Theory Code_Numeral

Up to index of Isabelle/HOL

theory Code_Numeral
imports Divides
(* Author: Florian Haftmann, TU Muenchen *)

header {* Type of target language numerals *}

theory Code_Numeral
imports Nat_Numeral Nat_Transfer Divides
begin


text {*
Code numerals are isomorphic to HOL @{typ nat} but
mapped to target-language builtin numerals.
*}


subsection {* Datatype of target language numerals *}

typedef (open) code_numeral = "UNIV :: nat set"
morphisms nat_of of_nat
by rule

lemma of_nat_nat_of [simp]:
"of_nat (nat_of k) = k"

by (rule nat_of_inverse)

lemma nat_of_of_nat [simp]:
"nat_of (of_nat n) = n"

by (rule of_nat_inverse) (rule UNIV_I)

lemma [measure_function]:
"is_measure nat_of"
by (rule is_measure_trivial)

lemma code_numeral:
"(!!n::code_numeral. PROP P n) ≡ (!!n::nat. PROP P (of_nat n))"

proof
fix n :: nat
assume "!!n::code_numeral. PROP P n"
then show "PROP P (of_nat n)" .
next
fix n :: code_numeral
assume "!!n::nat. PROP P (of_nat n)"
then have "PROP P (of_nat (nat_of n))" .
then show "PROP P n" by simp
qed

lemma code_numeral_case:
assumes "!!n. k = of_nat n ==> P"
shows P

by (rule assms [of "nat_of k"]) simp

lemma code_numeral_induct_raw:
assumes "!!n. P (of_nat n)"
shows "P k"

proof -
from assms have "P (of_nat (nat_of k))" .
then show ?thesis by simp
qed

lemma nat_of_inject [simp]:
"nat_of k = nat_of l <-> k = l"

by (rule nat_of_inject)

lemma of_nat_inject [simp]:
"of_nat n = of_nat m <-> n = m"

by (rule of_nat_inject) (rule UNIV_I)+

instantiation code_numeral :: zero
begin


definition [simp, code del]:
"0 = of_nat 0"


instance ..

end

definition [simp]:
"Suc_code_numeral k = of_nat (Suc (nat_of k))"


rep_datatype "0 :: code_numeral" Suc_code_numeral
proof -
fix P :: "code_numeral => bool"
fix k :: code_numeral
assume "P 0" then have init: "P (of_nat 0)" by simp
assume "!!k. P k ==> P (Suc_code_numeral k)"
then have "!!n. P (of_nat n) ==> P (Suc_code_numeral (of_nat n))" .
then have step: "!!n. P (of_nat n) ==> P (of_nat (Suc n))" by simp
from init step have "P (of_nat (nat_of k))"
by (induct ("nat_of k")) simp_all
then show "P k" by simp
qed simp_all

declare code_numeral_case [case_names nat, cases type: code_numeral]
declare code_numeral.induct [case_names nat, induct type: code_numeral]

lemma code_numeral_decr [termination_simp]:
"k ≠ of_nat 0 ==> nat_of k - Suc 0 < nat_of k"

by (cases k) simp

lemma [simp, code]:
"code_numeral_size = nat_of"

proof (rule ext)
fix k
have "code_numeral_size k = nat_size (nat_of k)"
by (induct k rule: code_numeral.induct) (simp_all del: zero_code_numeral_def Suc_code_numeral_def, simp_all)
also have "nat_size (nat_of k) = nat_of k" by (induct ("nat_of k")) simp_all
finally show "code_numeral_size k = nat_of k" .
qed

lemma [simp, code]:
"size = nat_of"

proof (rule ext)
fix k
show "size k = nat_of k"
by (induct k) (simp_all del: zero_code_numeral_def Suc_code_numeral_def, simp_all)
qed

lemmas [code del] = code_numeral.recs code_numeral.cases

lemma [code]:
"HOL.equal k l <-> HOL.equal (nat_of k) (nat_of l)"

by (cases k, cases l) (simp add: equal)

lemma [code nbe]:
"HOL.equal (k::code_numeral) k <-> True"

by (rule equal_refl)


subsection {* Code numerals as datatype of ints *}

instantiation code_numeral :: number
begin


definition
"number_of = of_nat o nat"


instance ..

