Theory Complete_Lattices

Up to index of Isabelle/HOL

theory Complete_Lattices
imports Set
 (*  Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *)

header {* Complete lattices *}

theory Complete_Lattices
imports Set
begin


notation
less_eq (infix "\<sqsubseteq>" 50) and
less (infix "\<sqsubset>" 50) and
inf (infixl "\<sqinter>" 70) and
sup (infixl "\<squnion>" 65) and
top ("\<top>") and
bot ("⊥")



subsection {* Syntactic infimum and supremum operations *}

class Inf =
fixes Inf :: "'a set => 'a" ("\<Sqinter>_" [900] 900)


class Sup =
fixes Sup :: "'a set => 'a" ("\<Squnion>_" [900] 900)


subsection {* Abstract complete lattices *}

class complete_lattice = bounded_lattice + Inf + Sup +
assumes Inf_lower: "x ∈ A ==> \<Sqinter>A \<sqsubseteq> x"
and Inf_greatest: "(!!x. x ∈ A ==> z \<sqsubseteq> x) ==> z \<sqsubseteq> \<Sqinter>A"
assumes Sup_upper: "x ∈ A ==> x \<sqsubseteq> \<Squnion>A"
and Sup_least: "(!!x. x ∈ A ==> x \<sqsubseteq> z) ==> \<Squnion>A \<sqsubseteq> z"
begin


lemma dual_complete_lattice:
"class.complete_lattice Sup Inf sup (op ≥) (op >) inf \<top> ⊥"

by (auto intro!: class.complete_lattice.intro dual_bounded_lattice)
(unfold_locales, (fact bot_least top_greatest
Sup_upper Sup_least Inf_lower Inf_greatest)+)


definition INFI :: "'b set => ('b => 'a) => 'a" where
INF_def: "INFI A f = \<Sqinter>(f ` A)"


definition SUPR :: "'b set => ('b => 'a) => 'a" where
SUP_def: "SUPR A f = \<Squnion>(f ` A)"


text {*
Note: must use names @{const INFI} and @{const SUPR} here instead of
@{text INF} and @{text SUP} to allow the following syntax coexist
with the plain constant names.
*}


end

syntax
"_INF1" :: "pttrns => 'b => 'b" ("(3INF _./ _)" [0, 10] 10)
"_INF" :: "pttrn => 'a set => 'b => 'b" ("(3INF _:_./ _)" [0, 0, 10] 10)
"_SUP1" :: "pttrns => 'b => 'b" ("(3SUP _./ _)" [0, 10] 10)
"_SUP" :: "pttrn => 'a set => 'b => 'b" ("(3SUP _:_./ _)" [0, 0, 10] 10)


syntax (xsymbols)
"_INF1" :: "pttrns => 'b => 'b" ("(3\<Sqinter>_./ _)" [0, 10] 10)
"_INF" :: "pttrn => 'a set => 'b => 'b" ("(3\<Sqinter>_∈_./ _)" [0, 0, 10] 10)
"_SUP1" :: "pttrns => 'b => 'b" ("(3\<Squnion>_./ _)" [0, 10] 10)
"_SUP" :: "pttrn => 'a set => 'b => 'b" ("(3\<Squnion>_∈_./ _)" [0, 0, 10] 10)


translations
"INF x y. B" == "INF x. INF y. B"
"INF x. B" == "CONST INFI CONST UNIV (%x. B)"
"INF x. B" == "INF x:CONST UNIV. B"
"INF x:A. B" == "CONST INFI A (%x. B)"
"SUP x y. B" == "SUP x. SUP y. B"
"SUP x. B" == "CONST SUPR CONST UNIV (%x. B)"
"SUP x. B" == "SUP x:CONST UNIV. B"
"SUP x:A. B" == "CONST SUPR A (%x. B)"


print_translation {*
[Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
*}
-- {* to avoid eta-contraction of body *}


context complete_lattice
begin


lemma INF_foundation_dual [no_atp]:
"complete_lattice.SUPR Inf = INFI"

by (simp add: fun_eq_iff INF_def
complete_lattice.SUP_def [OF dual_complete_lattice])


lemma SUP_foundation_dual [no_atp]:
"complete_lattice.INFI Sup = SUPR"

by (simp add: fun_eq_iff SUP_def
complete_lattice.INF_def [OF dual_complete_lattice])


lemma INF_lower: "i ∈ A ==> (\<Sqinter>i∈A. f i) \<sqsubseteq> f i"
by (auto simp add: INF_def intro: Inf_lower)

lemma INF_greatest: "(!!i. i ∈ A ==> u \<sqsubseteq> f i) ==> u \<sqsubseteq> (\<Sqinter>i∈A. f i)"
by (auto simp add: INF_def intro: Inf_greatest)

lemma SUP_upper: "i ∈ A ==> f i \<sqsubseteq> (\<Squnion>i∈A. f i)"
by (auto simp add: SUP_def intro: Sup_upper)

lemma SUP_least: "(!!i. i ∈ A ==> f i \<sqsubseteq> u) ==> (\<Squnion>i∈A. f i) \<sqsubseteq> u"
by (auto simp add: SUP_def intro: Sup_least)

lemma Inf_lower2: "u ∈ A ==> u \<sqsubseteq> v ==> \<Sqinter>A \<sqsubseteq> v"
using Inf_lower [of u A] by auto

lemma INF_lower2: "i ∈ A ==> f i \<sqsubseteq> u ==> (\<Sqinter>i∈A. f i) \<sqsubseteq> u"
using INF_lower [of i A f] by auto

lemma Sup_upper2: "u ∈ A ==> v \<sqsubseteq> u ==> v \<sqsubseteq> \<Squnion>A"
using Sup_upper [of u A] by auto

lemma SUP_upper2: "i ∈ A ==> u \<sqsubseteq> f i ==> u \<sqsubseteq> (\<Squnion>i∈A. f i)"
using SUP_upper [of i A f] by auto

lemma le_Inf_iff: "b \<sqsubseteq> \<Sqinter>A <-> (∀a∈A. b \<sqsubseteq> a)"
by (auto intro: Inf_greatest dest: Inf_lower)

lemma le_INF_iff: "u \<sqsubseteq> (\<Sqinter>i∈A. f i) <-> (∀i∈A. u \<sqsubseteq> f i)"
by (auto simp add: INF_def le_Inf_iff)

lemma Sup_le_iff: "\<Squnion>A \<sqsubseteq> b <-> (∀a∈A. a \<sqsubseteq> b)"
by (auto intro: Sup_least dest: Sup_upper)

lemma SUP_le_iff: "(\<Squnion>i∈A. f i) \<sqsubseteq> u <-> (∀i∈A. f i \<sqsubseteq> u)"
by (auto simp add: SUP_def Sup_le_iff)

lemma Inf_empty [simp]:
"\<Sqinter>{} = \<top>"

by (auto intro: antisym Inf_greatest)

lemma INF_empty [simp]: "(\<Sqinter>x∈{}. f x) = \<top>"
by (simp add: INF_def)

lemma Sup_empty [simp]:
"\<Squnion>{} = ⊥"

by (auto intro: antisym Sup_least)

lemma SUP_empty [simp]: "(\<Squnion>x∈{}. f x) = ⊥"
by (simp add: SUP_def)

