Theory Meson

Up to index of Isabelle/HOL

theory Meson
imports Datatype
uses (Tools/Meson/meson.ML) (Tools/Meson/meson_clausify.ML) (Tools/Meson/meson_tactic.ML)
(*  Title:      HOL/Meson.thy
Author: Lawrence C. Paulson, Cambridge University Computer Laboratory
Author: Tobias Nipkow, TU Muenchen
Author: Jasmin Blanchette, TU Muenchen
Copyright 2001 University of Cambridge
*)


header {* MESON Proof Method *}

theory Meson
imports Datatype
uses ("Tools/Meson/meson.ML")
("Tools/Meson/meson_clausify.ML")
("Tools/Meson/meson_tactic.ML")
begin


subsection {* Negation Normal Form *}

text {* de Morgan laws *}

lemma not_conjD: "~(P&Q) ==> ~P | ~Q"
and not_disjD: "~(P|Q) ==> ~P & ~Q"
and not_notD: "~~P ==> P"
and not_allD: "!!P. ~(∀x. P(x)) ==> ∃x. ~P(x)"
and not_exD: "!!P. ~(∃x. P(x)) ==> ∀x. ~P(x)"

by fast+

text {* Removal of @{text "-->"} and @{text "<->"} (positive and
negative occurrences) *}


lemma imp_to_disjD: "P-->Q ==> ~P | Q"
and not_impD: "~(P-->Q) ==> P & ~Q"
and iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)"
and not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)"
-- {* Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF *}
and not_refl_disj_D: "x ~= x | P ==> P"

by fast+


subsection {* Pulling out the existential quantifiers *}

text {* Conjunction *}

lemma conj_exD1: "!!P Q. (∃x. P(x)) & Q ==> ∃x. P(x) & Q"
and conj_exD2: "!!P Q. P & (∃x. Q(x)) ==> ∃x. P & Q(x)"

by fast+


text {* Disjunction *}

lemma disj_exD: "!!P Q. (∃x. P(x)) | (∃x. Q(x)) ==> ∃x. P(x) | Q(x)"
-- {* DO NOT USE with forall-Skolemization: makes fewer schematic variables!! *}
-- {* With ex-Skolemization, makes fewer Skolem constants *}
and disj_exD1: "!!P Q. (∃x. P(x)) | Q ==> ∃x. P(x) | Q"
and disj_exD2: "!!P Q. P | (∃x. Q(x)) ==> ∃x. P | Q(x)"

by fast+

lemma disj_assoc: "(P|Q)|R ==> P|(Q|R)"
and disj_comm: "P|Q ==> Q|P"
and disj_FalseD1: "False|P ==> P"
and disj_FalseD2: "P|False ==> P"

by fast+


text{* Generation of contrapositives *}

text{*Inserts negated disjunct after removing the negation; P is a literal.
Model elimination requires assuming the negation of every attempted subgoal,
hence the negated disjuncts.*}

lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)"
by blast

text{*Version for Plaisted's "Postive refinement" of the Meson procedure*}
lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)"
by blast

text{*@{term P} should be a literal*}
lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)"
by blast

text{*Versions of @{text make_neg_rule} and @{text make_pos_rule} that don't
insert new assumptions, for ordinary resolution.*}


lemmas make_neg_rule' = make_refined_neg_rule

lemma make_pos_rule': "[|P|Q; ~P|] ==> Q"
by blast

text{* Generation of a goal clause -- put away the final literal *}

lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)"
by blast

lemma make_pos_goal: "P ==> ((P==>~P) ==> False)"
by blast


subsection {* Lemmas for Forward Proof *}

text{*There is a similarity to congruence rules*}

(*NOTE: could handle conjunctions (faster?) by
nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *)

lemma conj_forward: "[| P'&Q'; P' ==> P; Q' ==> Q |] ==> P&Q"
by blast

lemma disj_forward: "[| P'|Q'; P' ==> P; Q' ==> Q |] ==> P|Q"
by blast

(*Version of @{text disj_forward} for removal of duplicate literals*)
lemma disj_forward2:
"[| P'|Q'; P' ==> P; [| Q'; P==>False |] ==> Q |] ==> P|Q"

apply blast
done

lemma all_forward: "[| ∀x. P'(x); !!x. P'(x) ==> P(x) |] ==> ∀x. P(x)"
by blast

lemma ex_forward: "[| ∃x. P'(x); !!x. P'(x) ==> P(x) |] ==> ∃x. P(x)"
by blast


subsection {* Clausification helper *}

lemma TruepropI: "P ≡ Q ==> Trueprop P ≡ Trueprop Q"
by simp


text{* Combinator translation helpers *}

definition COMBI :: "'a => 'a" where
[no_atp]: "COMBI P = P"


definition COMBK :: "'a => 'b => 'a" where
[no_atp]: "COMBK P Q = P"


definition COMBB :: "('b => 'c) => ('a => 'b) => 'a => 'c" where [no_atp]:
"COMBB P Q R = P (Q R)"


definition COMBC :: "('a => 'b => 'c) => 'b => 'a => 'c" where
[no_atp]: "COMBC P Q R = P R Q"


definition COMBS :: "('a => 'b => 'c) => ('a => 'b) => 'a => 'c" where
[no_atp]: "COMBS P Q R = P R (Q R)"


lemma abs_S [no_atp]: "λx. (f x) (g x) ≡ COMBS f g"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBS_def)
done

lemma abs_I [no_atp]: "λx. x ≡ COMBI"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBI_def)
done

lemma abs_K [no_atp]: "λx. y ≡ COMBK y"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBK_def)
done

lemma abs_B [no_atp]: "λx. a (g x) ≡ COMBB a g"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBB_def)
done

lemma abs_C [no_atp]: "λx. (f x) b ≡ COMBC f b"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBC_def)
done


subsection {* Skolemization helpers *}

definition skolem :: "'a => 'a" where
[no_atp]: "skolem = (λx. x)"


lemma skolem_COMBK_iff: "P <-> skolem (COMBK P (i::nat))"
unfolding skolem_def COMBK_def by (rule refl)

lemmas skolem_COMBK_I = iffD1 [OF skolem_COMBK_iff]
lemmas skolem_COMBK_D = iffD2 [OF skolem_COMBK_iff]


subsection {* Meson package *}

use "Tools/Meson/meson.ML"
use "Tools/Meson/meson_clausify.ML"
use "Tools/Meson/meson_tactic.ML"

setup {* Meson_Tactic.setup *}

hide_const (open) COMBI COMBK COMBB COMBC COMBS skolem
hide_fact (open) not_conjD not_disjD not_notD not_allD not_exD imp_to_disjD
not_impD iff_to_disjD not_iffD not_refl_disj_D conj_exD1 conj_exD2 disj_exD
disj_exD1 disj_exD2 disj_assoc disj_comm disj_FalseD1 disj_FalseD2 TruepropI
COMBI_def COMBK_def COMBB_def COMBC_def COMBS_def abs_I abs_K abs_B abs_C
abs_S skolem_def skolem_COMBK_iff skolem_COMBK_I skolem_COMBK_D


end