Theory Enum

Up to index of Isabelle/HOL

theory Enum
imports Map String
(* Author: Florian Haftmann, TU Muenchen *)

header {* Finite types as explicit enumerations *}

theory Enum
imports Map String
begin


subsection {* Class @{text enum} *}

class enum =
fixes enum :: "'a list"
fixes enum_all :: "('a => bool) => bool"
fixes enum_ex :: "('a => bool) => bool"
assumes UNIV_enum: "UNIV = set enum"
and enum_distinct: "distinct enum"
assumes enum_all : "enum_all P = (∀ x. P x)"
assumes enum_ex : "enum_ex P = (∃ x. P x)"
begin


subclass finite proof
qed (simp add: UNIV_enum)

lemma enum_UNIV: "set enum = UNIV" unfolding UNIV_enum ..

lemma in_enum: "x ∈ set enum"
unfolding enum_UNIV by auto

lemma enum_eq_I:
assumes "!!x. x ∈ set xs"
shows "set enum = set xs"

proof -
from assms UNIV_eq_I have "UNIV = set xs" by auto
with enum_UNIV show ?thesis by simp
qed

end


subsection {* Equality and order on functions *}

instantiation "fun" :: (enum, equal) equal
begin


definition
"HOL.equal f g <-> (∀x ∈ set enum. f x = g x)"


instance proof
qed (simp_all add: equal_fun_def enum_UNIV fun_eq_iff)

end

lemma [code]:
"HOL.equal f g <-> enum_all (%x. f x = g x)"

by (auto simp add: equal enum_all fun_eq_iff)

lemma [code nbe]:
"HOL.equal (f :: _ => _) f <-> True"

by (fact equal_refl)

lemma order_fun [code]:
fixes f g :: "'a::enum => 'b::order"
shows "f ≤ g <-> enum_all (λx. f x ≤ g x)"
and "f < g <-> f ≤ g ∧ enum_ex (λx. f x ≠ g x)"

by (simp_all add: enum_all enum_ex fun_eq_iff le_fun_def order_less_le)


subsection {* Quantifiers *}

lemma all_code [code]: "(∀x. P x) <-> enum_all P"
by (simp add: enum_all)

lemma exists_code [code]: "(∃x. P x) <-> enum_ex P"
by (simp add: enum_ex)

lemma exists1_code[code]: "(∃!x. P x) <-> list_ex1 P enum"
unfolding list_ex1_iff enum_UNIV by auto


subsection {* Default instances *}

primrec n_lists :: "nat => 'a list => 'a list list" where
"n_lists 0 xs = [[]]"
| "n_lists (Suc n) xs = concat (map (λys. map (λy. y # ys) xs) (n_lists n xs))"


lemma n_lists_Nil [simp]: "n_lists n [] = (if n = 0 then [[]] else [])"
by (induct n) simp_all

lemma length_n_lists: "length (n_lists n xs) = length xs ^ n"
by (induct n) (auto simp add: length_concat o_def listsum_triv)

lemma length_n_lists_elem: "ys ∈ set (n_lists n xs) ==> length ys = n"
by (induct n arbitrary: ys) auto

lemma set_n_lists: "set (n_lists n xs) = {ys. length ys = n ∧ set ys ⊆ set xs}"
proof (rule set_eqI)
fix ys :: "'a list"
show "ys ∈ set (n_lists n xs) <-> ys ∈ {ys. length ys = n ∧ set ys ⊆ set xs}"
proof -
have "ys ∈ set (n_lists n xs) ==> length ys = n"
by (induct n arbitrary: ys) auto
moreover have "!!x. ys ∈ set (n_lists n xs) ==> x ∈ set ys ==> x ∈ set xs"
by (induct n arbitrary: ys) auto
moreover have "set ys ⊆ set xs ==> ys ∈ set (n_lists (length ys) xs)"
by (induct ys) auto
ultimately show ?thesis by auto
qed
qed

lemma distinct_n_lists:
assumes "distinct xs"
shows "distinct (n_lists n xs)"

proof (rule card_distinct)
from assms have card_length: "card (set xs) = length xs" by (rule distinct_card)
have "card (set (n_lists n xs)) = card (set xs) ^ n"
proof (induct n)
case 0 then show ?case by simp
next
case (Suc n)
moreover have "card (\<Union>ys∈set (n_lists n xs). (λy. y # ys) ` set xs)
= (∑ys∈set (n_lists n xs). card ((λy. y # ys) ` set xs))"

