setsum_tr' _ = raise Match;
in [(@{const_syntax setsum}, setsum_tr')] end
*}


lemma setsum_empty:
"setsum f {} = 0"

by (fact setsum.empty)

lemma setsum_insert:
"finite F ==> a ∉ F ==> setsum f (insert a F) = f a + setsum f F"

by (fact setsum.insert)

lemma setsum_infinite:
"~ finite A ==> setsum f A = 0"

by (fact setsum.infinite)

lemma (in comm_monoid_add) setsum_reindex:
assumes "inj_on f B" shows "setsum h (f ` B) = setsum (h o f) B"

proof -
interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult)
from assms show ?thesis by (auto simp add: setsum_def fold_image_reindex dest!:finite_imageD)
qed

lemma (in comm_monoid_add) setsum_reindex_id:
"inj_on f B ==> setsum f B = setsum id (f ` B)"

by (simp add: setsum_reindex)

lemma (in comm_monoid_add) setsum_reindex_nonzero:
assumes fS: "finite S"
and nz: "!! x y. x ∈ S ==> y ∈ S ==> x ≠ y ==> f x = f y ==> h (f x) = 0"
shows "setsum h (f ` S) = setsum (h o f) S"

using nz
proof(induct rule: finite_induct[OF fS])
case 1 thus ?case by simp
next
case (2 x F)
{assume fxF: "f x ∈ f ` F" hence "∃y ∈ F . f y = f x" by auto
then obtain y where y: "y ∈ F" "f x = f y" by auto
from "2.hyps" y have xy: "x ≠ y" by auto

from "2.prems"[of x y] "2.hyps" xy y have h0: "h (f x) = 0" by simp
have "setsum h (f ` insert x F) = setsum h (f ` F)" using fxF by auto
also have "… = setsum (h o f) (insert x F)"
unfolding setsum.insert[OF `finite F` `x∉F`]
using h0
apply simp
apply (rule "2.hyps"(3))
apply (rule_tac y="y" in "2.prems")
apply simp_all
done
finally have ?case .}
moreover
{assume fxF: "f x ∉ f ` F"
have "setsum h (f ` insert x F) = h (f x) + setsum h (f ` F)"
using fxF "2.hyps" by simp
also have "… = setsum (h o f) (insert x F)"
unfolding setsum.insert[OF `finite F` `x∉F`]
apply simp
apply (rule cong [OF refl [of "op + (h (f x))"]])
apply (rule "2.hyps"(3))
apply (rule_tac y="y" in "2.prems")
apply simp_all
done
finally have ?case .}
ultimately show ?case by blast
qed

lemma (in comm_monoid_add) setsum_cong:
"A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B"

by (cases "finite A") (auto intro: setsum.cong)

lemma (in comm_monoid_add) strong_setsum_cong [cong]:
"A = B ==> (!!x. x:B =simp=> f x = g x)
==> setsum (%x. f x) A = setsum (%x. g x) B"

by (rule setsum_cong) (simp_all add: simp_implies_def)

lemma (in comm_monoid_add) setsum_cong2: "[|!!x. x ∈ A ==> f x = g x|] ==> setsum f A = setsum g A"
by (auto intro: setsum_cong)

lemma (in comm_monoid_add) setsum_reindex_cong:
"[|inj_on f A; B = f ` A; !!a. a:A ==> g a = h (f a)|]
==> setsum h B = setsum g A"

by (simp add: setsum_reindex)

lemma (in comm_monoid_add) setsum_0[simp]: "setsum (%i. 0) A = 0"
by (cases "finite A") (erule finite_induct, auto)

lemma (in comm_monoid_add) setsum_0': "ALL a:A. f a = 0 ==> setsum f A = 0"
by (simp add:setsum_cong)

lemma (in comm_monoid_add) setsum_Un_Int: "finite A ==> finite B ==>
setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B"

-- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}

by (fact setsum.union_inter)

lemma (in comm_monoid_add) setsum_Un_disjoint: "finite A ==> finite B
==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B"

by (fact setsum.union_disjoint)

lemma setsum_mono_zero_left:
assumes fT: "finite T" and ST: "S ⊆ T"
and z: "∀i ∈ T - S. f i = 0"
shows "setsum f S = setsum f T"

proof-
have eq: "T = S ∪ (T - S)" using ST by blast
have d: "S ∩ (T - S) = {}" using ST by blast
from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset)
show ?thesis
by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z])
qed

lemma setsum_mono_zero_right:
"finite T ==> S ⊆ T ==> ∀i ∈ T - S. f i = 0 ==> setsum f T = setsum f S"

by(blast intro!: setsum_mono_zero_left[symmetric])

lemma setsum_mono_zero_cong_left:
assumes fT: "finite T" and ST: "S ⊆ T"
and z: "∀i ∈ T - S. g i = 0"
and fg: "!!x. x ∈ S ==> f x = g x"
shows "setsum f S = setsum g T"

proof-
have eq: "T = S ∪ (T - S)" using ST by blast
have d: "S ∩ (T - S) = {}" using ST by blast
from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset)
show ?thesis
using fg by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z])
qed

lemma setsum_mono_zero_cong_right:
assumes fT: "finite T" and ST: "S ⊆ T"
and z: "∀i ∈ T - S. f i = 0"
and fg: "!!x. x ∈ S ==> f x = g x"
shows "setsum f T = setsum g S"

using setsum_mono_zero_cong_left[OF fT ST z] fg[symmetric] by auto

lemma setsum_delta:
assumes fS: "finite S"
shows "setsum (λk. if k=a then b k else 0) S = (if a ∈ S then b a else 0)"

proof-
let ?f = "(λk. if k=a then b k else 0)"
{assume a: "a ∉ S"
hence "∀ k∈ S. ?f k = 0" by simp
hence ?thesis using a by simp}
moreover
{assume a: "a ∈ S"
let ?A = "S - {a}"
let ?B = "{a}"
have eq: "S = ?A ∪ ?B" using a by blast
have dj: "?A ∩ ?B = {}" by simp
from fS have fAB: "finite ?A" "finite ?B" by auto
have "setsum ?f S = setsum ?f ?A + setsum ?f ?B"
using setsum_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]]
by simp
then have ?thesis using a by simp}
ultimately show ?thesis by blast
qed
lemma setsum_delta':
assumes fS: "finite S" shows
"setsum (λk. if a = k then b k else 0) S =
(if a∈ S then b a else 0)"

using setsum_delta[OF fS, of a b, symmetric]
by (auto intro: setsum_cong)

lemma setsum_restrict_set:
assumes fA: "finite A"
shows "setsum f (A ∩ B) = setsum (λx. if x ∈ B then f x else 0) A"

proof-
from fA have fab: "finite (A ∩ B)" by auto
have aba: "A ∩ B ⊆ A" by blast
let ?g = "λx. if x ∈ A∩B then f x else 0"
from setsum_mono_zero_left[OF fA aba, of ?g]
show ?thesis by simp
qed

lemma setsum_cases:
assumes fA: "finite A"
shows "setsum (λx. if P x then f x else g x) A =
setsum f (A ∩ {x. P x}) + setsum g (A ∩ - {x. P x})"

using setsum.If_cases[OF fA] .