end

lemma nat_of_number [simp]:
"nat_of (number_of k) = number_of k"

by (simp add: number_of_code_numeral_def nat_number_of_def number_of_is_id)

code_datatype "number_of :: int => code_numeral"


subsection {* Basic arithmetic *}

instantiation code_numeral :: "{minus, linordered_semidom, semiring_div, linorder}"
begin


definition [simp, code del]:
"(1::code_numeral) = of_nat 1"


definition [simp, code del]:
"n + m = of_nat (nat_of n + nat_of m)"


definition [simp, code del]:
"n - m = of_nat (nat_of n - nat_of m)"


definition [simp, code del]:
"n * m = of_nat (nat_of n * nat_of m)"


definition [simp, code del]:
"n div m = of_nat (nat_of n div nat_of m)"


definition [simp, code del]:
"n mod m = of_nat (nat_of n mod nat_of m)"


definition [simp, code del]:
"n ≤ m <-> nat_of n ≤ nat_of m"


definition [simp, code del]:
"n < m <-> nat_of n < nat_of m"


instance proof
qed (auto simp add: code_numeral left_distrib intro: mult_commute)

end

lemma zero_code_numeral_code [code, code_unfold]:
"(0::code_numeral) = Numeral0"

by (simp add: number_of_code_numeral_def Pls_def)
lemma [code_post]: "Numeral0 = (0::code_numeral)"
using zero_code_numeral_code ..

lemma one_code_numeral_code [code, code_unfold]:
"(1::code_numeral) = Numeral1"

by (simp add: number_of_code_numeral_def Pls_def Bit1_def)
lemma [code_post]: "Numeral1 = (1::code_numeral)"
using one_code_numeral_code ..

lemma plus_code_numeral_code [code nbe]:
"of_nat n + of_nat m = of_nat (n + m)"

by simp

definition subtract_code_numeral :: "code_numeral => code_numeral => code_numeral" where
[simp, code del]: "subtract_code_numeral = op -"


lemma subtract_code_numeral_code [code nbe]:
"subtract_code_numeral (of_nat n) (of_nat m) = of_nat (n - m)"

by simp

lemma minus_code_numeral_code [code]:
"n - m = subtract_code_numeral n m"

by simp

lemma times_code_numeral_code [code nbe]:
"of_nat n * of_nat m = of_nat (n * m)"

by simp

lemma less_eq_code_numeral_code [code nbe]:
"of_nat n ≤ of_nat m <-> n ≤ m"

by simp

lemma less_code_numeral_code [code nbe]:
"of_nat n < of_nat m <-> n < m"

by simp

lemma code_numeral_zero_minus_one:
"(0::code_numeral) - 1 = 0"

by simp

lemma Suc_code_numeral_minus_one:
"Suc_code_numeral n - 1 = n"

by simp

lemma of_nat_code [code]:
"of_nat = Nat.of_nat"

proof
fix n :: nat
have "Nat.of_nat n = of_nat n"
by (induct n) simp_all
then show "of_nat n = Nat.of_nat n"
by (rule sym)
qed

lemma code_numeral_not_eq_zero: "i ≠ of_nat 0 <-> i ≥ 1"
by (cases i) auto

definition nat_of_aux :: "code_numeral => nat => nat" where
"nat_of_aux i n = nat_of i + n"


lemma nat_of_aux_code [code]:
"nat_of_aux i n = (if i = 0 then n else nat_of_aux (i - 1) (Suc n))"

by (auto simp add: nat_of_aux_def code_numeral_not_eq_zero)

lemma nat_of_code [code]:
"nat_of i = nat_of_aux i 0"

by (simp add: nat_of_aux_def)

definition div_mod_code_numeral :: "code_numeral => code_numeral => code_numeral × code_numeral" where
[code del]: "div_mod_code_numeral n m = (n div m, n mod m)"


lemma [code]:
"div_mod_code_numeral n m = (if m = 0 then (0, n) else (n div m, n mod m))"

unfolding div_mod_code_numeral_def by auto

lemma [code]:
"n div m = fst (div_mod_code_numeral n m)"

unfolding div_mod_code_numeral_def by simp

lemma [code]:
"n mod m = snd (div_mod_code_numeral n m)"

unfolding div_mod_code_numeral_def by simp

definition int_of :: "code_numeral => int" where
"int_of = Nat.of_nat o nat_of"


lemma int_of_code [code]:
"int_of k = (if k = 0 then 0
else (if k mod 2 = 0 then 2 * int_of (k div 2) else 2 * int_of (k div 2) + 1))"