by (rule card_UN_disjoint) auto
moreover have "!!ys. card ((λy. y # ys) ` set xs) = card (set xs)"
by (rule card_image) (simp add: inj_on_def)
ultimately show ?case by auto
qed
also have "… = length xs ^ n" by (simp add: card_length)
finally show "card (set (n_lists n xs)) = length (n_lists n xs)"
by (simp add: length_n_lists)
qed

lemma map_of_zip_enum_is_Some:
assumes "length ys = length (enum :: 'a::enum list)"
shows "∃y. map_of (zip (enum :: 'a::enum list) ys) x = Some y"

proof -
from assms have "x ∈ set (enum :: 'a::enum list) <->
(∃y. map_of (zip (enum :: 'a::enum list) ys) x = Some y)"

by (auto intro!: map_of_zip_is_Some)
then show ?thesis using enum_UNIV by auto
qed

lemma map_of_zip_enum_inject:
fixes xs ys :: "'b::enum list"
assumes length: "length xs = length (enum :: 'a::enum list)"
"length ys = length (enum :: 'a::enum list)"
and map_of: "the o map_of (zip (enum :: 'a::enum list) xs) = the o map_of (zip (enum :: 'a::enum list) ys)"
shows "xs = ys"

proof -
have "map_of (zip (enum :: 'a list) xs) = map_of (zip (enum :: 'a list) ys)"
proof
fix x :: 'a
from length map_of_zip_enum_is_Some obtain y1 y2
where "map_of (zip (enum :: 'a list) xs) x = Some y1"
and "map_of (zip (enum :: 'a list) ys) x = Some y2"
by blast
moreover from map_of have "the (map_of (zip (enum :: 'a::enum list) xs) x) = the (map_of (zip (enum :: 'a::enum list) ys) x)"
by (auto dest: fun_cong)
ultimately show "map_of (zip (enum :: 'a::enum list) xs) x = map_of (zip (enum :: 'a::enum list) ys) x"
by simp
qed
with length enum_distinct show "xs = ys" by (rule map_of_zip_inject)
qed

definition
all_n_lists :: "(('a :: enum) list => bool) => nat => bool"
where
"all_n_lists P n = (∀xs ∈ set (n_lists n enum). P xs)"


lemma [code]:
"all_n_lists P n = (if n = 0 then P [] else enum_all (%x. all_n_lists (%xs. P (x # xs)) (n - 1)))"

unfolding all_n_lists_def enum_all
by (cases n) (auto simp add: enum_UNIV)

definition
ex_n_lists :: "(('a :: enum) list => bool) => nat => bool"
where
"ex_n_lists P n = (∃xs ∈ set (n_lists n enum). P xs)"


lemma [code]:
"ex_n_lists P n = (if n = 0 then P [] else enum_ex (%x. ex_n_lists (%xs. P (x # xs)) (n - 1)))"

unfolding ex_n_lists_def enum_ex
by (cases n) (auto simp add: enum_UNIV)


instantiation "fun" :: (enum, enum) enum
begin


definition
"enum = map (λys. the o map_of (zip (enum::'a list) ys)) (n_lists (length (enum::'a::enum list)) enum)"


definition
"enum_all P = all_n_lists (λbs. P (the o map_of (zip enum bs))) (length (enum :: 'a list))"


definition
"enum_ex P = ex_n_lists (λbs. P (the o map_of (zip enum bs))) (length (enum :: 'a list))"



instance proof
show "UNIV = set (enum :: ('a => 'b) list)"
proof (rule UNIV_eq_I)
fix f :: "'a => 'b"
have "f = the o map_of (zip (enum :: 'a::enum list) (map f enum))"
by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
then show "f ∈ set enum"
by (auto simp add: enum_fun_def set_n_lists intro: in_enum)
qed
next
from map_of_zip_enum_inject
show "distinct (enum :: ('a => 'b) list)"
by (auto intro!: inj_onI simp add: enum_fun_def
distinct_map distinct_n_lists enum_distinct set_n_lists enum_all)

