Theory Nat_Numeral

Up to index of Isabelle/HOL

theory Nat_Numeral
imports Int
(*  Title:      HOL/Nat_Numeral.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1999 University of Cambridge
*)


header {* Binary numerals for the natural numbers *}

theory Nat_Numeral
imports Int
begin


subsection {* Numerals for natural numbers *}

text {*
Arithmetic for naturals is reduced to that for the non-negative integers.
*}


instantiation nat :: number_semiring
begin


definition
nat_number_of_def [code_unfold, code del]: "number_of v = nat (number_of v)"


instance proof
fix n show "number_of (int n) = (of_nat n :: nat)"
unfolding nat_number_of_def number_of_eq by simp
qed

end

lemma [code_post]:
"nat (number_of v) = number_of v"

unfolding nat_number_of_def ..


subsection {* Special case: squares and cubes *}

lemma numeral_2_eq_2: "2 = Suc (Suc 0)"
by (simp add: nat_number_of_def)

lemma numeral_3_eq_3: "3 = Suc (Suc (Suc 0))"
by (simp add: nat_number_of_def)

context power
begin


abbreviation (xsymbols)
power2 :: "'a => 'a" ("(_²)" [1000] 999) where
"x² ≡ x ^ 2"


notation (latex output)
power2 ("(_²)" [1000] 999)


notation (HTML output)
power2 ("(_²)" [1000] 999)


end

context monoid_mult
begin


lemma power2_eq_square: "a² = a * a"
by (simp add: numeral_2_eq_2)

lemma power3_eq_cube: "a ^ 3 = a * a * a"
by (simp add: numeral_3_eq_3 mult_assoc)

lemma power_even_eq:
"a ^ (2*n) = (a ^ n) ^ 2"

by (subst mult_commute) (simp add: power_mult)

lemma power_odd_eq:
"a ^ Suc (2*n) = a * (a ^ n) ^ 2"

by (simp add: power_even_eq)

end

context semiring_1
begin


lemma zero_power2 [simp]: "0² = 0"
by (simp add: power2_eq_square)

lemma one_power2 [simp]: "1² = 1"
by (simp add: power2_eq_square)

end

context ring_1
begin


lemma power2_minus [simp]:
"(- a)² = a²"

by (simp add: power2_eq_square)

text{*
We cannot prove general results about the numeral @{term "-1"},
so we have to use @{term "- 1"} instead.
*}


lemma power_minus1_even [simp]:
"(- 1) ^ (2*n) = 1"

proof (induct n)
case 0 show ?case by simp
next
case (Suc n) then show ?case by (simp add: power_add)
qed

lemma power_minus1_odd:
"(- 1) ^ Suc (2*n) = - 1"

by simp

lemma power_minus_even [simp]:
"(-a) ^ (2*n) = a ^ (2*n)"

by (simp add: power_minus [of a])

end

context ring_1_no_zero_divisors
begin


lemma zero_eq_power2 [simp]:
"a² = 0 <-> a = 0"

unfolding power2_eq_square by simp

lemma power2_eq_1_iff:
"a² = 1 <-> a = 1 ∨ a = - 1"

unfolding power2_eq_square by (rule square_eq_1_iff)

end

context idom
begin


lemma power2_eq_iff: "x² = y² <-> x = y ∨ x = - y"
unfolding power2_eq_square by (rule square_eq_iff)

end

context linordered_ring
begin


lemma sum_squares_ge_zero:
"0 ≤ x * x + y * y"

by (intro add_nonneg_nonneg zero_le_square)

lemma not_sum_squares_lt_zero:
"¬ x * x + y * y < 0"

by (simp add: not_less sum_squares_ge_zero)

end

context linordered_ring_strict
begin


lemma sum_squares_eq_zero_iff:
"x * x + y * y = 0 <-> x = 0 ∧ y = 0"

by (simp add: add_nonneg_eq_0_iff)

lemma sum_squares_le_zero_iff:
"x * x + y * y ≤ 0 <-> x = 0 ∧ y = 0"

by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff)

lemma sum_squares_gt_zero_iff:
"0 < x * x + y * y <-> x ≠ 0 ∨ y ≠ 0"

by (simp add: not_le [symmetric] sum_squares_le_zero_iff)