(*But we can't get rid of finite I. If infinite, although the rhs is 0,
the lhs need not be, since UNION I A could still be finite.*)

lemma (in comm_monoid_add) setsum_UN_disjoint:
assumes "finite I" and "ALL i:I. finite (A i)"
and "ALL i:I. ALL j:I. i ≠ j --> A i Int A j = {}"
shows "setsum f (UNION I A) = (∑i∈I. setsum f (A i))"

proof -
interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult)
from assms show ?thesis by (simp add: setsum_def fold_image_UN_disjoint)
qed

text{*No need to assume that @{term C} is finite. If infinite, the rhs is
directly 0, and @{term "Union C"} is also infinite, hence the lhs is also 0.*}

lemma setsum_Union_disjoint:
assumes "∀A∈C. finite A" "∀A∈C. ∀B∈C. A ≠ B --> A Int B = {}"
shows "setsum f (Union C) = setsum (setsum f) C"

proof cases
assume "finite C"
from setsum_UN_disjoint[OF this assms]
show ?thesis
by (simp add: SUP_def)
qed (force dest: finite_UnionD simp add: setsum_def)

(*But we can't get rid of finite A. If infinite, although the lhs is 0,
the rhs need not be, since SIGMA A B could still be finite.*)

lemma (in comm_monoid_add) setsum_Sigma:
assumes "finite A" and "ALL x:A. finite (B x)"
shows "(∑x∈A. (∑y∈B x. f x y)) = (∑(x,y)∈(SIGMA x:A. B x). f x y)"

proof -
interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult)
from assms show ?thesis by (simp add: setsum_def fold_image_Sigma split_def)
qed

text{*Here we can eliminate the finiteness assumptions, by cases.*}
lemma setsum_cartesian_product:
"(∑x∈A. (∑y∈B. f x y)) = (∑(x,y) ∈ A <*> B. f x y)"

apply (cases "finite A")
apply (cases "finite B")
apply (simp add: setsum_Sigma)
apply (cases "A={}", simp)
apply (simp)
apply (auto simp add: setsum_def
dest: finite_cartesian_productD1 finite_cartesian_productD2)

done

lemma (in comm_monoid_add) setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)"
by (cases "finite A") (simp_all add: setsum.distrib)


subsubsection {* Properties in more restricted classes of structures *}

lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a"
apply (case_tac "finite A")
prefer 2 apply (simp add: setsum_def)
apply (erule rev_mp)
apply (erule finite_induct, auto)
done

lemma setsum_eq_0_iff [simp]:
"finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))"

by (induct set: finite) auto

lemma setsum_eq_Suc0_iff: "finite A ==>
(setsum f A = Suc 0) = (EX a:A. f a = Suc 0 & (ALL b:A. a≠b --> f b = 0))"

apply(erule finite_induct)
apply (auto simp add:add_is_1)
done

lemmas setsum_eq_1_iff = setsum_eq_Suc0_iff[simplified One_nat_def[symmetric]]

lemma setsum_Un_nat: "finite A ==> finite B ==>
(setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)"

-- {* For the natural numbers, we have subtraction. *}

by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps)

lemma setsum_Un: "finite A ==> finite B ==>
(setsum f (A Un B) :: 'a :: ab_group_add) =
setsum f A + setsum f B - setsum f (A Int B)"

by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps)

lemma (in comm_monoid_add) setsum_eq_general_reverses:
assumes fS: "finite S" and fT: "finite T"
and kh: "!!y. y ∈ T ==> k y ∈ S ∧ h (k y) = y"
and hk: "!!x. x ∈ S ==> h x ∈ T ∧ k (h x) = x ∧ g (h x) = f x"
shows "setsum f S = setsum g T"

proof -
interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult)
show ?thesis
apply (simp add: setsum_def fS fT)
apply (rule fold_image_eq_general_inverses)
apply (rule fS)
apply (erule kh)
apply (erule hk)
done
qed

lemma (in comm_monoid_add) setsum_Un_zero:
assumes fS: "finite S" and fT: "finite T"
and I0: "∀x ∈ S∩T. f x = 0"
shows "setsum f (S ∪ T) = setsum f S + setsum f T"

proof -
interpret comm_monoid_mult "op +" 0 by (fact comm_monoid_mult)
show ?thesis
using fS fT
apply (simp add: setsum_def)
apply (rule fold_image_Un_one)
using I0 by auto
qed

lemma setsum_UNION_zero:
assumes fS: "finite S" and fSS: "∀T ∈ S. finite T"
and f0: "!!T1 T2 x. T1∈S ==> T2∈S ==> T1 ≠ T2 ==> x ∈ T1 ==> x ∈ T2 ==> f x = 0"
shows "setsum f (\<Union>S) = setsum (λT. setsum f T) S"

using fSS f0
proof(induct rule: finite_induct[OF fS])
case 1 thus ?case by simp
next
case (2 T F)
then have fTF: "finite T" "∀T∈F. finite T" "finite F" and TF: "T ∉ F"
and H: "setsum f (\<Union> F) = setsum (setsum f) F"
by auto
from fTF have fUF: "finite (\<Union>F)" by auto
from "2.prems" TF fTF
show ?case
by (auto simp add: H[symmetric] intro: setsum_Un_zero[OF fTF(1) fUF, of f])
qed

lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
(if a:A then setsum f A - f a else setsum f A)"

apply (case_tac "finite A")
prefer 2 apply (simp add: setsum_def)
apply (erule finite_induct)
apply (auto simp add: insert_Diff_if)
apply (drule_tac a = a in mk_disjoint_insert, auto)
done

lemma setsum_diff1: "finite A ==>
(setsum f (A - {a}) :: ('a::ab_group_add)) =
(if a:A then setsum f A - f a else setsum f A)"

by (erule finite_induct) (auto simp add: insert_Diff_if)

lemma setsum_diff1'[rule_format]:
"finite A ==> a ∈ A --> (∑ x ∈ A. f x) = f a + (∑ x ∈ (A - {a}). f x)"

apply (erule finite_induct[where F=A and P="% A. (a ∈ A --> (∑ x ∈ A. f x) = f a + (∑ x ∈ (A - {a}). f x))"])
apply (auto simp add: insert_Diff_if add_ac)
done

lemma setsum_diff1_ring: assumes "finite A" "a ∈ A"
shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)"

unfolding setsum_diff1'[OF assms] by auto

(* By Jeremy Siek: *)

lemma setsum_diff_nat:
assumes "finite B" and "B ⊆ A"
shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)"

using assms
proof induct
show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp
next
fix F x assume finF: "finite F" and xnotinF: "x ∉ F"
and xFinA: "insert x F ⊆ A"
and IH: "F ⊆ A ==> setsum f (A - F) = setsum f A - setsum f F"

from xnotinF xFinA have xinAF: "x ∈ (A - F)" by simp
from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x"
by (simp add: setsum_diff1_nat)
from xFinA have "F ⊆ A" by simp
with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp
with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x"
by simp
from xnotinF have "A - insert x F = (A - F) - {x}" by auto
with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x"
by simp
from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp
with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)"
by simp
thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp
qed

lemma setsum_diff:
assumes le: "finite A" "B ⊆ A"
shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))"

proof -
from le have finiteB: "finite B" using finite_subset by auto
show ?thesis using finiteB le
proof induct
case empty
thus ?case by auto
next
case (insert x F)
thus ?case using le finiteB
by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb)
qed
qed

lemma setsum_mono:
assumes le: "!!i. i∈K ==> f (i::'a) ≤ ((g i)::('b::{comm_monoid_add, ordered_ab_semigroup_add}))"
shows "(∑i∈K. f i) ≤ (∑i∈K. g i)"

proof (cases "finite K")
case True
thus ?thesis using le
proof induct
case empty
thus ?case by simp
next
case insert
thus ?case using add_mono by fastforce
qed
next
case False
thus ?thesis
by (simp add: setsum_def)
qed

lemma setsum_strict_mono:
fixes f :: "'a => 'b::{ordered_cancel_ab_semigroup_add,comm_monoid_add}"
assumes "finite A" "A ≠ {}"
and "!!x. x:A ==> f x < g x"
shows "setsum f A < setsum g A"

using assms
proof (induct rule: finite_ne_induct)
case singleton thus ?case by simp
next
case insert thus ?case by (auto simp: add_strict_mono)
qed

lemma setsum_negf:
"setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A"

proof (cases "finite A")
case True thus ?thesis by (induct set: finite) auto
next
case False thus ?thesis by (simp add: setsum_def)
qed

lemma setsum_subtractf:
"setsum (%x. ((f x)::'a::ab_group_add) - g x) A =
setsum f A - setsum g A"

proof (cases "finite A")
case True thus ?thesis by (simp add: diff_minus setsum_addf setsum_negf)
next
case False thus ?thesis by (simp add: setsum_def)
qed

lemma setsum_nonneg:
assumes nn: "∀x∈A. (0::'a::{ordered_ab_semigroup_add,comm_monoid_add}) ≤ f x"
shows "0 ≤ setsum f A"