next
fix P
show "enum_all (P :: ('a => 'b) => bool) = (∀x. P x)"
proof
assume "enum_all P"
show "∀x. P x"
proof
fix f :: "'a => 'b"
have f: "f = the o map_of (zip (enum :: 'a::enum list) (map f enum))"
by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
from `enum_all P` have "P (the o map_of (zip enum (map f enum)))"
unfolding enum_all_fun_def all_n_lists_def
apply (simp add: set_n_lists)
apply (erule_tac x="map f enum" in allE)
apply (auto intro!: in_enum)
done
from this f show "P f" by auto
qed
next
assume "∀x. P x"
from this show "enum_all P"
unfolding enum_all_fun_def all_n_lists_def by auto
qed
next
fix P
show "enum_ex (P :: ('a => 'b) => bool) = (∃x. P x)"
proof
assume "enum_ex P"
from this show "∃x. P x"
unfolding enum_ex_fun_def ex_n_lists_def by auto
next
assume "∃x. P x"
from this obtain f where "P f" ..
have f: "f = the o map_of (zip (enum :: 'a::enum list) (map f enum))"
by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
from `P f` this have "P (the o map_of (zip (enum :: 'a::enum list) (map f enum)))"
by auto
from this show "enum_ex P"
unfolding enum_ex_fun_def ex_n_lists_def
apply (auto simp add: set_n_lists)
apply (rule_tac x="map f enum" in exI)
apply (auto intro!: in_enum)
done
qed
qed

end

lemma enum_fun_code [code]: "enum = (let enum_a = (enum :: 'a::{enum, equal} list)
in map (λys. the o map_of (zip enum_a ys)) (n_lists (length enum_a) enum))"

by (simp add: enum_fun_def Let_def)

lemma enum_all_fun_code [code]:
"enum_all P = (let enum_a = (enum :: 'a::{enum, equal} list)
in all_n_lists (λbs. P (the o map_of (zip enum_a bs))) (length enum_a))"

by (simp add: enum_all_fun_def Let_def)

lemma enum_ex_fun_code [code]:
"enum_ex P = (let enum_a = (enum :: 'a::{enum, equal} list)
in ex_n_lists (λbs. P (the o map_of (zip enum_a bs))) (length enum_a))"

by (simp add: enum_ex_fun_def Let_def)

instantiation unit :: enum
begin


definition
"enum = [()]"


definition
"enum_all P = P ()"


definition
"enum_ex P = P ()"


instance proof
qed (auto simp add: enum_unit_def UNIV_unit enum_all_unit_def enum_ex_unit_def intro: unit.exhaust)

end

instantiation bool :: enum
begin


definition
"enum = [False, True]"


definition
"enum_all P = (P False ∧ P True)"


definition
"enum_ex P = (P False ∨ P True)"


instance proof
fix P
show "enum_all (P :: bool => bool) = (∀x. P x)"
unfolding enum_all_bool_def by (auto, case_tac x) auto
next
fix P
show "enum_ex (P :: bool => bool) = (∃x. P x)"
unfolding enum_ex_bool_def by (auto, case_tac x) auto
qed (auto simp add: enum_bool_def UNIV_bool)

end

primrec product :: "'a list => 'b list => ('a × 'b) list" where
"product [] _ = []"
| "product (x#xs) ys = map (Pair x) ys @ product xs ys"


lemma product_list_set:
"set (product xs ys) = set xs × set ys"

by (induct xs) auto

lemma distinct_product:
assumes "distinct xs" and "distinct ys"
shows "distinct (product xs ys)"

using assms by (induct xs)
(auto intro: inj_onI simp add: product_list_set distinct_map)


instantiation prod :: (enum, enum) enum
begin


definition
"enum = product enum enum"


definition
"enum_all P = enum_all (%x. enum_all (%y. P (x, y)))"


definition
"enum_ex P = enum_ex (%x. enum_ex (%y. P (x, y)))"



instance by default
(simp_all add: enum_prod_def product_list_set distinct_product
enum_UNIV enum_distinct enum_all_prod_def enum_all enum_ex_prod_def enum_ex)


end

instantiation sum :: (enum, enum) enum
begin


definition
"enum = map Inl enum @ map Inr enum"