end

context linordered_semidom
begin


lemma power2_le_imp_le:
"x² ≤ y² ==> 0 ≤ y ==> x ≤ y"

unfolding numeral_2_eq_2 by (rule power_le_imp_le_base)

lemma power2_less_imp_less:
"x² < y² ==> 0 ≤ y ==> x < y"

by (rule power_less_imp_less_base)

lemma power2_eq_imp_eq:
"x² = y² ==> 0 ≤ x ==> 0 ≤ y ==> x = y"

unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp

end

context linordered_idom
begin


lemma zero_le_power2 [simp]:
"0 ≤ a²"

by (simp add: power2_eq_square)

lemma zero_less_power2 [simp]:
"0 < a² <-> a ≠ 0"

by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff)

lemma power2_less_0 [simp]:
"¬ a² < 0"

by (force simp add: power2_eq_square mult_less_0_iff)

lemma abs_power2 [simp]:
"abs (a²) = a²"

by (simp add: power2_eq_square abs_mult abs_mult_self)

lemma power2_abs [simp]:
"(abs a)² = a²"

by (simp add: power2_eq_square abs_mult_self)

lemma odd_power_less_zero:
"a < 0 ==> a ^ Suc (2*n) < 0"

proof (induct n)
case 0
then show ?case by simp
next
case (Suc n)
have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)"
by (simp add: mult_ac power_add power2_eq_square)
thus ?case
by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg)
qed

lemma odd_0_le_power_imp_0_le:
"0 ≤ a ^ Suc (2*n) ==> 0 ≤ a"

using odd_power_less_zero [of a n]
by (force simp add: linorder_not_less [symmetric])

lemma zero_le_even_power'[simp]:
"0 ≤ a ^ (2*n)"

proof (induct n)
case 0
show ?case by simp
next
case (Suc n)
have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)"
by (simp add: mult_ac power_add power2_eq_square)
thus ?case
by (simp add: Suc zero_le_mult_iff)
qed

lemma sum_power2_ge_zero:
"0 ≤ x² + y²"

unfolding power2_eq_square by (rule sum_squares_ge_zero)

lemma not_sum_power2_lt_zero:
"¬ x² + y² < 0"

unfolding power2_eq_square by (rule not_sum_squares_lt_zero)

lemma sum_power2_eq_zero_iff:
"x² + y² = 0 <-> x = 0 ∧ y = 0"

unfolding power2_eq_square by (rule sum_squares_eq_zero_iff)

lemma sum_power2_le_zero_iff:
"x² + y² ≤ 0 <-> x = 0 ∧ y = 0"

unfolding power2_eq_square by (rule sum_squares_le_zero_iff)

lemma sum_power2_gt_zero_iff:
"0 < x² + y² <-> x ≠ 0 ∨ y ≠ 0"

unfolding power2_eq_square by (rule sum_squares_gt_zero_iff)

end

lemma power2_sum:
fixes x y :: "'a::number_semiring"
shows "(x + y)² = x² + y² + 2 * x * y"

by (simp add: algebra_simps power2_eq_square semiring_mult_2_right)

lemma power2_diff:
fixes x y :: "'a::number_ring"
shows "(x - y)² = x² + y² - 2 * x * y"

by (simp add: ring_distribs power2_eq_square mult_2) (rule mult_commute)


subsection {* Predicate for negative binary numbers *}

definition neg :: "int => bool" where
"neg Z <-> Z < 0"


lemma not_neg_int [simp]: "~ neg (of_nat n)"
by (simp add: neg_def)

lemma neg_zminus_int [simp]: "neg (- (of_nat (Suc n)))"
by (simp add: neg_def del: of_nat_Suc)

lemmas neg_eq_less_0 = neg_def

lemma not_neg_eq_ge_0: "(~neg x) = (0 ≤ x)"
by (simp add: neg_def linorder_not_less)

text{*To simplify inequalities when Numeral1 can get simplified to 1*}

lemma not_neg_0: "~ neg 0"
by (simp add: One_int_def neg_def)

lemma not_neg_1: "~ neg 1"
by (simp add: neg_def linorder_not_less)

lemma neg_nat: "neg z ==> nat z = 0"
by (simp add: neg_def order_less_imp_le)