proof (cases "finite A")
case True thus ?thesis using nn
proof induct
case empty then show ?case by simp
next
case (insert x F)
then have "0 + 0 ≤ f x + setsum f F" by (blast intro: add_mono)
with insert show ?case by simp
qed
next
case False thus ?thesis by (simp add: setsum_def)
qed

lemma setsum_nonpos:
assumes np: "∀x∈A. f x ≤ (0::'a::{ordered_ab_semigroup_add,comm_monoid_add})"
shows "setsum f A ≤ 0"

proof (cases "finite A")
case True thus ?thesis using np
proof induct
case empty then show ?case by simp
next
case (insert x F)
then have "f x + setsum f F ≤ 0 + 0" by (blast intro: add_mono)
with insert show ?case by simp
qed
next
case False thus ?thesis by (simp add: setsum_def)
qed

lemma setsum_nonneg_leq_bound:
fixes f :: "'a => 'b::{ordered_ab_group_add}"
assumes "finite s" "!!i. i ∈ s ==> f i ≥ 0" "(∑i ∈ s. f i) = B" "i ∈ s"
shows "f i ≤ B"

proof -
have "0 ≤ (∑ i ∈ s - {i}. f i)" and "0 ≤ f i"
using assms by (auto intro!: setsum_nonneg)
moreover
have "(∑ i ∈ s - {i}. f i) + f i = B"
using assms by (simp add: setsum_diff1)
ultimately show ?thesis by auto
qed

lemma setsum_nonneg_0:
fixes f :: "'a => 'b::{ordered_ab_group_add}"
assumes "finite s" and pos: "!! i. i ∈ s ==> f i ≥ 0"
and "(∑ i ∈ s. f i) = 0" and i: "i ∈ s"
shows "f i = 0"

using setsum_nonneg_leq_bound[OF assms] pos[OF i] by auto

lemma setsum_mono2:
fixes f :: "'a => 'b :: ordered_comm_monoid_add"
assumes fin: "finite B" and sub: "A ⊆ B" and nn: "!!b. b ∈ B-A ==> 0 ≤ f b"
shows "setsum f A ≤ setsum f B"

proof -
have "setsum f A ≤ setsum f A + setsum f (B-A)"
by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def)
also have "… = setsum f (A ∪ (B-A))" using fin finite_subset[OF sub fin]
by (simp add:setsum_Un_disjoint del:Un_Diff_cancel)
also have "A ∪ (B-A) = B" using sub by blast
finally show ?thesis .
qed

lemma setsum_mono3: "finite B ==> A <= B ==>
ALL x: B - A.
0 <= ((f x)::'a::{comm_monoid_add,ordered_ab_semigroup_add}) ==>
setsum f A <= setsum f B"

apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)")
apply (erule ssubst)
apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)")
apply simp
apply (rule add_left_mono)
apply (erule setsum_nonneg)
apply (subst setsum_Un_disjoint [THEN sym])
apply (erule finite_subset, assumption)
apply (rule finite_subset)
prefer 2
apply assumption
apply (auto simp add: sup_absorb2)
done

lemma setsum_right_distrib:
fixes f :: "'a => ('b::semiring_0)"
shows "r * setsum f A = setsum (%n. r * f n) A"

proof (cases "finite A")
case True
thus ?thesis
proof induct
case empty thus ?case by simp
next
case (insert x A) thus ?case by (simp add: right_distrib)
qed
next
case False thus ?thesis by (simp add: setsum_def)
qed

lemma setsum_left_distrib:
"setsum f A * (r::'a::semiring_0) = (∑n∈A. f n * r)"

proof (cases "finite A")
case True
then show ?thesis
proof induct
case empty thus ?case by simp
next
case (insert x A) thus ?case by (simp add: left_distrib)
qed
next
case False thus ?thesis by (simp add: setsum_def)
qed

lemma setsum_divide_distrib:
"setsum f A / (r::'a::field) = (∑n∈A. f n / r)"

proof (cases "finite A")
case True
then show ?thesis
proof induct
case empty thus ?case by simp
next
case (insert x A) thus ?case by (simp add: add_divide_distrib)
qed
next
case False thus ?thesis by (simp add: setsum_def)
qed

lemma setsum_abs[iff]:
fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
shows "abs (setsum f A) ≤ setsum (%i. abs(f i)) A"

proof (cases "finite A")
case True
thus ?thesis
proof induct
case empty thus ?case by simp
next
case (insert x A)
thus ?case by (auto intro: abs_triangle_ineq order_trans)
qed
next
case False thus ?thesis by (simp add: setsum_def)
qed

lemma setsum_abs_ge_zero[iff]:
fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
shows "0 ≤ setsum (%i. abs(f i)) A"

proof (cases "finite A")
case True
thus ?thesis
proof induct
case empty thus ?case by simp
next
case (insert x A) thus ?case by auto
qed
next
case False thus ?thesis by (simp add: setsum_def)
qed

lemma abs_setsum_abs[simp]:
fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
shows "abs (∑a∈A. abs(f a)) = (∑a∈A. abs(f a))"

proof (cases "finite A")
case True
thus ?thesis
proof induct
case empty thus ?case by simp
next
case (insert a A)
hence "¦∑a∈insert a A. ¦f a¦¦ = ¦¦f a¦ + (∑a∈A. ¦f a¦)¦" by simp
also have "… = ¦¦f a¦ + ¦∑a∈A. ¦f a¦¦¦" using insert by simp
also have "… = ¦f a¦ + ¦∑a∈A. ¦f a¦¦"
by (simp del: abs_of_nonneg)
also have "… = (∑a∈insert a A. ¦f a¦)" using insert by simp
finally show ?case .
qed
next
case False thus ?thesis by (simp add: setsum_def)
qed

lemma setsum_Plus:
fixes A :: "'a set" and B :: "'b set"
assumes fin: "finite A" "finite B"
shows "setsum f (A <+> B) = setsum (f o Inl) A + setsum (f o Inr) B"

proof -
have "A <+> B = Inl ` A ∪ Inr ` B" by auto
moreover from fin have "finite (Inl ` A :: ('a + 'b) set)" "finite (Inr ` B :: ('a + 'b) set)"
by auto
moreover have "Inl ` A ∩ Inr ` B = ({} :: ('a + 'b) set)" by auto
moreover have "inj_on (Inl :: 'a => 'a + 'b) A" "inj_on (Inr :: 'b => 'a + 'b) B" by(auto intro: inj_onI)
ultimately show ?thesis using fin by(simp add: setsum_Un_disjoint setsum_reindex)
qed


text {* Commuting outer and inner summation *}

lemma setsum_commute:
"(∑i∈A. ∑j∈B. f i j) = (∑j∈B. ∑i∈A. f i j)"

proof (simp add: setsum_cartesian_product)
have "(∑(x,y) ∈ A <*> B. f x y) =
(∑(y,x) ∈ (%(i, j). (j, i)) ` (A × B). f x y)"