definition
"enum_all P = (enum_all (%x. P (Inl x)) ∧ enum_all (%x. P (Inr x)))"


definition
"enum_ex P = (enum_ex (%x. P (Inl x)) ∨ enum_ex (%x. P (Inr x)))"


instance proof
fix P
show "enum_all (P :: ('a + 'b) => bool) = (∀x. P x)"
unfolding enum_all_sum_def enum_all
by (auto, case_tac x) auto
next
fix P
show "enum_ex (P :: ('a + 'b) => bool) = (∃x. P x)"
unfolding enum_ex_sum_def enum_ex
by (auto, case_tac x) auto
qed (auto simp add: enum_UNIV enum_sum_def, case_tac x, auto intro: inj_onI simp add: distinct_map enum_distinct)

end

primrec sublists :: "'a list => 'a list list" where
"sublists [] = [[]]"
| "sublists (x#xs) = (let xss = sublists xs in map (Cons x) xss @ xss)"


lemma length_sublists:
"length (sublists xs) = Suc (Suc (0::nat)) ^ length xs"

by (induct xs) (simp_all add: Let_def)

lemma sublists_powset:
"set ` set (sublists xs) = Pow (set xs)"

proof -
have aux: "!!x A. set ` Cons x ` A = insert x ` set ` A"
by (auto simp add: image_def)
have "set (map set (sublists xs)) = Pow (set xs)"
by (induct xs)
(simp_all add: aux Let_def Pow_insert Un_commute comp_def del: map_map)

then show ?thesis by simp
qed

lemma distinct_set_sublists:
assumes "distinct xs"
shows "distinct (map set (sublists xs))"

proof (rule card_distinct)
have "finite (set xs)" by rule
then have "card (Pow (set xs)) = Suc (Suc 0) ^ card (set xs)" by (rule card_Pow)
with assms distinct_card [of xs]
have "card (Pow (set xs)) = Suc (Suc 0) ^ length xs" by simp
then show "card (set (map set (sublists xs))) = length (map set (sublists xs))"
by (simp add: sublists_powset length_sublists)
qed

instantiation nibble :: enum
begin


definition
"enum = [Nibble0, Nibble1, Nibble2, Nibble3, Nibble4, Nibble5, Nibble6, Nibble7,
Nibble8, Nibble9, NibbleA, NibbleB, NibbleC, NibbleD, NibbleE, NibbleF]"


definition
"enum_all P = (P Nibble0 ∧ P Nibble1 ∧ P Nibble2 ∧ P Nibble3 ∧ P Nibble4 ∧ P Nibble5 ∧ P Nibble6 ∧ P Nibble7
∧ P Nibble8 ∧ P Nibble9 ∧ P NibbleA ∧ P NibbleB ∧ P NibbleC ∧ P NibbleD ∧ P NibbleE ∧ P NibbleF)"


definition
"enum_ex P = (P Nibble0 ∨ P Nibble1 ∨ P Nibble2 ∨ P Nibble3 ∨ P Nibble4 ∨ P Nibble5 ∨ P Nibble6 ∨ P Nibble7
∨ P Nibble8 ∨ P Nibble9 ∨ P NibbleA ∨ P NibbleB ∨ P NibbleC ∨ P NibbleD ∨ P NibbleE ∨ P NibbleF)"


instance proof
fix P
show "enum_all (P :: nibble => bool) = (∀x. P x)"
unfolding enum_all_nibble_def
by (auto, case_tac x) auto
next
fix P
show "enum_ex (P :: nibble => bool) = (∃x. P x)"
unfolding enum_ex_nibble_def
by (auto, case_tac x) auto
qed (simp_all add: enum_nibble_def UNIV_nibble)

end

instantiation char :: enum
begin


definition
"enum = map (split Char) (product enum enum)"


lemma enum_chars [code]:
"enum = chars"

unfolding enum_char_def chars_def enum_nibble_def by simp

definition
"enum_all P = list_all P chars"


definition
"enum_ex P = list_ex P chars"


lemma set_enum_char: "set (enum :: char list) = UNIV"
by (auto intro: char.exhaust simp add: enum_char_def product_list_set enum_UNIV full_SetCompr_eq [symmetric])