lemma not_neg_nat: "~ neg z ==> of_nat (nat z) = z"
by (simp add: linorder_not_less neg_def)

text {*
If @{term Numeral0} is rewritten to 0 then this rule can't be applied:
@{term Numeral0} IS @{term "number_of Pls"}
*}


lemma not_neg_number_of_Pls: "~ neg (number_of Int.Pls)"
by (simp add: neg_def)

lemma neg_number_of_Min: "neg (number_of Int.Min)"
by (simp add: neg_def)

lemma neg_number_of_Bit0:
"neg (number_of (Int.Bit0 w)) = neg (number_of w)"

by (simp add: neg_def)

lemma neg_number_of_Bit1:
"neg (number_of (Int.Bit1 w)) = neg (number_of w)"

by (simp add: neg_def)

lemmas neg_simps [simp] =
not_neg_0 not_neg_1
not_neg_number_of_Pls neg_number_of_Min
neg_number_of_Bit0 neg_number_of_Bit1



subsection{*Function @{term nat}: Coercion from Type @{typ int} to @{typ nat}*}

declare nat_1 [simp]

lemma nat_number_of [simp]: "nat (number_of w) = number_of w"
by (simp add: nat_number_of_def)

lemma nat_numeral_0_eq_0 [simp, code_post]: "Numeral0 = (0::nat)"
by (rule semiring_numeral_0_eq_0)

lemma nat_numeral_1_eq_1 [simp]: "Numeral1 = (1::nat)"
by (rule semiring_numeral_1_eq_1)

lemma Numeral1_eq1_nat:
"(1::nat) = Numeral1"

by simp

lemma numeral_1_eq_Suc_0 [code_post]: "Numeral1 = Suc 0"
by (simp only: nat_numeral_1_eq_1 One_nat_def)


subsection{*Function @{term int}: Coercion from Type @{typ nat} to @{typ int}*}

lemma int_nat_number_of [simp]:
"int (number_of v) =
(if neg (number_of v :: int) then 0
else (number_of v :: int))"

unfolding nat_number_of_def number_of_is_id neg_def
by simp (* FIXME: redundant with of_nat_number_of_eq *)

lemma nonneg_int_cases:
fixes k :: int assumes "0 ≤ k" obtains n where "k = of_nat n"

using assms by (cases k, simp, simp)

subsubsection{*Successor *}

lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)"
apply (rule sym)
apply (simp add: nat_eq_iff)
done

lemma Suc_nat_number_of_add:
"Suc (number_of v + n) =
(if neg (number_of v :: int) then 1+n else number_of (Int.succ v) + n)"

unfolding nat_number_of_def number_of_is_id neg_def numeral_simps
by (simp add: Suc_nat_eq_nat_zadd1 add_ac)

lemma Suc_nat_number_of [simp]:
"Suc (number_of v) =
(if neg (number_of v :: int) then 1 else number_of (Int.succ v))"

apply (cut_tac n = 0 in Suc_nat_number_of_add)
apply (simp cong del: if_weak_cong)
done


subsubsection{*Addition *}

lemma add_nat_number_of [simp]:
"(number_of v :: nat) + number_of v' =
(if v < Int.Pls then number_of v'
else if v' < Int.Pls then number_of v
else number_of (v + v'))"

unfolding nat_number_of_def number_of_is_id numeral_simps
by (simp add: nat_add_distrib)

lemma nat_number_of_add_1 [simp]:
"number_of v + (1::nat) =
(if v < Int.Pls then 1 else number_of (Int.succ v))"

unfolding nat_number_of_def number_of_is_id numeral_simps
by (simp add: nat_add_distrib)

lemma nat_1_add_number_of [simp]:
"(1::nat) + number_of v =
(if v < Int.Pls then 1 else number_of (Int.succ v))"

unfolding nat_number_of_def number_of_is_id numeral_simps
by (simp add: nat_add_distrib)

lemma nat_1_add_1 [simp]: "1 + 1 = (2::nat)"
by (rule semiring_one_add_one_is_two)

text {* TODO: replace simp rules above with these generic ones: *}

lemma semiring_add_number_of:
"[|Int.Pls ≤ v; Int.Pls ≤ v'|] ==>
(number_of v :: 'a::number_semiring) + number_of v' = number_of (v + v')"