(is "?s = _")

apply (simp add: setsum_reindex [where f = "%(i, j). (j, i)"] swap_inj_on)
apply (simp add: split_def)
done
also have "... = (∑(y,x)∈B × A. f x y)"
(is "_ = ?t")

apply (simp add: swap_product)
done
finally show "?s = ?t" .
qed

lemma setsum_product:
fixes f :: "'a => ('b::semiring_0)"
shows "setsum f A * setsum g B = (∑i∈A. ∑j∈B. f i * g j)"

by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute)

lemma setsum_mult_setsum_if_inj:
fixes f :: "'a => ('b::semiring_0)"
shows "inj_on (%(a,b). f a * g b) (A × B) ==>
setsum f A * setsum g B = setsum id {f a * g b|a b. a:A & b:B}"

by(auto simp: setsum_product setsum_cartesian_product
intro!: setsum_reindex_cong[symmetric])


lemma setsum_constant [simp]: "(∑x ∈ A. y) = of_nat(card A) * y"
apply (cases "finite A")
apply (erule finite_induct)
apply (auto simp add: algebra_simps)
done

lemma setsum_bounded:
assumes le: "!!i. i∈A ==> f i ≤ (K::'a::{semiring_1, ordered_ab_semigroup_add})"
shows "setsum f A ≤ of_nat(card A) * K"

proof (cases "finite A")
case True
thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp
next
case False thus ?thesis by (simp add: setsum_def)
qed


subsubsection {* Cardinality as special case of @{const setsum} *}

lemma card_eq_setsum:
"card A = setsum (λx. 1) A"

by (simp only: card_def setsum_def)

lemma card_UN_disjoint:
"finite I ==> (ALL i:I. finite (A i)) ==>
(ALL i:I. ALL j:I. i ≠ j --> A i Int A j = {})
==> card (UNION I A) = (∑i∈I. card(A i))"

apply (simp add: card_eq_setsum del: setsum_constant)
apply (subgoal_tac
"setsum (%i. card (A i)) I = setsum (%i. (setsum (%x. 1) (A i))) I")

apply (simp add: setsum_UN_disjoint del: setsum_constant)
apply simp
done

lemma card_Union_disjoint:
"finite C ==> (ALL A:C. finite A) ==>
(ALL A:C. ALL B:C. A ≠ B --> A Int B = {})
==> card (Union C) = setsum card C"

apply (frule card_UN_disjoint [of C id])
apply (simp_all add: SUP_def id_def)
done

text{*The image of a finite set can be expressed using @{term fold_image}.*}
lemma image_eq_fold_image:
"finite A ==> f ` A = fold_image (op Un) (%x. {f x}) {} A"

proof (induct rule: finite_induct)
case empty then show ?case by simp
next
interpret ab_semigroup_mult "op Un"
proof qed auto
case insert
then show ?case by simp
qed

subsubsection {* Cardinality of products *}

lemma card_SigmaI [simp]:
"[| finite A; ALL a:A. finite (B a) |]
==> card (SIGMA x: A. B x) = (∑a∈A. card (B a))"

by(simp add: card_eq_setsum setsum_Sigma del:setsum_constant)

(*
lemma SigmaI_insert: "y ∉ A ==>
(SIGMA x:(insert y A). B x) = (({y} <*> (B y)) ∪ (SIGMA x: A. B x))"
by auto
*)


lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)"
by (cases "finite A ∧ finite B")
(auto simp add: card_eq_0_iff dest: finite_cartesian_productD1 finite_cartesian_productD2)


lemma card_cartesian_product_singleton: "card({x} <*> A) = card(A)"
by (simp add: card_cartesian_product)


subsection {* Generalized product over a set *}

definition (in comm_monoid_mult) setprod :: "('b => 'a) => 'b set => 'a" where
"setprod f A = (if finite A then fold_image (op *) f 1 A else 1)"


sublocale comm_monoid_mult < setprod!: comm_monoid_big "op *" 1 setprod proof
qed (fact setprod_def)

abbreviation
Setprod ("∏_" [1000] 999) where
"∏A == setprod (%x. x) A"


syntax
"_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3PROD _:_. _)" [0, 51, 10] 10)

syntax (xsymbols)
"_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3∏_∈_. _)" [0, 51, 10] 10)

syntax (HTML output)
"_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3∏_∈_. _)" [0, 51, 10] 10)


translations -- {* Beware of argument permutation! *}
"PROD i:A. b" == "CONST setprod (%i. b) A"
"∏i∈A. b" == "CONST setprod (%i. b) A"


text{* Instead of @{term"∏x∈{x. P}. e"} we introduce the shorter
@{text"∏x|P. e"}. *}


syntax
"_qsetprod" :: "pttrn => bool => 'a => 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10)

syntax (xsymbols)
"_qsetprod" :: "pttrn => bool => 'a => 'a" ("(3∏_ | (_)./ _)" [0,0,10] 10)

syntax (HTML output)
"_qsetprod" :: "pttrn => bool => 'a => 'a" ("(3∏_ | (_)./ _)" [0,0,10] 10)


translations
"PROD x|P. t" => "CONST setprod (%x. t) {x. P}"
"∏x|P. t" => "CONST setprod (%x. t) {x. P}"


lemma setprod_empty: "setprod f {} = 1"
by (fact setprod.empty)

lemma setprod_insert: "[| finite A; a ∉ A |] ==>
setprod f (insert a A) = f a * setprod f A"

by (fact setprod.insert)

lemma setprod_infinite: "~ finite A ==> setprod f A = 1"
by (fact setprod.infinite)

lemma setprod_reindex:
"inj_on f B ==> setprod h (f ` B) = setprod (h o f) B"

by(auto simp: setprod_def fold_image_reindex dest!:finite_imageD)

lemma setprod_reindex_id: "inj_on f B ==> setprod f B = setprod id (f ` B)"
by (auto simp add: setprod_reindex)

lemma setprod_cong:
"A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B"

by(fastforce simp: setprod_def intro: fold_image_cong)

lemma strong_setprod_cong[cong]:
"A = B ==> (!!x. x:B =simp=> f x = g x) ==> setprod f A = setprod g B"

by(fastforce simp: simp_implies_def setprod_def intro: fold_image_cong)

lemma setprod_reindex_cong: "inj_on f A ==>
B = f ` A ==> g = h o f ==> setprod h B = setprod g A"

by (frule setprod_reindex, simp)

lemma strong_setprod_reindex_cong: assumes i: "inj_on f A"
and B: "B = f ` A" and eq: "!!x. x ∈ A ==> g x = (h o f) x"
shows "setprod h B = setprod g A"

proof-
have "setprod h B = setprod (h o f) A"
by (simp add: B setprod_reindex[OF i, of h])
then show ?thesis apply simp
apply (rule setprod_cong)
apply simp
by (simp add: eq)
qed

lemma setprod_Un_one:
assumes fS: "finite S" and fT: "finite T"
and I0: "∀x ∈ S∩T. f x = 1"
shows "setprod f (S ∪ T) = setprod f S * setprod f T"

using fS fT
apply (simp add: setprod_def)
apply (rule fold_image_Un_one)
using I0 by auto


lemma setprod_1: "setprod (%i. 1) A = 1"
apply (case_tac "finite A")
apply (erule finite_induct, auto simp add: mult_ac)
done

lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1"
apply (subgoal_tac "setprod f F = setprod (%x. 1) F")
apply (erule ssubst, rule setprod_1)
apply (rule setprod_cong, auto)
done

lemma setprod_Un_Int: "finite A ==> finite B
==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B"

by(simp add: setprod_def fold_image_Un_Int[symmetric])

lemma setprod_Un_disjoint: "finite A ==> finite B
==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B"

by (subst setprod_Un_Int [symmetric], auto)

lemma setprod_mono_one_left:
assumes fT: "finite T" and ST: "S ⊆ T"
and z: "∀i ∈ T - S. f i = 1"
shows "setprod f S = setprod f T"

proof-
have eq: "T = S ∪ (T - S)" using ST by blast
have d: "S ∩ (T - S) = {}" using ST by blast
from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset)
show ?thesis
by (simp add: setprod_Un_disjoint[OF f d, unfolded eq[symmetric]] setprod_1'[OF z])
qed

lemmas setprod_mono_one_right = setprod_mono_one_left [THEN sym]

lemma setprod_delta:
assumes fS: "finite S"
shows "setprod (λk. if k=a then b k else 1) S = (if a ∈ S then b a else 1)"

proof-
let ?f = "(λk. if k=a then b k else 1)"
{assume a: "a ∉ S"
hence "∀ k∈ S. ?f k = 1" by simp
hence ?thesis using a by (simp add: setprod_1) }
moreover
{assume a: "a ∈ S"
let ?A = "S - {a}"
let ?B = "{a}"
have eq: "S = ?A ∪ ?B" using a by blast
have dj: "?A ∩ ?B = {}" by simp
from fS have fAB: "finite ?A" "finite ?B" by auto
have fA1: "setprod ?f ?A = 1" apply (rule setprod_1') by auto
have "setprod ?f ?A * setprod ?f ?B = setprod ?f S"
using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]]
by simp
then have ?thesis using a by (simp add: fA1 cong: setprod_cong cong del: if_weak_cong)}
ultimately show ?thesis by blast
qed