lemma Inf_UNIV [simp]:
"\<Sqinter>UNIV = ⊥"

by (auto intro!: antisym Inf_lower)

lemma Sup_UNIV [simp]:
"\<Squnion>UNIV = \<top>"

by (auto intro!: antisym Sup_upper)

lemma Inf_insert [simp]: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower)

lemma INF_insert: "(\<Sqinter>x∈insert a A. f x) = f a \<sqinter> INFI A f"
by (simp add: INF_def)

lemma Sup_insert [simp]: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper)

lemma SUP_insert: "(\<Squnion>x∈insert a A. f x) = f a \<squnion> SUPR A f"
by (simp add: SUP_def)

lemma INF_image [simp]: "(\<Sqinter>x∈f`A. g x) = (\<Sqinter>x∈A. g (f x))"
by (simp add: INF_def image_image)

lemma SUP_image [simp]: "(\<Squnion>x∈f`A. g x) = (\<Squnion>x∈A. g (f x))"
by (simp add: SUP_def image_image)

lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. ∀a ∈ A. b \<sqsubseteq> a}"
by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)

lemma Sup_Inf: "\<Squnion>A = \<Sqinter>{b. ∀a ∈ A. a \<sqsubseteq> b}"
by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)

lemma Inf_superset_mono: "B ⊆ A ==> \<Sqinter>A \<sqsubseteq> \<Sqinter>B"
by (auto intro: Inf_greatest Inf_lower)

lemma Sup_subset_mono: "A ⊆ B ==> \<Squnion>A \<sqsubseteq> \<Squnion>B"
by (auto intro: Sup_least Sup_upper)

lemma INF_cong:
"A = B ==> (!!x. x ∈ B ==> C x = D x) ==> (\<Sqinter>x∈A. C x) = (\<Sqinter>x∈B. D x)"

by (simp add: INF_def image_def)

lemma SUP_cong:
"A = B ==> (!!x. x ∈ B ==> C x = D x) ==> (\<Squnion>x∈A. C x) = (\<Squnion>x∈B. D x)"

by (simp add: SUP_def image_def)

lemma Inf_mono:
assumes "!!b. b ∈ B ==> ∃a∈A. a \<sqsubseteq> b"
shows "\<Sqinter>A \<sqsubseteq> \<Sqinter>B"

proof (rule Inf_greatest)
fix b assume "b ∈ B"
with assms obtain a where "a ∈ A" and "a \<sqsubseteq> b" by blast
from `a ∈ A` have "\<Sqinter>A \<sqsubseteq> a" by (rule Inf_lower)
with `a \<sqsubseteq> b` show "\<Sqinter>A \<sqsubseteq> b" by auto
qed

lemma INF_mono:
"(!!m. m ∈ B ==> ∃n∈A. f n \<sqsubseteq> g m) ==> (\<Sqinter>n∈A. f n) \<sqsubseteq> (\<Sqinter>n∈B. g n)"

unfolding INF_def by (rule Inf_mono) fast

lemma Sup_mono:
assumes "!!a. a ∈ A ==> ∃b∈B. a \<sqsubseteq> b"
shows "\<Squnion>A \<sqsubseteq> \<Squnion>B"

proof (rule Sup_least)
fix a assume "a ∈ A"
with assms obtain b where "b ∈ B" and "a \<sqsubseteq> b" by blast
from `b ∈ B` have "b \<sqsubseteq> \<Squnion>B" by (rule Sup_upper)
with `a \<sqsubseteq> b` show "a \<sqsubseteq> \<Squnion>B" by auto
qed

lemma SUP_mono:
"(!!n. n ∈ A ==> ∃m∈B. f n \<sqsubseteq> g m) ==> (\<Squnion>n∈A. f n) \<sqsubseteq> (\<Squnion>n∈B. g n)"

unfolding SUP_def by (rule Sup_mono) fast

lemma INF_superset_mono:
"B ⊆ A ==> (!!x. x ∈ B ==> f x \<sqsubseteq> g x) ==> (\<Sqinter>x∈A. f x) \<sqsubseteq> (\<Sqinter>x∈B. g x)"
-- {* The last inclusion is POSITIVE! *}

by (blast intro: INF_mono dest: subsetD)

lemma SUP_subset_mono:
"A ⊆ B ==> (!!x. x ∈ A ==> f x \<sqsubseteq> g x) ==> (\<Squnion>x∈A. f x) \<sqsubseteq> (\<Squnion>x∈B. g x)"

by (blast intro: SUP_mono dest: subsetD)

lemma Inf_less_eq:
assumes "!!v. v ∈ A ==> v \<sqsubseteq> u"
and "A ≠ {}"
shows "\<Sqinter>A \<sqsubseteq> u"

proof -
from `A ≠ {}` obtain v where "v ∈ A" by blast
moreover with assms have "v \<sqsubseteq> u" by blast
ultimately show ?thesis by (rule Inf_lower2)
qed

lemma less_eq_Sup:
assumes "!!v. v ∈ A ==> u \<sqsubseteq> v"
and "A ≠ {}"
shows "u \<sqsubseteq> \<Squnion>A"

proof -
from `A ≠ {}` obtain v where "v ∈ A" by blast
moreover with assms have "u \<sqsubseteq> v" by blast
ultimately show ?thesis by (rule Sup_upper2)
qed

lemma less_eq_Inf_inter: "\<Sqinter>A \<squnion> \<Sqinter>B \<sqsubseteq> \<Sqinter>(A ∩ B)"
by (auto intro: Inf_greatest Inf_lower)

lemma Sup_inter_less_eq: "\<Squnion>(A ∩ B) \<sqsubseteq> \<Squnion>A \<sqinter> \<Squnion>B "
by (auto intro: Sup_least Sup_upper)

lemma Inf_union_distrib: "\<Sqinter>(A ∪ B) = \<Sqinter>A \<sqinter> \<Sqinter>B"
by (rule antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2)

lemma INF_union:
"(\<Sqinter>i ∈ A ∪ B. M i) = (\<Sqinter>i ∈ A. M i) \<sqinter> (\<Sqinter>i∈B. M i)"

by (auto intro!: antisym INF_mono intro: le_infI1 le_infI2 INF_greatest INF_lower)

lemma Sup_union_distrib: "\<Squnion>(A ∪ B) = \<Squnion>A \<squnion> \<Squnion>B"
by (rule antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2)

lemma SUP_union:
"(\<Squnion>i ∈ A ∪ B. M i) = (\<Squnion>i ∈ A. M i) \<squnion> (\<Squnion>i∈B. M i)"

by (auto intro!: antisym SUP_mono intro: le_supI1 le_supI2 SUP_least SUP_upper)

lemma INF_inf_distrib: "(\<Sqinter>a∈A. f a) \<sqinter> (\<Sqinter>a∈A. g a) = (\<Sqinter>a∈A. f a \<sqinter> g a)"
by (rule antisym) (rule INF_greatest, auto intro: le_infI1 le_infI2 INF_lower INF_mono)

lemma SUP_sup_distrib: "(\<Squnion>a∈A. f a) \<squnion> (\<Squnion>a∈A. g a) = (\<Squnion>a∈A. f a \<squnion> g a)" (is "?L = ?R")
proof (rule antisym)
show "?L ≤ ?R" by (auto intro: le_supI1 le_supI2 SUP_upper SUP_mono)
next
show "?R ≤ ?L" by (rule SUP_least) (auto intro: le_supI1 le_supI2 SUP_upper)
qed