unfolding Int.Pls_def
by (elim nonneg_int_cases,
simp only: number_of_int of_nat_add [symmetric])


lemma semiring_number_of_add_1:
"Int.Pls ≤ v ==>
number_of v + (1::'a::number_semiring) = number_of (Int.succ v)"

unfolding Int.Pls_def Int.succ_def
by (elim nonneg_int_cases,
simp only: number_of_int add_commute [where b=1] of_nat_Suc [symmetric])


lemma semiring_1_add_number_of:
"Int.Pls ≤ v ==>
(1::'a::number_semiring) + number_of v = number_of (Int.succ v)"

unfolding Int.Pls_def Int.succ_def
by (elim nonneg_int_cases,
simp only: number_of_int add_commute [where b=1] of_nat_Suc [symmetric])



subsubsection{*Subtraction *}

lemma diff_nat_eq_if:
"nat z - nat z' =
(if neg z' then nat z
else let d = z-z' in
if neg d then 0 else nat d)"

by (simp add: Let_def nat_diff_distrib [symmetric] neg_eq_less_0 not_neg_eq_ge_0)


lemma diff_nat_number_of [simp]:
"(number_of v :: nat) - number_of v' =
(if v' < Int.Pls then number_of v
else let d = number_of (v + uminus v') in
if neg d then 0 else nat d)"

unfolding nat_number_of_def number_of_is_id numeral_simps neg_def
by auto

lemma nat_number_of_diff_1 [simp]:
"number_of v - (1::nat) =
(if v ≤ Int.Pls then 0 else number_of (Int.pred v))"

unfolding nat_number_of_def number_of_is_id numeral_simps
by auto


subsubsection{*Multiplication *}

lemma mult_nat_number_of [simp]:
"(number_of v :: nat) * number_of v' =
(if v < Int.Pls then 0 else number_of (v * v'))"

unfolding nat_number_of_def number_of_is_id numeral_simps
by (simp add: nat_mult_distrib)

(* TODO: replace mult_nat_number_of with this next rule *)
lemma semiring_mult_number_of:
"[|Int.Pls ≤ v; Int.Pls ≤ v'|] ==>
(number_of v :: 'a::number_semiring) * number_of v' = number_of (v * v')"

unfolding Int.Pls_def
by (elim nonneg_int_cases,
simp only: number_of_int of_nat_mult [symmetric])



subsection{*Comparisons*}

subsubsection{*Equals (=) *}

lemma eq_nat_number_of [simp]:
"((number_of v :: nat) = number_of v') =
(if neg (number_of v :: int) then (number_of v' :: int) ≤ 0
else if neg (number_of v' :: int) then (number_of v :: int) = 0
else v = v')"

unfolding nat_number_of_def number_of_is_id neg_def
by auto


subsubsection{*Less-than (<) *}

lemma less_nat_number_of [simp]:
"(number_of v :: nat) < number_of v' <->
(if v < v' then Int.Pls < v' else False)"

unfolding nat_number_of_def number_of_is_id numeral_simps
by auto


subsubsection{*Less-than-or-equal *}

lemma le_nat_number_of [simp]:
"(number_of v :: nat) ≤ number_of v' <->
(if v ≤ v' then True else v ≤ Int.Pls)"

unfolding nat_number_of_def number_of_is_id numeral_simps
by auto

(*Maps #n to n for n = 0, 1, 2*)
lemmas numerals = nat_numeral_0_eq_0 nat_numeral_1_eq_1 numeral_2_eq_2


subsection{*Powers with Numeric Exponents*}

text{*Squares of literal numerals will be evaluated.*}
lemmas power2_eq_square_number_of [simp] =
power2_eq_square [of "number_of w", standard]



text{*Simprules for comparisons where common factors can be cancelled.*}
lemmas zero_compare_simps =
add_strict_increasing add_strict_increasing2 add_increasing
zero_le_mult_iff zero_le_divide_iff
zero_less_mult_iff zero_less_divide_iff
mult_le_0_iff divide_le_0_iff
mult_less_0_iff divide_less_0_iff
zero_le_power2 power2_less_0