instance proof
fix P
show "enum_all (P :: char => bool) = (∀x. P x)"
unfolding enum_all_char_def enum_chars[symmetric]
by (auto simp add: list_all_iff set_enum_char)
next
fix P
show "enum_ex (P :: char => bool) = (∃x. P x)"
unfolding enum_ex_char_def enum_chars[symmetric]
by (auto simp add: list_ex_iff set_enum_char)
next
show "distinct (enum :: char list)"
by (auto intro: inj_onI simp add: enum_char_def product_list_set distinct_map distinct_product enum_distinct)
qed (auto simp add: set_enum_char)

end

instantiation option :: (enum) enum
begin


definition
"enum = None # map Some enum"


definition
"enum_all P = (P None ∧ enum_all (%x. P (Some x)))"


definition
"enum_ex P = (P None ∨ enum_ex (%x. P (Some x)))"


instance proof
fix P
show "enum_all (P :: 'a option => bool) = (∀x. P x)"
unfolding enum_all_option_def enum_all
by (auto, case_tac x) auto
next
fix P
show "enum_ex (P :: 'a option => bool) = (∃x. P x)"
unfolding enum_ex_option_def enum_ex
by (auto, case_tac x) auto
qed (auto simp add: enum_UNIV enum_option_def, rule option.exhaust, auto intro: simp add: distinct_map enum_distinct)

end

subsection {* Small finite types *}

text {* We define small finite types for the use in Quickcheck *}

datatype finite_1 = a1

notation (output) a1 ("a1")

instantiation finite_1 :: enum
begin


definition
"enum = [a1]"


definition
"enum_all P = P a1"


definition
"enum_ex P = P a1"


instance proof
fix P
show "enum_all (P :: finite_1 => bool) = (∀x. P x)"
unfolding enum_all_finite_1_def
by (auto, case_tac x) auto
next
fix P
show "enum_ex (P :: finite_1 => bool) = (∃x. P x)"
unfolding enum_ex_finite_1_def
by (auto, case_tac x) auto
qed (auto simp add: enum_finite_1_def intro: finite_1.exhaust)

end

instantiation finite_1 :: linorder
begin


definition less_eq_finite_1 :: "finite_1 => finite_1 => bool"
where
"less_eq_finite_1 x y = True"


definition less_finite_1 :: "finite_1 => finite_1 => bool"
where
"less_finite_1 x y = False"


instance
apply (intro_classes)
apply (auto simp add: less_finite_1_def less_eq_finite_1_def)
apply (metis finite_1.exhaust)
done

end

hide_const (open) a1

datatype finite_2 = a1 | a2

notation (output) a1 ("a1")
notation (output) a2 ("a2")

instantiation finite_2 :: enum
begin


definition
"enum = [a1, a2]"


definition
"enum_all P = (P a1 ∧ P a2)"


definition
"enum_ex P = (P a1 ∨ P a2)"


instance proof
fix P
show "enum_all (P :: finite_2 => bool) = (∀x. P x)"
unfolding enum_all_finite_2_def
by (auto, case_tac x) auto
next
fix P
show "enum_ex (P :: finite_2 => bool) = (∃x. P x)"
unfolding enum_ex_finite_2_def
by (auto, case_tac x) auto
qed (auto simp add: enum_finite_2_def intro: finite_2.exhaust)

end

instantiation finite_2 :: linorder
begin


definition less_finite_2 :: "finite_2 => finite_2 => bool"
where
"less_finite_2 x y = ((x = a1) & (y = a2))"


definition less_eq_finite_2 :: "finite_2 => finite_2 => bool"
where
"less_eq_finite_2 x y = ((x = y) ∨ (x < y))"



instance
apply (intro_classes)
apply (auto simp add: less_finite_2_def less_eq_finite_2_def)
apply (metis finite_2.distinct finite_2.nchotomy)+
done

end

hide_const (open) a1 a2


datatype finite_3 = a1 | a2 | a3

notation (output) a1 ("a1")
notation (output) a2 ("a2")
notation (output) a3 ("a3")

instantiation finite_3 :: enum
begin


definition
"enum = [a1, a2, a3]"


definition
"enum_all P = (P a1 ∧ P a2 ∧ P a3)"


definition
"enum_ex P = (P a1 ∨ P a2 ∨ P a3)"