lemma Inf_top_conv [simp, no_atp]:
"\<Sqinter>A = \<top> <-> (∀x∈A. x = \<top>)"
"\<top> = \<Sqinter>A <-> (∀x∈A. x = \<top>)"

proof -
show "\<Sqinter>A = \<top> <-> (∀x∈A. x = \<top>)"
proof
assume "∀x∈A. x = \<top>"
then have "A = {} ∨ A = {\<top>}" by auto
then show "\<Sqinter>A = \<top>" by auto
next
assume "\<Sqinter>A = \<top>"
show "∀x∈A. x = \<top>"
proof (rule ccontr)
assume "¬ (∀x∈A. x = \<top>)"
then obtain x where "x ∈ A" and "x ≠ \<top>" by blast
then obtain B where "A = insert x B" by blast
with `\<Sqinter>A = \<top>` `x ≠ \<top>` show False by simp
qed
qed
then show "\<top> = \<Sqinter>A <-> (∀x∈A. x = \<top>)" by auto
qed

lemma INF_top_conv [simp]:
"(\<Sqinter>x∈A. B x) = \<top> <-> (∀x∈A. B x = \<top>)"
"\<top> = (\<Sqinter>x∈A. B x) <-> (∀x∈A. B x = \<top>)"

by (auto simp add: INF_def)

lemma Sup_bot_conv [simp, no_atp]:
"\<Squnion>A = ⊥ <-> (∀x∈A. x = ⊥)" (is ?P)
"⊥ = \<Squnion>A <-> (∀x∈A. x = ⊥)" (is ?Q)

using dual_complete_lattice
by (rule complete_lattice.Inf_top_conv)+

lemma SUP_bot_conv [simp]:
"(\<Squnion>x∈A. B x) = ⊥ <-> (∀x∈A. B x = ⊥)"
"⊥ = (\<Squnion>x∈A. B x) <-> (∀x∈A. B x = ⊥)"

by (auto simp add: SUP_def)

lemma INF_const [simp]: "A ≠ {} ==> (\<Sqinter>i∈A. f) = f"
by (auto intro: antisym INF_lower INF_greatest)

lemma SUP_const [simp]: "A ≠ {} ==> (\<Squnion>i∈A. f) = f"
by (auto intro: antisym SUP_upper SUP_least)

lemma INF_top [simp]: "(\<Sqinter>x∈A. \<top>) = \<top>"
by (cases "A = {}") simp_all

lemma SUP_bot [simp]: "(\<Squnion>x∈A. ⊥) = ⊥"
by (cases "A = {}") simp_all

lemma INF_commute: "(\<Sqinter>i∈A. \<Sqinter>j∈B. f i j) = (\<Sqinter>j∈B. \<Sqinter>i∈A. f i j)"
by (iprover intro: INF_lower INF_greatest order_trans antisym)

lemma SUP_commute: "(\<Squnion>i∈A. \<Squnion>j∈B. f i j) = (\<Squnion>j∈B. \<Squnion>i∈A. f i j)"
by (iprover intro: SUP_upper SUP_least order_trans antisym)

lemma INF_absorb:
assumes "k ∈ I"
shows "A k \<sqinter> (\<Sqinter>i∈I. A i) = (\<Sqinter>i∈I. A i)"

proof -
from assms obtain J where "I = insert k J" by blast
then show ?thesis by (simp add: INF_insert)
qed

lemma SUP_absorb:
assumes "k ∈ I"
shows "A k \<squnion> (\<Squnion>i∈I. A i) = (\<Squnion>i∈I. A i)"

proof -
from assms obtain J where "I = insert k J" by blast
then show ?thesis by (simp add: SUP_insert)
qed

lemma INF_constant:
"(\<Sqinter>y∈A. c) = (if A = {} then \<top> else c)"

by simp

lemma SUP_constant:
"(\<Squnion>y∈A. c) = (if A = {} then ⊥ else c)"

by simp

lemma less_INF_D:
assumes "y < (\<Sqinter>i∈A. f i)" "i ∈ A" shows "y < f i"

proof -
note `y < (\<Sqinter>i∈A. f i)`
also have "(\<Sqinter>i∈A. f i) ≤ f i" using `i ∈ A`
by (rule INF_lower)
finally show "y < f i" .
qed

lemma SUP_lessD:
assumes "(\<Squnion>i∈A. f i) < y" "i ∈ A" shows "f i < y"

proof -
have "f i ≤ (\<Squnion>i∈A. f i)" using `i ∈ A`
by (rule SUP_upper)
also note `(\<Squnion>i∈A. f i) < y`
finally show "f i < y" .
qed

lemma INF_UNIV_bool_expand:
"(\<Sqinter>b. A b) = A True \<sqinter> A False"

by (simp add: UNIV_bool INF_insert inf_commute)

lemma SUP_UNIV_bool_expand:
"(\<Squnion>b. A b) = A True \<squnion> A False"

by (simp add: UNIV_bool SUP_insert sup_commute)

end

class complete_distrib_lattice = complete_lattice +
assumes sup_Inf: "a \<squnion> \<Sqinter>B = (\<Sqinter>b∈B. a \<squnion> b)"
assumes inf_Sup: "a \<sqinter> \<Squnion>B = (\<Squnion>b∈B. a \<sqinter> b)"
begin


lemma sup_INF:
"a \<squnion> (\<Sqinter>b∈B. f b) = (\<Sqinter>b∈B. a \<squnion> f b)"

by (simp add: INF_def sup_Inf image_image)

lemma inf_SUP:
"a \<sqinter> (\<Squnion>b∈B. f b) = (\<Squnion>b∈B. a \<sqinter> f b)"

by (simp add: SUP_def inf_Sup image_image)

lemma dual_complete_distrib_lattice:
"class.complete_distrib_lattice Sup Inf sup (op ≥) (op >) inf \<top> ⊥"

apply (rule class.complete_distrib_lattice.intro)
apply (fact dual_complete_lattice)
apply (rule class.complete_distrib_lattice_axioms.intro)
apply (simp_all only: INF_foundation_dual SUP_foundation_dual inf_Sup sup_Inf)
done

subclass distrib_lattice proof
fix a b c
from sup_Inf have "a \<squnion> \<Sqinter>{b, c} = (\<Sqinter>d∈{b, c}. a \<squnion> d)" .
then show "a \<squnion> b \<sqinter> c = (a \<squnion> b) \<sqinter> (a \<squnion> c)" by (simp add: INF_def)
qed

lemma Inf_sup:
"\<Sqinter>B \<squnion> a = (\<Sqinter>b∈B. b \<squnion> a)"

by (simp add: sup_Inf sup_commute)

lemma Sup_inf:
"\<Squnion>B \<sqinter> a = (\<Squnion>b∈B. b \<sqinter> a)"

by (simp add: inf_Sup inf_commute)

lemma INF_sup:
"(\<Sqinter>b∈B. f b) \<squnion> a = (\<Sqinter>b∈B. f b \<squnion> a)"

by (simp add: sup_INF sup_commute)