subsubsection{*Nat *}

lemma Suc_pred': "0 < n ==> n = Suc(n - 1)"
by simp

(*Expresses a natural number constant as the Suc of another one.
NOT suitable for rewriting because n recurs in the condition.*)

lemmas expand_Suc = Suc_pred' [of "number_of v", standard]

subsubsection{*Arith *}

lemma Suc_eq_plus1: "Suc n = n + 1"
unfolding One_nat_def by simp

lemma Suc_eq_plus1_left: "Suc n = 1 + n"
unfolding One_nat_def by simp

(* These two can be useful when m = number_of... *)

lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))"
unfolding One_nat_def by (cases m) simp_all

lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))"
unfolding One_nat_def by (cases m) simp_all

lemma power_eq_if: "(p ^ m :: nat) = (if m=0 then 1 else p * (p ^ (m - 1)))"
unfolding One_nat_def by (cases m) simp_all


subsection{*Comparisons involving (0::nat) *}

text{*Simplification already does @{term "n<0"}, @{term "n≤0"} and @{term "0≤n"}.*}

lemma eq_number_of_0 [simp]:
"number_of v = (0::nat) <-> v ≤ Int.Pls"

unfolding nat_number_of_def number_of_is_id numeral_simps
by auto

lemma eq_0_number_of [simp]:
"(0::nat) = number_of v <-> v ≤ Int.Pls"

by (rule trans [OF eq_sym_conv eq_number_of_0])

lemma less_0_number_of [simp]:
"(0::nat) < number_of v <-> Int.Pls < v"

unfolding nat_number_of_def number_of_is_id numeral_simps
by simp

lemma neg_imp_number_of_eq_0: "neg (number_of v :: int) ==> number_of v = (0::nat)"
by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric])



subsection{*Comparisons involving @{term Suc} *}

lemma eq_number_of_Suc [simp]:
"(number_of v = Suc n) =
(let pv = number_of (Int.pred v) in
if neg pv then False else nat pv = n)"

apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less
number_of_pred nat_number_of_def
split add: split_if)

apply (rule_tac x = "number_of v" in spec)
apply (auto simp add: nat_eq_iff)
done

lemma Suc_eq_number_of [simp]:
"(Suc n = number_of v) =
(let pv = number_of (Int.pred v) in
if neg pv then False else nat pv = n)"

by (rule trans [OF eq_sym_conv eq_number_of_Suc])

lemma less_number_of_Suc [simp]:
"(number_of v < Suc n) =
(let pv = number_of (Int.pred v) in
if neg pv then True else nat pv < n)"

apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less
number_of_pred nat_number_of_def
split add: split_if)

apply (rule_tac x = "number_of v" in spec)
apply (auto simp add: nat_less_iff)
done

lemma less_Suc_number_of [simp]:
"(Suc n < number_of v) =
(let pv = number_of (Int.pred v) in
if neg pv then False else n < nat pv)"

apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less
number_of_pred nat_number_of_def
split add: split_if)

apply (rule_tac x = "number_of v" in spec)
apply (auto simp add: zless_nat_eq_int_zless)
done

lemma le_number_of_Suc [simp]:
"(number_of v <= Suc n) =
(let pv = number_of (Int.pred v) in
if neg pv then True else nat pv <= n)"

by (simp add: Let_def linorder_not_less [symmetric])

lemma le_Suc_number_of [simp]:
"(Suc n <= number_of v) =
(let pv = number_of (Int.pred v) in
if neg pv then False else n <= nat pv)"

by (simp add: Let_def linorder_not_less [symmetric])


lemma eq_number_of_Pls_Min: "(Numeral0 ::int) ~= number_of Int.Min"
by auto



subsection{*Max and Min Combined with @{term Suc} *}

lemma max_number_of_Suc [simp]:
"max (Suc n) (number_of v) =
(let pv = number_of (Int.pred v) in
if neg pv then Suc n else Suc(max n (nat pv)))"

apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def
split add: split_if nat.split)

apply (rule_tac x = "number_of v" in spec)
apply auto
done

lemma max_Suc_number_of [simp]:
"max (number_of v) (Suc n) =
(let pv = number_of (Int.pred v) in
if neg pv then Suc n else Suc(max (nat pv) n))"

apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def
split add: split_if nat.split)