instance proof
fix P
show "enum_all (P :: finite_3 => bool) = (∀x. P x)"
unfolding enum_all_finite_3_def
by (auto, case_tac x) auto
next
fix P
show "enum_ex (P :: finite_3 => bool) = (∃x. P x)"
unfolding enum_ex_finite_3_def
by (auto, case_tac x) auto
qed (auto simp add: enum_finite_3_def intro: finite_3.exhaust)

end

instantiation finite_3 :: linorder
begin


definition less_finite_3 :: "finite_3 => finite_3 => bool"
where
"less_finite_3 x y = (case x of a1 => (y ≠ a1)
| a2 => (y = a3)| a3 => False)"


definition less_eq_finite_3 :: "finite_3 => finite_3 => bool"
where
"less_eq_finite_3 x y = ((x = y) ∨ (x < y))"



instance proof (intro_classes)
qed (auto simp add: less_finite_3_def less_eq_finite_3_def split: finite_3.split_asm)

end

hide_const (open) a1 a2 a3


datatype finite_4 = a1 | a2 | a3 | a4

notation (output) a1 ("a1")
notation (output) a2 ("a2")
notation (output) a3 ("a3")
notation (output) a4 ("a4")

instantiation finite_4 :: enum
begin


definition
"enum = [a1, a2, a3, a4]"


definition
"enum_all P = (P a1 ∧ P a2 ∧ P a3 ∧ P a4)"


definition
"enum_ex P = (P a1 ∨ P a2 ∨ P a3 ∨ P a4)"


instance proof
fix P
show "enum_all (P :: finite_4 => bool) = (∀x. P x)"
unfolding enum_all_finite_4_def
by (auto, case_tac x) auto
next
fix P
show "enum_ex (P :: finite_4 => bool) = (∃x. P x)"
unfolding enum_ex_finite_4_def
by (auto, case_tac x) auto
qed (auto simp add: enum_finite_4_def intro: finite_4.exhaust)

end

hide_const (open) a1 a2 a3 a4


datatype finite_5 = a1 | a2 | a3 | a4 | a5

notation (output) a1 ("a1")
notation (output) a2 ("a2")
notation (output) a3 ("a3")
notation (output) a4 ("a4")
notation (output) a5 ("a5")

instantiation finite_5 :: enum
begin


definition
"enum = [a1, a2, a3, a4, a5]"


definition
"enum_all P = (P a1 ∧ P a2 ∧ P a3 ∧ P a4 ∧ P a5)"


definition
"enum_ex P = (P a1 ∨ P a2 ∨ P a3 ∨ P a4 ∨ P a5)"


instance proof
fix P
show "enum_all (P :: finite_5 => bool) = (∀x. P x)"
unfolding enum_all_finite_5_def
by (auto, case_tac x) auto
next
fix P
show "enum_ex (P :: finite_5 => bool) = (∃x. P x)"
unfolding enum_ex_finite_5_def
by (auto, case_tac x) auto
qed (auto simp add: enum_finite_5_def intro: finite_5.exhaust)

end

subsection {* An executable THE operator on finite types *}

definition
[code del]: "enum_the P = The P"


lemma [code]:
"The P = (case filter P enum of [x] => x | _ => enum_the P)"

proof -
{
fix a
assume filter_enum: "filter P enum = [a]"
have "The P = a"
proof (rule the_equality)
fix x
assume "P x"
show "x = a"
proof (rule ccontr)
assume "x ≠ a"
from filter_enum obtain us vs
where enum_eq: "enum = us @ [a] @ vs"
and "∀ x ∈ set us. ¬ P x"
and "∀ x ∈ set vs. ¬ P x"
and "P a"

by (auto simp add: filter_eq_Cons_iff) (simp only: filter_empty_conv[symmetric])
with `P x` in_enum[of x, unfolded enum_eq] `x ≠ a` show "False" by auto
qed
next
from filter_enum show "P a" by (auto simp add: filter_eq_Cons_iff)
qed
}
from this show ?thesis
unfolding enum_the_def by (auto split: list.split)
qed

code_abort enum_the

hide_const (open) a1 a2 a3 a4 a5


hide_type (open) finite_1 finite_2 finite_3 finite_4 finite_5
hide_const (open) enum enum_all enum_ex n_lists all_n_lists ex_n_lists product

end