lemma SUP_inf:
"(\<Squnion>b∈B. f b) \<sqinter> a = (\<Squnion>b∈B. f b \<sqinter> a)"

by (simp add: inf_SUP inf_commute)

lemma Inf_sup_eq_top_iff:
"(\<Sqinter>B \<squnion> a = \<top>) <-> (∀b∈B. b \<squnion> a = \<top>)"

by (simp only: Inf_sup INF_top_conv)

lemma Sup_inf_eq_bot_iff:
"(\<Squnion>B \<sqinter> a = ⊥) <-> (∀b∈B. b \<sqinter> a = ⊥)"

by (simp only: Sup_inf SUP_bot_conv)

lemma INF_sup_distrib2:
"(\<Sqinter>a∈A. f a) \<squnion> (\<Sqinter>b∈B. g b) = (\<Sqinter>a∈A. \<Sqinter>b∈B. f a \<squnion> g b)"

by (subst INF_commute) (simp add: sup_INF INF_sup)

lemma SUP_inf_distrib2:
"(\<Squnion>a∈A. f a) \<sqinter> (\<Squnion>b∈B. g b) = (\<Squnion>a∈A. \<Squnion>b∈B. f a \<sqinter> g b)"

by (subst SUP_commute) (simp add: inf_SUP SUP_inf)

end

class complete_boolean_algebra = boolean_algebra + complete_distrib_lattice
begin


lemma dual_complete_boolean_algebra:
"class.complete_boolean_algebra Sup Inf sup (op ≥) (op >) inf \<top> ⊥ (λx y. x \<squnion> - y) uminus"

by (rule class.complete_boolean_algebra.intro, rule dual_complete_distrib_lattice, rule dual_boolean_algebra)

lemma uminus_Inf:
"- (\<Sqinter>A) = \<Squnion>(uminus ` A)"

proof (rule antisym)
show "- \<Sqinter>A ≤ \<Squnion>(uminus ` A)"
by (rule compl_le_swap2, rule Inf_greatest, rule compl_le_swap2, rule Sup_upper) simp
show "\<Squnion>(uminus ` A) ≤ - \<Sqinter>A"
by (rule Sup_least, rule compl_le_swap1, rule Inf_lower) auto
qed

lemma uminus_INF: "- (\<Sqinter>x∈A. B x) = (\<Squnion>x∈A. - B x)"
by (simp add: INF_def SUP_def uminus_Inf image_image)

lemma uminus_Sup:
"- (\<Squnion>A) = \<Sqinter>(uminus ` A)"

proof -
have "\<Squnion>A = - \<Sqinter>(uminus ` A)" by (simp add: image_image uminus_Inf)
then show ?thesis by simp
qed

lemma uminus_SUP: "- (\<Squnion>x∈A. B x) = (\<Sqinter>x∈A. - B x)"
by (simp add: INF_def SUP_def uminus_Sup image_image)

end

class complete_linorder = linorder + complete_lattice
begin


lemma dual_complete_linorder:
"class.complete_linorder Sup Inf sup (op ≥) (op >) inf \<top> ⊥"

by (rule class.complete_linorder.intro, rule dual_complete_lattice, rule dual_linorder)

lemma Inf_less_iff:
"\<Sqinter>S \<sqsubset> a <-> (∃x∈S. x \<sqsubset> a)"

unfolding not_le [symmetric] le_Inf_iff by auto

lemma INF_less_iff:
"(\<Sqinter>i∈A. f i) \<sqsubset> a <-> (∃x∈A. f x \<sqsubset> a)"

unfolding INF_def Inf_less_iff by auto

lemma less_Sup_iff:
"a \<sqsubset> \<Squnion>S <-> (∃x∈S. a \<sqsubset> x)"

unfolding not_le [symmetric] Sup_le_iff by auto

lemma less_SUP_iff:
"a \<sqsubset> (\<Squnion>i∈A. f i) <-> (∃x∈A. a \<sqsubset> f x)"

unfolding SUP_def less_Sup_iff by auto

lemma Sup_eq_top_iff [simp]:
"\<Squnion>A = \<top> <-> (∀x<\<top>. ∃i∈A. x < i)"

proof
assume *: "\<Squnion>A = \<top>"
show "(∀x<\<top>. ∃i∈A. x < i)" unfolding * [symmetric]
proof (intro allI impI)
fix x assume "x < \<Squnion>A" then show "∃i∈A. x < i"
unfolding less_Sup_iff by auto
qed
next
assume *: "∀x<\<top>. ∃i∈A. x < i"
show "\<Squnion>A = \<top>"
proof (rule ccontr)
assume "\<Squnion>A ≠ \<top>"
with top_greatest [of "\<Squnion>A"]
have "\<Squnion>A < \<top>" unfolding le_less by auto
then have "\<Squnion>A < \<Squnion>A"
using * unfolding less_Sup_iff by auto
then show False by auto
qed
qed

lemma SUP_eq_top_iff [simp]:
"(\<Squnion>i∈A. f i) = \<top> <-> (∀x<\<top>. ∃i∈A. x < f i)"

unfolding SUP_def by auto

lemma Inf_eq_bot_iff [simp]:
"\<Sqinter>A = ⊥ <-> (∀x>⊥. ∃i∈A. i < x)"

using dual_complete_linorder
by (rule complete_linorder.Sup_eq_top_iff)

lemma INF_eq_bot_iff [simp]:
"(\<Sqinter>i∈A. f i) = ⊥ <-> (∀x>⊥. ∃i∈A. f i < x)"

unfolding INF_def by auto

end


subsection {* @{typ bool} and @{typ "_ => _"} as complete lattice *}

instantiation bool :: complete_lattice
begin


definition
[simp]: "\<Sqinter>A <-> False ∉ A"


definition
[simp]: "\<Squnion>A <-> True ∈ A"


instance proof
qed (auto intro: bool_induct)

end

lemma INF_bool_eq [simp]:
"INFI = Ball"

proof (rule ext)+
fix A :: "'a set"
fix P :: "'a => bool"
show "(\<Sqinter>x∈A. P x) <-> (∀x∈A. P x)"
by (auto simp add: INF_def)
qed

lemma SUP_bool_eq [simp]:
"SUPR = Bex"

proof (rule ext)+
fix A :: "'a set"
fix P :: "'a => bool"
show "(\<Squnion>x∈A. P x) <-> (∃x∈A. P x)"
by (auto simp add: SUP_def)
qed

instance bool :: complete_boolean_algebra proof
qed (auto intro: bool_induct)

instantiation "fun" :: (type, complete_lattice) complete_lattice
begin


definition
"\<Sqinter>A = (λx. \<Sqinter>f∈A. f x)"


lemma Inf_apply:
"(\<Sqinter>A) x = (\<Sqinter>f∈A. f x)"

by (simp add: Inf_fun_def)

definition
"\<Squnion>A = (λx. \<Squnion>f∈A. f x)"


lemma Sup_apply:
"(\<Squnion>A) x = (\<Squnion>f∈A. f x)"

by (simp add: Sup_fun_def)

instance proof
qed (auto simp add: le_fun_def Inf_apply Sup_apply intro: INF_lower INF_greatest SUP_upper SUP_least)

end

lemma INF_apply:
"(\<Sqinter>y∈A. f y) x = (\<Sqinter>y∈A. f y x)"

by (auto intro: arg_cong [of _ _ Inf] simp add: INF_def Inf_apply)

lemma SUP_apply:
"(\<Squnion>y∈A. f y) x = (\<Squnion>y∈A. f y x)"

by (auto intro: arg_cong [of _ _ Sup] simp add: SUP_def Sup_apply)

instance "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice proof
qed (auto simp add: inf_apply sup_apply Inf_apply Sup_apply INF_def SUP_def inf_Sup sup_Inf image_image)

instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra ..