lemma setprod_delta':
assumes fS: "finite S" shows
"setprod (λk. if a = k then b k else 1) S =
(if a∈ S then b a else 1)"

using setprod_delta[OF fS, of a b, symmetric]
by (auto intro: setprod_cong)


lemma setprod_UN_disjoint:
"finite I ==> (ALL i:I. finite (A i)) ==>
(ALL i:I. ALL j:I. i ≠ j --> A i Int A j = {}) ==>
setprod f (UNION I A) = setprod (%i. setprod f (A i)) I"

by (simp add: setprod_def fold_image_UN_disjoint)

lemma setprod_Union_disjoint:
assumes "∀A∈C. finite A" "∀A∈C. ∀B∈C. A ≠ B --> A Int B = {}"
shows "setprod f (Union C) = setprod (setprod f) C"

proof cases
assume "finite C"
from setprod_UN_disjoint[OF this assms]
show ?thesis
by (simp add: SUP_def)
qed (force dest: finite_UnionD simp add: setprod_def)

lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
(∏x∈A. (∏y∈ B x. f x y)) =
(∏(x,y)∈(SIGMA x:A. B x). f x y)"

by(simp add:setprod_def fold_image_Sigma split_def)

text{*Here we can eliminate the finiteness assumptions, by cases.*}
lemma setprod_cartesian_product:
"(∏x∈A. (∏y∈ B. f x y)) = (∏(x,y)∈(A <*> B). f x y)"

apply (cases "finite A")
apply (cases "finite B")
apply (simp add: setprod_Sigma)
apply (cases "A={}", simp)
apply (simp add: setprod_1)
apply (auto simp add: setprod_def
dest: finite_cartesian_productD1 finite_cartesian_productD2)

done

lemma setprod_timesf:
"setprod (%x. f x * g x) A = (setprod f A * setprod g A)"

by(simp add:setprod_def fold_image_distrib)


subsubsection {* Properties in more restricted classes of structures *}

lemma setprod_eq_1_iff [simp]:
"finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))"

by (induct set: finite) auto

lemma setprod_zero:
"finite A ==> EX x: A. f x = (0::'a::comm_semiring_1) ==> setprod f A = 0"

apply (induct set: finite, force, clarsimp)
apply (erule disjE, auto)
done

lemma setprod_nonneg [rule_format]:
"(ALL x: A. (0::'a::linordered_semidom) ≤ f x) --> 0 ≤ setprod f A"

by (cases "finite A", induct set: finite, simp_all add: mult_nonneg_nonneg)

lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::linordered_semidom) < f x)
--> 0 < setprod f A"

by (cases "finite A", induct set: finite, simp_all add: mult_pos_pos)

lemma setprod_zero_iff[simp]: "finite A ==>
(setprod f A = (0::'a::{comm_semiring_1,no_zero_divisors})) =
(EX x: A. f x = 0)"

by (erule finite_induct, auto simp:no_zero_divisors)

lemma setprod_pos_nat:
"finite S ==> (ALL x : S. f x > (0::nat)) ==> setprod f S > 0"

using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric])

lemma setprod_pos_nat_iff[simp]:
"finite S ==> (setprod f S > 0) = (ALL x : S. f x > (0::nat))"

using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric])

lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x ≠ 0) ==>
(setprod f (A Un B) :: 'a ::{field})
= setprod f A * setprod f B / setprod f (A Int B)"

by (subst setprod_Un_Int [symmetric], auto)

lemma setprod_diff1: "finite A ==> f a ≠ 0 ==>
(setprod f (A - {a}) :: 'a :: {field}) =
(if a:A then setprod f A / f a else setprod f A)"

by (erule finite_induct) (auto simp add: insert_Diff_if)

lemma setprod_inversef:
fixes f :: "'b => 'a::field_inverse_zero"
shows "finite A ==> setprod (inverse o f) A = inverse (setprod f A)"

by (erule finite_induct) auto

lemma setprod_dividef:
fixes f :: "'b => 'a::field_inverse_zero"
shows "finite A
==> setprod (%x. f x / g x) A = setprod f A / setprod g A"

apply (subgoal_tac
"setprod (%x. f x / g x) A = setprod (%x. f x * (inverse o g) x) A")

apply (erule ssubst)
apply (subst divide_inverse)
apply (subst setprod_timesf)
apply (subst setprod_inversef, assumption+, rule refl)
apply (rule setprod_cong, rule refl)
apply (subst divide_inverse, auto)
done

lemma setprod_dvd_setprod [rule_format]:
"(ALL x : A. f x dvd g x) --> setprod f A dvd setprod g A"

apply (cases "finite A")
apply (induct set: finite)
apply (auto simp add: dvd_def)
apply (rule_tac x = "k * ka" in exI)
apply (simp add: algebra_simps)
done

lemma setprod_dvd_setprod_subset:
"finite B ==> A <= B ==> setprod f A dvd setprod f B"

apply (subgoal_tac "setprod f B = setprod f A * setprod f (B - A)")
apply (unfold dvd_def, blast)
apply (subst setprod_Un_disjoint [symmetric])
apply (auto elim: finite_subset intro: setprod_cong)
done

lemma setprod_dvd_setprod_subset2:
"finite B ==> A <= B ==> ALL x : A. (f x::'a::comm_semiring_1) dvd g x ==>
setprod f A dvd setprod g B"

apply (rule dvd_trans)
apply (rule setprod_dvd_setprod, erule (1) bspec)
apply (erule (1) setprod_dvd_setprod_subset)
done

lemma dvd_setprod: "finite A ==> i:A ==>
(f i ::'a::comm_semiring_1) dvd setprod f A"

by (induct set: finite) (auto intro: dvd_mult)

lemma dvd_setsum [rule_format]: "(ALL i : A. d dvd f i) -->
(d::'a::comm_semiring_1) dvd (SUM x : A. f x)"

apply (cases "finite A")
apply (induct set: finite)
apply auto
done

lemma setprod_mono:
fixes f :: "'a => 'b::linordered_semidom"
assumes "∀i∈A. 0 ≤ f i ∧ f i ≤ g i"
shows "setprod f A ≤ setprod g A"

proof (cases "finite A")
case True
hence ?thesis "setprod f A ≥ 0" using subset_refl[of A]
proof (induct A rule: finite_subset_induct)
case (insert a F)
thus "setprod f (insert a F) ≤ setprod g (insert a F)" "0 ≤ setprod f (insert a F)"
unfolding setprod_insert[OF insert(1,3)]
using assms[rule_format,OF insert(2)] insert
by (auto intro: mult_mono mult_nonneg_nonneg)
qed auto
thus ?thesis by simp
qed auto

lemma abs_setprod:
fixes f :: "'a => 'b::{linordered_field,abs}"
shows "abs (setprod f A) = setprod (λx. abs (f x)) A"

proof (cases "finite A")
case True thus ?thesis
by induct (auto simp add: field_simps abs_mult)
qed auto

lemma setprod_constant: "finite A ==> (∏x∈ A. (y::'a::{comm_monoid_mult})) = y^(card A)"
apply (erule finite_induct)
apply auto
done

lemma setprod_gen_delta:
assumes fS: "finite S"
shows "setprod (λk. if k=a then b k else c) S = (if a ∈ S then (b a ::'a::{comm_monoid_mult}) * c^ (card S - 1) else c^ card S)"

proof-
let ?f = "(λk. if k=a then b k else c)"
{assume a: "a ∉ S"
hence "∀ k∈ S. ?f k = c" by simp
hence ?thesis using a setprod_constant[OF fS, of c] by (simp add: setprod_1 cong add: setprod_cong) }
moreover
{assume a: "a ∈ S"
let ?A = "S - {a}"
let ?B = "{a}"
have eq: "S = ?A ∪ ?B" using a by blast
have dj: "?A ∩ ?B = {}" by simp
from fS have fAB: "finite ?A" "finite ?B" by auto
have fA0:"setprod ?f ?A = setprod (λi. c) ?A"
apply (rule setprod_cong) by auto
have cA: "card ?A = card S - 1" using fS a by auto
have fA1: "setprod ?f ?A = c ^ card ?A" unfolding fA0 apply (rule setprod_constant) using fS by auto
have "setprod ?f ?A * setprod ?f ?B = setprod ?f S"
using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]]
by simp
then have ?thesis using a cA
by (simp add: fA1 field_simps cong add: setprod_cong cong del: if_weak_cong)}
ultimately show ?thesis by blast
qed