proof -
have "(nat_of k div 2) * 2 + nat_of k mod 2 = nat_of k"
by (rule mod_div_equality)
then have "int ((nat_of k div 2) * 2 + nat_of k mod 2) = int (nat_of k)"
by simp
then have "int (nat_of k) = int (nat_of k div 2) * 2 + int (nat_of k mod 2)"
unfolding of_nat_mult of_nat_add by simp
then show ?thesis by (auto simp add: int_of_def mult_ac)
qed

hide_const (open) of_nat nat_of int_of

subsubsection {* Lazy Evaluation of an indexed function *}

function iterate_upto :: "(code_numeral => 'a) => code_numeral => code_numeral => 'a Predicate.pred"
where
"iterate_upto f n m = Predicate.Seq (%u. if n > m then Predicate.Empty else Predicate.Insert (f n) (iterate_upto f (n + 1) m))"

by pat_completeness auto

termination by (relation "measure (%(f, n, m). Code_Numeral.nat_of (m + 1 - n))") auto

hide_const (open) iterate_upto

subsection {* Code generator setup *}

text {* Implementation of code numerals by bounded integers *}

code_type code_numeral
(SML "int")
(OCaml "Big'_int.big'_int")
(Haskell "Integer")
(Scala "BigInt")


code_instance code_numeral :: equal
(Haskell -)


setup {*
Numeral.add_code @{const_name number_code_numeral_inst.number_of_code_numeral}
false Code_Printer.literal_naive_numeral "SML"
#> fold (Numeral.add_code @{const_name number_code_numeral_inst.number_of_code_numeral}
false Code_Printer.literal_numeral) ["OCaml", "Haskell", "Scala"]
*}


code_reserved SML Int int
code_reserved Eval Integer

code_const "op + :: code_numeral => code_numeral => code_numeral"
(SML "Int.+/ ((_),/ (_))")
(OCaml "Big'_int.add'_big'_int")
(Haskell infixl 6 "+")
(Scala infixl 7 "+")
(Eval infixl 8 "+")


code_const "subtract_code_numeral :: code_numeral => code_numeral => code_numeral"
(SML "Int.max/ (_/ -/ _,/ 0 : int)")
(OCaml "Big'_int.max'_big'_int/ (Big'_int.sub'_big'_int/ _/ _)/ Big'_int.zero'_big'_int")
(Haskell "max/ (_/ -/ _)/ (0 :: Integer)")
(Scala "!(_/ -/ _).max(0)")
(Eval "Integer.max/ (_/ -/ _)/ 0")


code_const "op * :: code_numeral => code_numeral => code_numeral"
(SML "Int.*/ ((_),/ (_))")
(OCaml "Big'_int.mult'_big'_int")
(Haskell infixl 7 "*")
(Scala infixl 8 "*")
(Eval infixl 8 "*")


code_const div_mod_code_numeral
(SML "!(fn n => fn m =>/ if m = 0/ then (0, n) else/ (Int.div (n, m), Int.mod (n, m)))")
(OCaml "Big'_int.quomod'_big'_int/ (Big'_int.abs'_big'_int _)/ (Big'_int.abs'_big'_int _)")
(Haskell "divMod")
(Scala "!((k: BigInt) => (l: BigInt) =>/ if (l == 0)/ (BigInt(0), k) else/ (k.abs '/% l.abs))")
(Eval "!(fn n => fn m =>/ if m = 0/ then (0, n) else/ (Integer.div'_mod n m))")


code_const "HOL.equal :: code_numeral => code_numeral => bool"
(SML "!((_ : Int.int) = _)")
(OCaml "Big'_int.eq'_big'_int")
(Haskell infix 4 "==")
(Scala infixl 5 "==")
(Eval "!((_ : int) = _)")


code_const "op ≤ :: code_numeral => code_numeral => bool"
(SML "Int.<=/ ((_),/ (_))")
(OCaml "Big'_int.le'_big'_int")
(Haskell infix 4 "<=")
(Scala infixl 4 "<=")
(Eval infixl 6 "<=")


code_const "op < :: code_numeral => code_numeral => bool"
(SML "Int.</ ((_),/ (_))")
(OCaml "Big'_int.lt'_big'_int")
(Haskell infix 4 "<")
(Scala infixl 4 "<")
(Eval infixl 6 "<")


end