subsection {* Inter *}

abbreviation Inter :: "'a set set => 'a set" where
"Inter S ≡ \<Sqinter>S"


notation (xsymbols)
Inter ("\<Inter>_" [90] 90)


lemma Inter_eq:
"\<Inter>A = {x. ∀B ∈ A. x ∈ B}"

proof (rule set_eqI)
fix x
have "(∀Q∈{P. ∃B∈A. P <-> x ∈ B}. Q) <-> (∀B∈A. x ∈ B)"
by auto
then show "x ∈ \<Inter>A <-> x ∈ {x. ∀B ∈ A. x ∈ B}"
by (simp add: Inf_fun_def) (simp add: mem_def)
qed

lemma Inter_iff [simp,no_atp]: "A ∈ \<Inter>C <-> (∀X∈C. A ∈ X)"
by (unfold Inter_eq) blast

lemma InterI [intro!]: "(!!X. X ∈ C ==> A ∈ X) ==> A ∈ \<Inter>C"
by (simp add: Inter_eq)

text {*
\medskip A ``destruct'' rule -- every @{term X} in @{term C}
contains @{term A} as an element, but @{prop "A ∈ X"} can hold when
@{prop "X ∈ C"} does not! This rule is analogous to @{text spec}.
*}


lemma InterD [elim, Pure.elim]: "A ∈ \<Inter>C ==> X ∈ C ==> A ∈ X"
by auto

lemma InterE [elim]: "A ∈ \<Inter>C ==> (X ∉ C ==> R) ==> (A ∈ X ==> R) ==> R"
-- {* ``Classical'' elimination rule -- does not require proving
@{prop "X ∈ C"}. *}

by (unfold Inter_eq) blast

lemma Inter_lower: "B ∈ A ==> \<Inter>A ⊆ B"
by (fact Inf_lower)

lemma Inter_subset:
"(!!X. X ∈ A ==> X ⊆ B) ==> A ≠ {} ==> \<Inter>A ⊆ B"

by (fact Inf_less_eq)

lemma Inter_greatest: "(!!X. X ∈ A ==> C ⊆ X) ==> C ⊆ Inter A"
by (fact Inf_greatest)

lemma Inter_empty: "\<Inter>{} = UNIV"
by (fact Inf_empty) (* already simp *)

lemma Inter_UNIV: "\<Inter>UNIV = {}"
by (fact Inf_UNIV) (* already simp *)

lemma Inter_insert: "\<Inter>(insert a B) = a ∩ \<Inter>B"
by (fact Inf_insert) (* already simp *)

lemma Inter_Un_subset: "\<Inter>A ∪ \<Inter>B ⊆ \<Inter>(A ∩ B)"
by (fact less_eq_Inf_inter)

lemma Inter_Un_distrib: "\<Inter>(A ∪ B) = \<Inter>A ∩ \<Inter>B"
by (fact Inf_union_distrib)

lemma Inter_UNIV_conv [simp, no_atp]:
"\<Inter>A = UNIV <-> (∀x∈A. x = UNIV)"
"UNIV = \<Inter>A <-> (∀x∈A. x = UNIV)"

by (fact Inf_top_conv)+

lemma Inter_anti_mono: "B ⊆ A ==> \<Inter>A ⊆ \<Inter>B"
by (fact Inf_superset_mono)


subsection {* Intersections of families *}

abbreviation INTER :: "'a set => ('a => 'b set) => 'b set" where
"INTER ≡ INFI"


text {*
Note: must use name @{const INTER} here instead of @{text INT}
to allow the following syntax coexist with the plain constant name.
*}


syntax
"_INTER1" :: "pttrns => 'b set => 'b set" ("(3INT _./ _)" [0, 10] 10)
"_INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3INT _:_./ _)" [0, 0, 10] 10)


syntax (xsymbols)
"_INTER1" :: "pttrns => 'b set => 'b set" ("(3\<Inter>_./ _)" [0, 10] 10)
"_INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Inter>_∈_./ _)" [0, 0, 10] 10)


syntax (latex output)
"_INTER1" :: "pttrns => 'b set => 'b set" ("(3\<Inter>(00_)/ _)" [0, 10] 10)
"_INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Inter>(00_∈_)/ _)" [0, 0, 10] 10)


translations
"INT x y. B" == "INT x. INT y. B"
"INT x. B" == "CONST INTER CONST UNIV (%x. B)"
"INT x. B" == "INT x:CONST UNIV. B"
"INT x:A. B" == "CONST INTER A (%x. B)"


print_translation {*
[Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INTER} @{syntax_const "_INTER"}]
*}
-- {* to avoid eta-contraction of body *}


lemma INTER_eq:
"(\<Inter>x∈A. B x) = {y. ∀x∈A. y ∈ B x}"

by (auto simp add: INF_def)

lemma Inter_image_eq [simp]:
"\<Inter>(B`A) = (\<Inter>x∈A. B x)"

by (rule sym) (fact INF_def)

lemma INT_iff [simp]: "b ∈ (\<Inter>x∈A. B x) <-> (∀x∈A. b ∈ B x)"
by (auto simp add: INF_def image_def)

lemma INT_I [intro!]: "(!!x. x ∈ A ==> b ∈ B x) ==> b ∈ (\<Inter>x∈A. B x)"
by (auto simp add: INF_def image_def)

lemma INT_D [elim, Pure.elim]: "b ∈ (\<Inter>x∈A. B x) ==> a ∈ A ==> b ∈ B a"
by auto

lemma INT_E [elim]: "b ∈ (\<Inter>x∈A. B x) ==> (b ∈ B a ==> R) ==> (a ∉ A ==> R) ==> R"
-- {* "Classical" elimination -- by the Excluded Middle on @{prop "a∈A"}. *}

by (auto simp add: INF_def image_def)

lemma INT_cong [cong]:
"A = B ==> (!!x. x ∈ B ==> C x = D x) ==> (\<Inter>x∈A. C x) = (\<Inter>x∈B. D x)"

by (fact INF_cong)

lemma Collect_ball_eq: "{x. ∀y∈A. P x y} = (\<Inter>y∈A. {x. P x y})"
by blast

lemma Collect_all_eq: "{x. ∀y. P x y} = (\<Inter>y. {x. P x y})"
by blast

lemma INT_lower: "a ∈ A ==> (\<Inter>x∈A. B x) ⊆ B a"
by (fact INF_lower)

lemma INT_greatest: "(!!x. x ∈ A ==> C ⊆ B x) ==> C ⊆ (\<Inter>x∈A. B x)"
by (fact INF_greatest)

lemma INT_empty: "(\<Inter>x∈{}. B x) = UNIV"
by (fact INF_empty)