apply (rule_tac x = "number_of v" in spec)
apply auto
done

lemma min_number_of_Suc [simp]:
"min (Suc n) (number_of v) =
(let pv = number_of (Int.pred v) in
if neg pv then 0 else Suc(min n (nat pv)))"

apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def
split add: split_if nat.split)

apply (rule_tac x = "number_of v" in spec)
apply auto
done

lemma min_Suc_number_of [simp]:
"min (number_of v) (Suc n) =
(let pv = number_of (Int.pred v) in
if neg pv then 0 else Suc(min (nat pv) n))"

apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def
split add: split_if nat.split)

apply (rule_tac x = "number_of v" in spec)
apply auto
done

subsection{*Literal arithmetic involving powers*}

lemma power_nat_number_of:
"(number_of v :: nat) ^ n =
(if neg (number_of v :: int) then 0^n else nat ((number_of v :: int) ^ n))"

by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def nat_power_eq
split add: split_if cong: imp_cong)



lemmas power_nat_number_of_number_of = power_nat_number_of [of _ "number_of w", standard]
declare power_nat_number_of_number_of [simp]



text{*For arbitrary rings*}

lemma power_number_of_even:
fixes z :: "'a::monoid_mult"
shows "z ^ number_of (Int.Bit0 w) = (let w = z ^ (number_of w) in w * w)"

by (cases "w ≥ 0") (auto simp add: Let_def Bit0_def nat_number_of_def number_of_is_id
nat_add_distrib power_add simp del: nat_number_of)


lemma power_number_of_odd:
fixes z :: "'a::monoid_mult"
shows "z ^ number_of (Int.Bit1 w) = (if (0::int) <= number_of w
then (let w = z ^ (number_of w) in z * w * w) else 1)"

unfolding Let_def Bit1_def nat_number_of_def number_of_is_id
apply (cases "0 <= w")
apply (simp only: mult_assoc nat_add_distrib power_add, simp)
apply (simp add: not_le mult_2 [symmetric] add_assoc)
done

lemmas zpower_number_of_even = power_number_of_even [where 'a=int]
lemmas zpower_number_of_odd = power_number_of_odd [where 'a=int]

lemmas power_number_of_even_number_of [simp] =
power_number_of_even [of "number_of v", standard]


lemmas power_number_of_odd_number_of [simp] =
power_number_of_odd [of "number_of v", standard]


lemma nat_number_of_Pls: "Numeral0 = (0::nat)"
by (simp add: nat_number_of_def)

lemma nat_number_of_Min [no_atp]: "number_of Int.Min = (0::nat)"
apply (simp only: number_of_Min nat_number_of_def nat_zminus_int)
done

lemma nat_number_of_Bit0:
"number_of (Int.Bit0 w) = (let n::nat = number_of w in n + n)"

by (cases "w ≥ 0") (auto simp add: Let_def Bit0_def nat_number_of_def number_of_is_id
nat_add_distrib simp del: nat_number_of)


lemma nat_number_of_Bit1:
"number_of (Int.Bit1 w) =
(if neg (number_of w :: int) then 0
else let n = number_of w in Suc (n + n))"

unfolding Let_def Bit1_def nat_number_of_def number_of_is_id neg_def
apply (cases "w < 0")
apply (simp add: mult_2 [symmetric] add_assoc)
apply (simp only: nat_add_distrib, simp)
done

lemmas eval_nat_numeral =
nat_number_of_Bit0 nat_number_of_Bit1


lemmas nat_arith =
add_nat_number_of
diff_nat_number_of
mult_nat_number_of
eq_nat_number_of
less_nat_number_of


lemmas semiring_norm =
Let_def arith_simps nat_arith rel_simps neg_simps if_False
if_True add_0 add_Suc add_number_of_left mult_number_of_left
numeral_1_eq_1 [symmetric] Suc_eq_plus1
numeral_0_eq_0 [symmetric] numerals [symmetric]
not_iszero_Numeral1


lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)"
by (fact Let_def)

lemma power_m1_even: "(-1) ^ (2*n) = (1::'a::{number_ring})"
by (simp only: number_of_Min power_minus1_even)

lemma power_m1_odd: "(-1) ^ Suc(2*n) = (-1::'a::{number_ring})"
by (simp only: number_of_Min power_minus1_odd)