subsection {* Versions of @{const inf} and @{const sup} on non-empty sets *}

no_notation times (infixl "*" 70)
no_notation Groups.one ("1")

locale semilattice_big = semilattice +
fixes F :: "'a set => 'a"
assumes F_eq: "finite A ==> F A = fold1 (op *) A"


sublocale semilattice_big < folding_one_idem proof
qed (simp_all add: F_eq)

notation times (infixl "*" 70)
notation Groups.one ("1")

context lattice
begin


definition Inf_fin :: "'a set => 'a" ("\<Sqinter>fin_" [900] 900) where
"Inf_fin = fold1 inf"


definition Sup_fin :: "'a set => 'a" ("\<Squnion>fin_" [900] 900) where
"Sup_fin = fold1 sup"


end

sublocale lattice < Inf_fin!: semilattice_big inf Inf_fin proof
qed (simp add: Inf_fin_def)

sublocale lattice < Sup_fin!: semilattice_big sup Sup_fin proof
qed (simp add: Sup_fin_def)

context semilattice_inf
begin


lemma ab_semigroup_idem_mult_inf:
"class.ab_semigroup_idem_mult inf"

proof qed (rule inf_assoc inf_commute inf_idem)+

lemma fold_inf_insert[simp]: "finite A ==> fold inf b (insert a A) = inf a (fold inf b A)"
by(rule comp_fun_idem.fold_insert_idem[OF ab_semigroup_idem_mult.comp_fun_idem[OF ab_semigroup_idem_mult_inf]])

lemma inf_le_fold_inf: "finite A ==> ALL a:A. b ≤ a ==> inf b c ≤ fold inf c A"
by (induct pred: finite) (auto intro: le_infI1)

lemma fold_inf_le_inf: "finite A ==> a ∈ A ==> fold inf b A ≤ inf a b"
proof(induct arbitrary: a pred:finite)
case empty thus ?case by simp
next
case (insert x A)
show ?case
proof cases
assume "A = {}" thus ?thesis using insert by simp
next
assume "A ≠ {}" thus ?thesis using insert by (auto intro: le_infI2)
qed
qed

lemma below_fold1_iff:
assumes "finite A" "A ≠ {}"
shows "x ≤ fold1 inf A <-> (∀a∈A. x ≤ a)"

proof -
interpret ab_semigroup_idem_mult inf
by (rule ab_semigroup_idem_mult_inf)
show ?thesis using assms by (induct rule: finite_ne_induct) simp_all
qed

lemma fold1_belowI:
assumes "finite A"
and "a ∈ A"
shows "fold1 inf A ≤ a"

proof -
from assms have "A ≠ {}" by auto
from `finite A` `A ≠ {}` `a ∈ A` show ?thesis
proof (induct rule: finite_ne_induct)
case singleton thus ?case by simp
next
interpret ab_semigroup_idem_mult inf
by (rule ab_semigroup_idem_mult_inf)
case (insert x F)
from insert(5) have "a = x ∨ a ∈ F" by simp
thus ?case
proof
assume "a = x" thus ?thesis using insert
by (simp add: mult_ac)
next
assume "a ∈ F"
hence bel: "fold1 inf F ≤ a" by (rule insert)
have "inf (fold1 inf (insert x F)) a = inf x (inf (fold1 inf F) a)"
using insert by (simp add: mult_ac)
also have "inf (fold1 inf F) a = fold1 inf F"
using bel by (auto intro: antisym)
also have "inf x … = fold1 inf (insert x F)"
using insert by (simp add: mult_ac)
finally have aux: "inf (fold1 inf (insert x F)) a = fold1 inf (insert x F)" .
moreover have "inf (fold1 inf (insert x F)) a ≤ a" by simp
ultimately show ?thesis by simp
qed
qed
qed

end

context semilattice_sup
begin


lemma ab_semigroup_idem_mult_sup: "class.ab_semigroup_idem_mult sup"
by (rule semilattice_inf.ab_semigroup_idem_mult_inf)(rule dual_semilattice)

lemma fold_sup_insert[simp]: "finite A ==> fold sup b (insert a A) = sup a (fold sup b A)"
by(rule semilattice_inf.fold_inf_insert)(rule dual_semilattice)

lemma fold_sup_le_sup: "finite A ==> ALL a:A. a ≤ b ==> fold sup c A ≤ sup b c"
by(rule semilattice_inf.inf_le_fold_inf)(rule dual_semilattice)

lemma sup_le_fold_sup: "finite A ==> a ∈ A ==> sup a b ≤ fold sup b A"
by(rule semilattice_inf.fold_inf_le_inf)(rule dual_semilattice)

end

context lattice
begin


lemma Inf_le_Sup [simp]: "[| finite A; A ≠ {} |] ==> \<Sqinter>finA ≤ \<Squnion>finA"
apply(unfold Sup_fin_def Inf_fin_def)
apply(subgoal_tac "EX a. a:A")
prefer 2 apply blast
apply(erule exE)
apply(rule order_trans)
apply(erule (1) fold1_belowI)
apply(erule (1) semilattice_inf.fold1_belowI [OF dual_semilattice])
done

lemma sup_Inf_absorb [simp]:
"finite A ==> a ∈ A ==> sup a (\<Sqinter>finA) = a"

apply(subst sup_commute)
apply(simp add: Inf_fin_def sup_absorb2 fold1_belowI)
done

lemma inf_Sup_absorb [simp]:
"finite A ==> a ∈ A ==> inf a (\<Squnion>finA) = a"

by (simp add: Sup_fin_def inf_absorb1
semilattice_inf.fold1_belowI [OF dual_semilattice])


end

context distrib_lattice
begin


lemma sup_Inf1_distrib:
assumes "finite A"
and "A ≠ {}"
shows "sup x (\<Sqinter>finA) = \<Sqinter>fin{sup x a|a. a ∈ A}"

proof -
interpret ab_semigroup_idem_mult inf
by (rule ab_semigroup_idem_mult_inf)
from assms show ?thesis
by (simp add: Inf_fin_def image_def
hom_fold1_commute [where h="sup x", OF sup_inf_distrib1])
(rule arg_cong [where f="fold1 inf"], blast)

qed

lemma sup_Inf2_distrib:
assumes A: "finite A" "A ≠ {}" and B: "finite B" "B ≠ {}"
shows "sup (\<Sqinter>finA) (\<Sqinter>finB) = \<Sqinter>fin{sup a b|a b. a ∈ A ∧ b ∈ B}"

using A proof (induct rule: finite_ne_induct)
case singleton thus ?case
by (simp add: sup_Inf1_distrib [OF B])
next
interpret ab_semigroup_idem_mult inf
by (rule ab_semigroup_idem_mult_inf)
case (insert x A)
have finB: "finite {sup x b |b. b ∈ B}"
by(rule finite_surj[where f = "sup x", OF B(1)], auto)
have finAB: "finite {sup a b |a b. a ∈ A ∧ b ∈ B}"
proof -
have "{sup a b |a b. a ∈ A ∧ b ∈ B} = (UN a:A. UN b:B. {sup a b})"
by blast
thus ?thesis by(simp add: insert(1) B(1))
qed
have ne: "{sup a b |a b. a ∈ A ∧ b ∈ B} ≠ {}" using insert B by blast
have "sup (\<Sqinter>fin(insert x A)) (\<Sqinter>finB) = sup (inf x (\<Sqinter>finA)) (\<Sqinter>finB)"
using insert by simp
also have "… = inf (sup x (\<Sqinter>finB)) (sup (\<Sqinter>finA) (\<Sqinter>finB))" by(rule sup_inf_distrib2)
also have "… = inf (\<Sqinter>fin{sup x b|b. b ∈ B}) (\<Sqinter>fin{sup a b|a b. a ∈ A ∧ b ∈ B})"
using insert by(simp add:sup_Inf1_distrib[OF B])
also have "… = \<Sqinter>fin({sup x b |b. b ∈ B} ∪ {sup a b |a b. a ∈ A ∧ b ∈ B})"
(is "_ = \<Sqinter>fin?M")