lemma INT_absorb: "k ∈ I ==> A k ∩ (\<Inter>i∈I. A i) = (\<Inter>i∈I. A i)"
by (fact INF_absorb)

lemma INT_subset_iff: "B ⊆ (\<Inter>i∈I. A i) <-> (∀i∈I. B ⊆ A i)"
by (fact le_INF_iff)

lemma INT_insert [simp]: "(\<Inter>x ∈ insert a A. B x) = B a ∩ INTER A B"
by (fact INF_insert)

lemma INT_Un: "(\<Inter>i ∈ A ∪ B. M i) = (\<Inter>i ∈ A. M i) ∩ (\<Inter>i∈B. M i)"
by (fact INF_union)

lemma INT_insert_distrib:
"u ∈ A ==> (\<Inter>x∈A. insert a (B x)) = insert a (\<Inter>x∈A. B x)"

by blast

lemma INT_constant [simp]: "(\<Inter>y∈A. c) = (if A = {} then UNIV else c)"
by (fact INF_constant)

lemma INTER_UNIV_conv:
"(UNIV = (\<Inter>x∈A. B x)) = (∀x∈A. B x = UNIV)"
"((\<Inter>x∈A. B x) = UNIV) = (∀x∈A. B x = UNIV)"

by (fact INF_top_conv)+ (* already simp *)

lemma INT_bool_eq: "(\<Inter>b. A b) = A True ∩ A False"
by (fact INF_UNIV_bool_expand)

lemma INT_anti_mono:
"A ⊆ B ==> (!!x. x ∈ A ==> f x ⊆ g x) ==> (\<Inter>x∈B. f x) ⊆ (\<Inter>x∈A. g x)"
-- {* The last inclusion is POSITIVE! *}

by (fact INF_superset_mono)

lemma Pow_INT_eq: "Pow (\<Inter>x∈A. B x) = (\<Inter>x∈A. Pow (B x))"
by blast

lemma vimage_INT: "f -` (\<Inter>x∈A. B x) = (\<Inter>x∈A. f -` B x)"
by blast


subsection {* Union *}

abbreviation Union :: "'a set set => 'a set" where
"Union S ≡ \<Squnion>S"


notation (xsymbols)
Union ("\<Union>_" [90] 90)


lemma Union_eq:
"\<Union>A = {x. ∃B ∈ A. x ∈ B}"

proof (rule set_eqI)
fix x
have "(∃Q∈{P. ∃B∈A. P <-> x ∈ B}. Q) <-> (∃B∈A. x ∈ B)"
by auto
then show "x ∈ \<Union>A <-> x ∈ {x. ∃B∈A. x ∈ B}"
by (simp add: Sup_fun_def) (simp add: mem_def)
qed

lemma Union_iff [simp, no_atp]:
"A ∈ \<Union>C <-> (∃X∈C. A∈X)"

by (unfold Union_eq) blast

lemma UnionI [intro]:
"X ∈ C ==> A ∈ X ==> A ∈ \<Union>C"
-- {* The order of the premises presupposes that @{term C} is rigid;
@{term A} may be flexible. *}

by auto

lemma UnionE [elim!]:
"A ∈ \<Union>C ==> (!!X. A ∈ X ==> X ∈ C ==> R) ==> R"

by auto

lemma Union_upper: "B ∈ A ==> B ⊆ \<Union>A"
by (fact Sup_upper)

lemma Union_least: "(!!X. X ∈ A ==> X ⊆ C) ==> \<Union>A ⊆ C"
by (fact Sup_least)

lemma Union_empty: "\<Union>{} = {}"
by (fact Sup_empty) (* already simp *)

lemma Union_UNIV: "\<Union>UNIV = UNIV"
by (fact Sup_UNIV) (* already simp *)

lemma Union_insert: "\<Union>insert a B = a ∪ \<Union>B"
by (fact Sup_insert) (* already simp *)

lemma Union_Un_distrib [simp]: "\<Union>(A ∪ B) = \<Union>A ∪ \<Union>B"
by (fact Sup_union_distrib)

lemma Union_Int_subset: "\<Union>(A ∩ B) ⊆ \<Union>A ∩ \<Union>B"
by (fact Sup_inter_less_eq)

lemma Union_empty_conv [no_atp]: "(\<Union>A = {}) <-> (∀x∈A. x = {})"
by (fact Sup_bot_conv) (* already simp *)

lemma empty_Union_conv [no_atp]: "({} = \<Union>A) <-> (∀x∈A. x = {})"
by (fact Sup_bot_conv) (* already simp *)

lemma subset_Pow_Union: "A ⊆ Pow (\<Union>A)"
by blast

lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
by blast

lemma Union_mono: "A ⊆ B ==> \<Union>A ⊆ \<Union>B"
by (fact Sup_subset_mono)


subsection {* Unions of families *}

abbreviation UNION :: "'a set => ('a => 'b set) => 'b set" where
"UNION ≡ SUPR"


text {*
Note: must use name @{const UNION} here instead of @{text UN}
to allow the following syntax coexist with the plain constant name.
*}


syntax
"_UNION1" :: "pttrns => 'b set => 'b set" ("(3UN _./ _)" [0, 10] 10)
"_UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3UN _:_./ _)" [0, 0, 10] 10)


syntax (xsymbols)
"_UNION1" :: "pttrns => 'b set => 'b set" ("(3\<Union>_./ _)" [0, 10] 10)
"_UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Union>_∈_./ _)" [0, 0, 10] 10)


syntax (latex output)
"_UNION1" :: "pttrns => 'b set => 'b set" ("(3\<Union>(00_)/ _)" [0, 10] 10)
"_UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Union>(00_∈_)/ _)" [0, 0, 10] 10)


translations
"UN x y. B" == "UN x. UN y. B"
"UN x. B" == "CONST UNION CONST UNIV (%x. B)"
"UN x. B" == "UN x:CONST UNIV. B"
"UN x:A. B" == "CONST UNION A (%x. B)"


text {*
Note the difference between ordinary xsymbol syntax of indexed
unions and intersections (e.g.\ @{text"\<Union>a1∈A1. B"})
and their \LaTeX\ rendition: @{term"\<Union>a1∈A1. B"}. The
former does not make the index expression a subscript of the
union/intersection symbol because this leads to problems with nested
subscripts in Proof General.
*}


print_translation {*
[Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax UNION} @{syntax_const "_UNION"}]
*}
-- {* to avoid eta-contraction of body *}


lemma UNION_eq [no_atp]:
"(\<Union>x∈A. B x) = {y. ∃x∈A. y ∈ B x}"

by (auto simp add: SUP_def)

lemma Union_image_eq [simp]:
"\<Union>(B ` A) = (\<Union>x∈A. B x)"

by (rule sym) (fact SUP_def)

lemma UN_iff [simp]: "(b ∈ (\<Union>x∈A. B x)) = (∃x∈A. b ∈ B x)"
by (auto simp add: SUP_def image_def)

lemma UN_I [intro]: "a ∈ A ==> b ∈ B a ==> b ∈ (\<Union>x∈A. B x)"
-- {* The order of the premises presupposes that @{term A} is rigid;
@{term b} may be flexible. *}

by auto

lemma UN_E [elim!]: "b ∈ (\<Union>x∈A. B x) ==> (!!x. x∈A ==> b ∈ B x ==> R) ==> R"
by (auto simp add: SUP_def image_def)

lemma UN_cong [cong]:
"A = B ==> (!!x. x ∈ B ==> C x = D x) ==> (\<Union>x∈A. C x) = (\<Union>x∈B. D x)"

by (fact SUP_cong)

lemma strong_UN_cong:
"A = B ==> (!!x. x ∈ B =simp=> C x = D x) ==> (\<Union>x∈A. C x) = (\<Union>x∈B. D x)"

by (unfold simp_implies_def) (fact UN_cong)

lemma image_eq_UN: "f ` A = (\<Union>x∈A. {f x})"
by blast

lemma UN_upper: "a ∈ A ==> B a ⊆ (\<Union>x∈A. B x)"
by (fact SUP_upper)

lemma UN_least: "(!!x. x ∈ A ==> B x ⊆ C) ==> (\<Union>x∈A. B x) ⊆ C"
by (fact SUP_least)

lemma Collect_bex_eq [no_atp]: "{x. ∃y∈A. P x y} = (\<Union>y∈A. {x. P x y})"
by blast

lemma UN_insert_distrib: "u ∈ A ==> (\<Union>x∈A. insert a (B x)) = insert a (\<Union>x∈A. B x)"
by blast

lemma UN_empty [no_atp]: "(\<Union>x∈{}. B x) = {}"
by (fact SUP_empty)

lemma UN_empty2: "(\<Union>x∈A. {}) = {}"
by (fact SUP_bot) (* already simp *)

lemma UN_absorb: "k ∈ I ==> A k ∪ (\<Union>i∈I. A i) = (\<Union>i∈I. A i)"
by (fact SUP_absorb)

lemma UN_insert [simp]: "(\<Union>x∈insert a A. B x) = B a ∪ UNION A B"
by (fact SUP_insert)

lemma UN_Un [simp]: "(\<Union>i ∈ A ∪ B. M i) = (\<Union>i∈A. M i) ∪ (\<Union>i∈B. M i)"
by (fact SUP_union)

lemma UN_UN_flatten: "(\<Union>x ∈ (\<Union>y∈A. B y). C x) = (\<Union>y∈A. \<Union>x∈B y. C x)"
by blast

lemma UN_subset_iff: "((\<Union>i∈I. A i) ⊆ B) = (∀i∈I. A i ⊆ B)"
by (fact SUP_le_iff)

lemma UN_constant [simp]: "(\<Union>y∈A. c) = (if A = {} then {} else c)"
by (fact SUP_constant)

lemma image_Union: "f ` \<Union>S = (\<Union>x∈S. f ` x)"
by blast

lemma UNION_empty_conv:
"{} = (\<Union>x∈A. B x) <-> (∀x∈A. B x = {})"
"(\<Union>x∈A. B x) = {} <-> (∀x∈A. B x = {})"

by (fact SUP_bot_conv)+ (* already simp *)

lemma Collect_ex_eq [no_atp]: "{x. ∃y. P x y} = (\<Union>y. {x. P x y})"
by blast

lemma ball_UN: "(∀z ∈ UNION A B. P z) <-> (∀x∈A. ∀z ∈ B x. P z)"
by blast

lemma bex_UN: "(∃z ∈ UNION A B. P z) <-> (∃x∈A. ∃z∈B x. P z)"
by blast

lemma Un_eq_UN: "A ∪ B = (\<Union>b. if b then A else B)"
by (auto simp add: split_if_mem2)

lemma UN_bool_eq: "(\<Union>b. A b) = (A True ∪ A False)"
by (fact SUP_UNIV_bool_expand)

lemma UN_Pow_subset: "(\<Union>x∈A. Pow (B x)) ⊆ Pow (\<Union>x∈A. B x)"
by blast

lemma UN_mono:
"A ⊆ B ==> (!!x. x ∈ A ==> f x ⊆ g x) ==>
(\<Union>x∈A. f x) ⊆ (\<Union>x∈B. g x)"

by (fact SUP_subset_mono)

lemma vimage_Union: "f -` (\<Union>A) = (\<Union>X∈A. f -` X)"
by blast

lemma vimage_UN: "f -` (\<Union>x∈A. B x) = (\<Union>x∈A. f -` B x)"
by blast

lemma vimage_eq_UN: "f -` B = (\<Union>y∈B. f -` {y})"
-- {* NOT suitable for rewriting *}

by blast

lemma image_UN: "f ` UNION A B = (\<Union>x∈A. f ` B x)"
by blast

lemma UN_singleton [simp]: "(\<Union>x∈A. {x}) = A"
by blast


subsection {* Distributive laws *}

lemma Int_Union: "A ∩ \<Union>B = (\<Union>C∈B. A ∩ C)"
by (fact inf_Sup)

lemma Un_Inter: "A ∪ \<Inter>B = (\<Inter>C∈B. A ∪ C)"
by (fact sup_Inf)

lemma Int_Union2: "\<Union>B ∩ A = (\<Union>C∈B. C ∩ A)"
by (fact Sup_inf)

lemma INT_Int_distrib: "(\<Inter>i∈I. A i ∩ B i) = (\<Inter>i∈I. A i) ∩ (\<Inter>i∈I. B i)"
by (rule sym) (rule INF_inf_distrib)

lemma UN_Un_distrib: "(\<Union>i∈I. A i ∪ B i) = (\<Union>i∈I. A i) ∪ (\<Union>i∈I. B i)"
by (rule sym) (rule SUP_sup_distrib)

lemma Int_Inter_image: "(\<Inter>x∈C. A x ∩ B x) = \<Inter>(A ` C) ∩ \<Inter>(B ` C)"
by (simp only: INT_Int_distrib INF_def)

lemma Un_Union_image: "(\<Union>x∈C. A x ∪ B x) = \<Union>(A ` C) ∪ \<Union>(B ` C)"
-- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
-- {* Union of a family of unions *}

by (simp only: UN_Un_distrib SUP_def)

lemma Un_INT_distrib: "B ∪ (\<Inter>i∈I. A i) = (\<Inter>i∈I. B ∪ A i)"
by (fact sup_INF)

lemma Int_UN_distrib: "B ∩ (\<Union>i∈I. A i) = (\<Union>i∈I. B ∩ A i)"
-- {* Halmos, Naive Set Theory, page 35. *}

by (fact inf_SUP)

lemma Int_UN_distrib2: "(\<Union>i∈I. A i) ∩ (\<Union>j∈J. B j) = (\<Union>i∈I. \<Union>j∈J. A i ∩ B j)"
by (fact SUP_inf_distrib2)

lemma Un_INT_distrib2: "(\<Inter>i∈I. A i) ∪ (\<Inter>j∈J. B j) = (\<Inter>i∈I. \<Inter>j∈J. A i ∪ B j)"
by (fact INF_sup_distrib2)

lemma Union_disjoint: "(\<Union>C ∩ A = {}) <-> (∀B∈C. B ∩ A = {})"
by (fact Sup_inf_eq_bot_iff)


subsection {* Complement *}

lemma Compl_INT [simp]: "- (\<Inter>x∈A. B x) = (\<Union>x∈A. -B x)"
by (fact uminus_INF)