using B insert
by (simp add: Inf_fin_def fold1_Un2 [OF finB _ finAB ne])
also have "?M = {sup a b |a b. a ∈ insert x A ∧ b ∈ B}"
by blast
finally show ?case .
qed

lemma inf_Sup1_distrib:
assumes "finite A" and "A ≠ {}"
shows "inf x (\<Squnion>finA) = \<Squnion>fin{inf x a|a. a ∈ A}"

proof -
interpret ab_semigroup_idem_mult sup
by (rule ab_semigroup_idem_mult_sup)
from assms show ?thesis
by (simp add: Sup_fin_def image_def hom_fold1_commute [where h="inf x", OF inf_sup_distrib1])
(rule arg_cong [where f="fold1 sup"], blast)

qed

lemma inf_Sup2_distrib:
assumes A: "finite A" "A ≠ {}" and B: "finite B" "B ≠ {}"
shows "inf (\<Squnion>finA) (\<Squnion>finB) = \<Squnion>fin{inf a b|a b. a ∈ A ∧ b ∈ B}"

using A proof (induct rule: finite_ne_induct)
case singleton thus ?case
by(simp add: inf_Sup1_distrib [OF B])
next
case (insert x A)
have finB: "finite {inf x b |b. b ∈ B}"
by(rule finite_surj[where f = "%b. inf x b", OF B(1)], auto)
have finAB: "finite {inf a b |a b. a ∈ A ∧ b ∈ B}"
proof -
have "{inf a b |a b. a ∈ A ∧ b ∈ B} = (UN a:A. UN b:B. {inf a b})"
by blast
thus ?thesis by(simp add: insert(1) B(1))
qed
have ne: "{inf a b |a b. a ∈ A ∧ b ∈ B} ≠ {}" using insert B by blast
interpret ab_semigroup_idem_mult sup
by (rule ab_semigroup_idem_mult_sup)
have "inf (\<Squnion>fin(insert x A)) (\<Squnion>finB) = inf (sup x (\<Squnion>finA)) (\<Squnion>finB)"
using insert by simp
also have "… = sup (inf x (\<Squnion>finB)) (inf (\<Squnion>finA) (\<Squnion>finB))" by(rule inf_sup_distrib2)
also have "… = sup (\<Squnion>fin{inf x b|b. b ∈ B}) (\<Squnion>fin{inf a b|a b. a ∈ A ∧ b ∈ B})"
using insert by(simp add:inf_Sup1_distrib[OF B])
also have "… = \<Squnion>fin({inf x b |b. b ∈ B} ∪ {inf a b |a b. a ∈ A ∧ b ∈ B})"
(is "_ = \<Squnion>fin?M")

using B insert
by (simp add: Sup_fin_def fold1_Un2 [OF finB _ finAB ne])
also have "?M = {inf a b |a b. a ∈ insert x A ∧ b ∈ B}"
by blast
finally show ?case .
qed

end

context complete_lattice
begin


lemma Inf_fin_Inf:
assumes "finite A" and "A ≠ {}"
shows "\<Sqinter>finA = Inf A"

proof -
interpret ab_semigroup_idem_mult inf
by (rule ab_semigroup_idem_mult_inf)
from `A ≠ {}` obtain b B where "A = {b} ∪ B" by auto
moreover with `finite A` have "finite B" by simp
ultimately show ?thesis
by (simp add: Inf_fin_def fold1_eq_fold_idem inf_Inf_fold_inf [symmetric])
qed

lemma Sup_fin_Sup:
assumes "finite A" and "A ≠ {}"
shows "\<Squnion>finA = Sup A"

proof -
interpret ab_semigroup_idem_mult sup
by (rule ab_semigroup_idem_mult_sup)
from `A ≠ {}` obtain b B where "A = {b} ∪ B" by auto
moreover with `finite A` have "finite B" by simp
ultimately show ?thesis
by (simp add: Sup_fin_def fold1_eq_fold_idem sup_Sup_fold_sup [symmetric])
qed

end


subsection {* Versions of @{const min} and @{const max} on non-empty sets *}

definition (in linorder) Min :: "'a set => 'a" where
"Min = fold1 min"


definition (in linorder) Max :: "'a set => 'a" where
"Max = fold1 max"


sublocale linorder < Min!: semilattice_big min Min proof
qed (simp add: Min_def)

sublocale linorder < Max!: semilattice_big max Max proof
qed (simp add: Max_def)

context linorder
begin


lemmas Min_singleton = Min.singleton
lemmas Max_singleton = Max.singleton

lemma Min_insert:
assumes "finite A" and "A ≠ {}"
shows "Min (insert x A) = min x (Min A)"

using assms by simp

lemma Max_insert:
assumes "finite A" and "A ≠ {}"
shows "Max (insert x A) = max x (Max A)"

using assms by simp

lemma Min_Un:
assumes "finite A" and "A ≠ {}" and "finite B" and "B ≠ {}"
shows "Min (A ∪ B) = min (Min A) (Min B)"

using assms by (rule Min.union_idem)

lemma Max_Un:
assumes "finite A" and "A ≠ {}" and "finite B" and "B ≠ {}"
shows "Max (A ∪ B) = max (Max A) (Max B)"

using assms by (rule Max.union_idem)

lemma hom_Min_commute:
assumes "!!x y. h (min x y) = min (h x) (h y)"
and "finite N" and "N ≠ {}"
shows "h (Min N) = Min (h ` N)"

using assms by (rule Min.hom_commute)

lemma hom_Max_commute:
assumes "!!x y. h (max x y) = max (h x) (h y)"
and "finite N" and "N ≠ {}"
shows "h (Max N) = Max (h ` N)"

using assms by (rule Max.hom_commute)

lemma ab_semigroup_idem_mult_min:
"class.ab_semigroup_idem_mult min"

proof qed (auto simp add: min_def)

lemma ab_semigroup_idem_mult_max:
"class.ab_semigroup_idem_mult max"

proof qed (auto simp add: max_def)

lemma max_lattice:
"class.semilattice_inf max (op ≥) (op >)"

by (fact min_max.dual_semilattice)

lemma dual_max:
"ord.max (op ≥) = min"

by (auto simp add: ord.max_def_raw min_def fun_eq_iff)

lemma dual_min:
"ord.min (op ≥) = max"

by (auto simp add: ord.min_def_raw max_def fun_eq_iff)

lemma strict_below_fold1_iff:
assumes "finite A" and "A ≠ {}"
shows "x < fold1 min A <-> (∀a∈A. x < a)"

proof -
interpret ab_semigroup_idem_mult min
by (rule ab_semigroup_idem_mult_min)
from assms show ?thesis
by (induct rule: finite_ne_induct)
(simp_all add: fold1_insert)

qed

lemma fold1_below_iff:
assumes "finite A" and "A ≠ {}"
shows "fold1 min A ≤ x <-> (∃a∈A. a ≤ x)"

proof -
interpret ab_semigroup_idem_mult min
by (rule ab_semigroup_idem_mult_min)
from assms show ?thesis
by (induct rule: finite_ne_induct)
(simp_all add: fold1_insert min_le_iff_disj)

qed

lemma fold1_strict_below_iff:
assumes "finite A" and "A ≠ {}"
shows "fold1 min A < x <-> (∃a∈A. a < x)"

proof -
interpret ab_semigroup_idem_mult min
by (rule ab_semigroup_idem_mult_min)
from assms show ?thesis
by (induct rule: finite_ne_induct)
(simp_all add: fold1_insert min_less_iff_disj)

qed

lemma fold1_antimono:
assumes "A ≠ {}" and "A ⊆ B" and "finite B"
shows "fold1 min B ≤ fold1 min A"