lemma Compl_UN [simp]: "- (\<Union>x∈A. B x) = (\<Inter>x∈A. -B x)"
by (fact uminus_SUP)


subsection {* Miniscoping and maxiscoping *}

text {* \medskip Miniscoping: pushing in quantifiers and big Unions
and Intersections. *}


lemma UN_simps [simp]:
"!!a B C. (\<Union>x∈C. insert a (B x)) = (if C={} then {} else insert a (\<Union>x∈C. B x))"
"!!A B C. (\<Union>x∈C. A x ∪ B) = ((if C={} then {} else (\<Union>x∈C. A x) ∪ B))"
"!!A B C. (\<Union>x∈C. A ∪ B x) = ((if C={} then {} else A ∪ (\<Union>x∈C. B x)))"
"!!A B C. (\<Union>x∈C. A x ∩ B) = ((\<Union>x∈C. A x) ∩ B)"
"!!A B C. (\<Union>x∈C. A ∩ B x) = (A ∩(\<Union>x∈C. B x))"
"!!A B C. (\<Union>x∈C. A x - B) = ((\<Union>x∈C. A x) - B)"
"!!A B C. (\<Union>x∈C. A - B x) = (A - (\<Inter>x∈C. B x))"
"!!A B. (\<Union>x∈\<Union>A. B x) = (\<Union>y∈A. \<Union>x∈y. B x)"
"!!A B C. (\<Union>z∈UNION A B. C z) = (\<Union>x∈A. \<Union>z∈B x. C z)"
"!!A B f. (\<Union>x∈f`A. B x) = (\<Union>a∈A. B (f a))"

by auto

lemma INT_simps [simp]:
"!!A B C. (\<Inter>x∈C. A x ∩ B) = (if C={} then UNIV else (\<Inter>x∈C. A x) ∩ B)"
"!!A B C. (\<Inter>x∈C. A ∩ B x) = (if C={} then UNIV else A ∩(\<Inter>x∈C. B x))"
"!!A B C. (\<Inter>x∈C. A x - B) = (if C={} then UNIV else (\<Inter>x∈C. A x) - B)"
"!!A B C. (\<Inter>x∈C. A - B x) = (if C={} then UNIV else A - (\<Union>x∈C. B x))"
"!!a B C. (\<Inter>x∈C. insert a (B x)) = insert a (\<Inter>x∈C. B x)"
"!!A B C. (\<Inter>x∈C. A x ∪ B) = ((\<Inter>x∈C. A x) ∪ B)"
"!!A B C. (\<Inter>x∈C. A ∪ B x) = (A ∪ (\<Inter>x∈C. B x))"
"!!A B. (\<Inter>x∈\<Union>A. B x) = (\<Inter>y∈A. \<Inter>x∈y. B x)"
"!!A B C. (\<Inter>z∈UNION A B. C z) = (\<Inter>x∈A. \<Inter>z∈B x. C z)"
"!!A B f. (\<Inter>x∈f`A. B x) = (\<Inter>a∈A. B (f a))"

by auto

lemma UN_ball_bex_simps [simp, no_atp]:
"!!A P. (∀x∈\<Union>A. P x) <-> (∀y∈A. ∀x∈y. P x)"
"!!A B P. (∀x∈UNION A B. P x) = (∀a∈A. ∀x∈ B a. P x)"
"!!A P. (∃x∈\<Union>A. P x) <-> (∃y∈A. ∃x∈y. P x)"
"!!A B P. (∃x∈UNION A B. P x) <-> (∃a∈A. ∃x∈B a. P x)"

by auto


text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}

lemma UN_extend_simps:
"!!a B C. insert a (\<Union>x∈C. B x) = (if C={} then {a} else (\<Union>x∈C. insert a (B x)))"
"!!A B C. (\<Union>x∈C. A x) ∪ B = (if C={} then B else (\<Union>x∈C. A x ∪ B))"
"!!A B C. A ∪ (\<Union>x∈C. B x) = (if C={} then A else (\<Union>x∈C. A ∪ B x))"
"!!A B C. ((\<Union>x∈C. A x) ∩ B) = (\<Union>x∈C. A x ∩ B)"
"!!A B C. (A ∩ (\<Union>x∈C. B x)) = (\<Union>x∈C. A ∩ B x)"
"!!A B C. ((\<Union>x∈C. A x) - B) = (\<Union>x∈C. A x - B)"
"!!A B C. (A - (\<Inter>x∈C. B x)) = (\<Union>x∈C. A - B x)"
"!!A B. (\<Union>y∈A. \<Union>x∈y. B x) = (\<Union>x∈\<Union>A. B x)"
"!!A B C. (\<Union>x∈A. \<Union>z∈B x. C z) = (\<Union>z∈UNION A B. C z)"
"!!A B f. (\<Union>a∈A. B (f a)) = (\<Union>x∈f`A. B x)"

by auto

lemma INT_extend_simps:
"!!A B C. (\<Inter>x∈C. A x) ∩ B = (if C={} then B else (\<Inter>x∈C. A x ∩ B))"
"!!A B C. A ∩ (\<Inter>x∈C. B x) = (if C={} then A else (\<Inter>x∈C. A ∩ B x))"
"!!A B C. (\<Inter>x∈C. A x) - B = (if C={} then UNIV - B else (\<Inter>x∈C. A x - B))"
"!!A B C. A - (\<Union>x∈C. B x) = (if C={} then A else (\<Inter>x∈C. A - B x))"
"!!a B C. insert a (\<Inter>x∈C. B x) = (\<Inter>x∈C. insert a (B x))"
"!!A B C. ((\<Inter>x∈C. A x) ∪ B) = (\<Inter>x∈C. A x ∪ B)"
"!!A B C. A ∪ (\<Inter>x∈C. B x) = (\<Inter>x∈C. A ∪ B x)"
"!!A B. (\<Inter>y∈A. \<Inter>x∈y. B x) = (\<Inter>x∈\<Union>A. B x)"
"!!A B C. (\<Inter>x∈A. \<Inter>z∈B x. C z) = (\<Inter>z∈UNION A B. C z)"
"!!A B f. (\<Inter>a∈A. B (f a)) = (\<Inter>x∈f`A. B x)"

by auto

text {* Finally *}

no_notation
less_eq (infix "\<sqsubseteq>" 50) and
less (infix "\<sqsubset>" 50) and
bot ("⊥") and
top ("\<top>") and
inf (infixl "\<sqinter>" 70) and
sup (infixl "\<squnion>" 65) and
Inf ("\<Sqinter>_" [900] 900) and
Sup ("\<Squnion>_" [900] 900)


no_syntax (xsymbols)
"_INF1" :: "pttrns => 'b => 'b" ("(3\<Sqinter>_./ _)" [0, 10] 10)
"_INF" :: "pttrn => 'a set => 'b => 'b" ("(3\<Sqinter>_∈_./ _)" [0, 0, 10] 10)
"_SUP1" :: "pttrns => 'b => 'b" ("(3\<Squnion>_./ _)" [0, 10] 10)
"_SUP" :: "pttrn => 'a set => 'b => 'b" ("(3\<Squnion>_∈_./ _)" [0, 0, 10] 10)


lemmas mem_simps =
insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
-- {* Each of these has ALREADY been added @{text "[simp]"} above. *}


end