proof cases
assume "A = B" thus ?thesis by simp
next
interpret ab_semigroup_idem_mult min
by (rule ab_semigroup_idem_mult_min)
assume neq: "A ≠ B"
have B: "B = A ∪ (B-A)" using `A ⊆ B` by blast
have "fold1 min B = fold1 min (A ∪ (B-A))" by(subst B)(rule refl)
also have "… = min (fold1 min A) (fold1 min (B-A))"
proof -
have "finite A" by(rule finite_subset[OF `A ⊆ B` `finite B`])
moreover have "finite(B-A)" by(rule finite_Diff[OF `finite B`])
moreover have "(B-A) ≠ {}" using assms neq by blast
moreover have "A Int (B-A) = {}" using assms by blast
ultimately show ?thesis using `A ≠ {}` by (rule_tac fold1_Un)
qed
also have "… ≤ fold1 min A" by (simp add: min_le_iff_disj)
finally show ?thesis .
qed

lemma Min_in [simp]:
assumes "finite A" and "A ≠ {}"
shows "Min A ∈ A"

proof -
interpret ab_semigroup_idem_mult min
by (rule ab_semigroup_idem_mult_min)
from assms fold1_in show ?thesis by (fastforce simp: Min_def min_def)
qed

lemma Max_in [simp]:
assumes "finite A" and "A ≠ {}"
shows "Max A ∈ A"

proof -
interpret ab_semigroup_idem_mult max
by (rule ab_semigroup_idem_mult_max)
from assms fold1_in [of A] show ?thesis by (fastforce simp: Max_def max_def)
qed

lemma Min_le [simp]:
assumes "finite A" and "x ∈ A"
shows "Min A ≤ x"

using assms by (simp add: Min_def min_max.fold1_belowI)

lemma Max_ge [simp]:
assumes "finite A" and "x ∈ A"
shows "x ≤ Max A"

by (simp add: Max_def semilattice_inf.fold1_belowI [OF max_lattice] assms)

lemma Min_ge_iff [simp, no_atp]:
assumes "finite A" and "A ≠ {}"
shows "x ≤ Min A <-> (∀a∈A. x ≤ a)"

using assms by (simp add: Min_def min_max.below_fold1_iff)

lemma Max_le_iff [simp, no_atp]:
assumes "finite A" and "A ≠ {}"
shows "Max A ≤ x <-> (∀a∈A. a ≤ x)"

by (simp add: Max_def semilattice_inf.below_fold1_iff [OF max_lattice] assms)

lemma Min_gr_iff [simp, no_atp]:
assumes "finite A" and "A ≠ {}"
shows "x < Min A <-> (∀a∈A. x < a)"

using assms by (simp add: Min_def strict_below_fold1_iff)

lemma Max_less_iff [simp, no_atp]:
assumes "finite A" and "A ≠ {}"
shows "Max A < x <-> (∀a∈A. a < x)"

by (simp add: Max_def linorder.dual_max [OF dual_linorder]
linorder.strict_below_fold1_iff [OF dual_linorder] assms)


lemma Min_le_iff [no_atp]:
assumes "finite A" and "A ≠ {}"
shows "Min A ≤ x <-> (∃a∈A. a ≤ x)"

using assms by (simp add: Min_def fold1_below_iff)

lemma Max_ge_iff [no_atp]:
assumes "finite A" and "A ≠ {}"
shows "x ≤ Max A <-> (∃a∈A. x ≤ a)"

by (simp add: Max_def linorder.dual_max [OF dual_linorder]
linorder.fold1_below_iff [OF dual_linorder] assms)


lemma Min_less_iff [no_atp]:
assumes "finite A" and "A ≠ {}"
shows "Min A < x <-> (∃a∈A. a < x)"

using assms by (simp add: Min_def fold1_strict_below_iff)

lemma Max_gr_iff [no_atp]:
assumes "finite A" and "A ≠ {}"
shows "x < Max A <-> (∃a∈A. x < a)"

by (simp add: Max_def linorder.dual_max [OF dual_linorder]
linorder.fold1_strict_below_iff [OF dual_linorder] assms)


lemma Min_eqI:
assumes "finite A"
assumes "!!y. y ∈ A ==> y ≥ x"
and "x ∈ A"
shows "Min A = x"

proof (rule antisym)
from `x ∈ A` have "A ≠ {}" by auto
with assms show "Min A ≥ x" by simp
next
from assms show "x ≥ Min A" by simp
qed

lemma Max_eqI:
assumes "finite A"
assumes "!!y. y ∈ A ==> y ≤ x"
and "x ∈ A"
shows "Max A = x"

proof (rule antisym)
from `x ∈ A` have "A ≠ {}" by auto
with assms show "Max A ≤ x" by simp
next
from assms show "x ≤ Max A" by simp
qed

lemma Min_antimono:
assumes "M ⊆ N" and "M ≠ {}" and "finite N"
shows "Min N ≤ Min M"

using assms by (simp add: Min_def fold1_antimono)

lemma Max_mono:
assumes "M ⊆ N" and "M ≠ {}" and "finite N"
shows "Max M ≤ Max N"

by (simp add: Max_def linorder.dual_max [OF dual_linorder]
linorder.fold1_antimono [OF dual_linorder] assms)


lemma finite_linorder_max_induct[consumes 1, case_names empty insert]:
assumes fin: "finite A"
and empty: "P {}"
and insert: "(!!b A. finite A ==> ALL a:A. a < b ==> P A ==> P(insert b A))"
shows "P A"

using fin empty insert
proof (induct rule: finite_psubset_induct)
case (psubset A)
have IH: "!!B. [|B < A; P {}; (!!A b. [|finite A; ∀a∈A. a<b; P A|] ==> P (insert b A))|] ==> P B" by fact
have fin: "finite A" by fact
have empty: "P {}" by fact
have step: "!!b A. [|finite A; ∀a∈A. a < b; P A|] ==> P (insert b A)" by fact
show "P A"
proof (cases "A = {}")
assume "A = {}"
then show "P A" using `P {}` by simp
next
let ?B = "A - {Max A}"
let ?A = "insert (Max A) ?B"
have "finite ?B" using `finite A` by simp
assume "A ≠ {}"
with `finite A` have "Max A : A" by auto
then have A: "?A = A" using insert_Diff_single insert_absorb by auto
then have "P ?B" using `P {}` step IH[of ?B] by blast
moreover
have "∀a∈?B. a < Max A" using Max_ge [OF `finite A`] by fastforce
ultimately show "P A" using A insert_Diff_single step[OF `finite ?B`] by fastforce
qed
qed

lemma finite_linorder_min_induct[consumes 1, case_names empty insert]:
"[|finite A; P {}; !!b A. [|finite A; ∀a∈A. b < a; P A|] ==> P (insert b A)|] ==> P A"

by(rule linorder.finite_linorder_max_induct[OF dual_linorder])

end

context linordered_ab_semigroup_add
begin


lemma add_Min_commute:
fixes k
assumes "finite N" and "N ≠ {}"
shows "k + Min N = Min {k + m | m. m ∈ N}"

proof -
have "!!x y. k + min x y = min (k + x) (k + y)"
by (simp add: min_def not_le)
(blast intro: antisym less_imp_le add_left_mono)

with assms show ?thesis
using hom_Min_commute [of "plus k" N]
by simp (blast intro: arg_cong [where f = Min])
qed

lemma add_Max_commute:
fixes k
assumes "finite N" and "N ≠ {}"
shows "k + Max N = Max {k + m | m. m ∈ N}"

proof -
have "!!x y. k + max x y = max (k + x) (k + y)"
by (simp add: max_def not_le)
(blast intro: antisym less_imp_le add_left_mono)

with assms show ?thesis
using hom_Max_commute [of "plus k" N]
by simp (blast intro: arg_cong [where f = Max])
qed

end

context linordered_ab_group_add
begin


lemma minus_Max_eq_Min [simp]:
"finite S ==> S ≠ {} ==> - (Max S) = Min (uminus ` S)"

by (induct S rule: finite_ne_induct) (simp_all add: minus_max_eq_min)

lemma minus_Min_eq_Max [simp]:
"finite S ==> S ≠ {} ==> - (Min S) = Max (uminus ` S)"

by (induct S rule: finite_ne_induct) (simp_all add: minus_min_eq_max)

end

end