lemma nat_number_of_add_left:
"number_of v + (number_of v' + (k::nat)) =
(if neg (number_of v :: int) then number_of v' + k
else if neg (number_of v' :: int) then number_of v + k
else number_of (v + v') + k)"

by (auto simp add: neg_def)

lemma nat_number_of_mult_left:
"number_of v * (number_of v' * (k::nat)) =
(if v < Int.Pls then 0
else number_of (v * v') * k)"

by (auto simp add: not_less Pls_def nat_number_of_def number_of_is_id
nat_mult_distrib simp del: nat_number_of)



subsection{*Literal arithmetic and @{term of_nat}*}

lemma of_nat_double:
"0 ≤ x ==> of_nat (nat (2 * x)) = of_nat (nat x) + of_nat (nat x)"

by (simp only: mult_2 nat_add_distrib of_nat_add)

lemma nat_numeral_m1_eq_0: "-1 = (0::nat)"
by (simp only: nat_number_of_def)

lemma of_nat_number_of_lemma:
"of_nat (number_of v :: nat) =
(if 0 ≤ (number_of v :: int)
then (number_of v :: 'a :: number_semiring)
else 0)"

by (auto simp add: int_number_of_def nat_number_of_def number_of_int
elim!: nonneg_int_cases)


lemma of_nat_number_of_eq [simp]:
"of_nat (number_of v :: nat) =
(if neg (number_of v :: int) then 0
else (number_of v :: 'a :: number_semiring))"

by (simp only: of_nat_number_of_lemma neg_def, simp)


subsubsection{*For simplifying @{term "Suc m - K"} and @{term "K - Suc m"}*}

text{*Where K above is a literal*}

lemma Suc_diff_eq_diff_pred: "Numeral0 < n ==> Suc m - n = m - (n - Numeral1)"
by (simp split: nat_diff_split)

text {*Now just instantiating @{text n} to @{text "number_of v"} does
the right simplification, but with some redundant inequality
tests.*}

lemma neg_number_of_pred_iff_0:
"neg (number_of (Int.pred v)::int) = (number_of v = (0::nat))"

apply (subgoal_tac "neg (number_of (Int.pred v)) = (number_of v < Suc 0) ")
apply (simp only: less_Suc_eq_le le_0_eq)
apply (subst less_number_of_Suc, simp)
done

text{*No longer required as a simprule because of the @{text inverse_fold}
simproc*}

lemma Suc_diff_number_of:
"Int.Pls < v ==>
Suc m - (number_of v) = m - (number_of (Int.pred v))"

apply (subst Suc_diff_eq_diff_pred)
apply simp
apply (simp del: nat_numeral_1_eq_1)
apply (auto simp only: diff_nat_number_of less_0_number_of [symmetric]
neg_number_of_pred_iff_0)

done

lemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n"
by (simp split: nat_diff_split)


subsubsection{*For @{term nat_case} and @{term nat_rec}*}

lemma nat_case_number_of [simp]:
"nat_case a f (number_of v) =
(let pv = number_of (Int.pred v) in
if neg pv then a else f (nat pv))"

by (simp split add: nat.split add: Let_def neg_number_of_pred_iff_0)

lemma nat_case_add_eq_if [simp]:
"nat_case a f ((number_of v) + n) =
(let pv = number_of (Int.pred v) in
if neg pv then nat_case a f n else f (nat pv + n))"

apply (subst add_eq_if)
apply (simp split add: nat.split
del: nat_numeral_1_eq_1
add: nat_numeral_1_eq_1 [symmetric]
numeral_1_eq_Suc_0 [symmetric]
neg_number_of_pred_iff_0)

done

lemma nat_rec_number_of [simp]:
"nat_rec a f (number_of v) =
(let pv = number_of (Int.pred v) in
if neg pv then a else f (nat pv) (nat_rec a f (nat pv)))"

apply (case_tac " (number_of v) ::nat")
apply (simp_all (no_asm_simp) add: Let_def neg_number_of_pred_iff_0)
apply (simp split add: split_if_asm)
done

lemma nat_rec_add_eq_if [simp]:
"nat_rec a f (number_of v + n) =
(let pv = number_of (Int.pred v) in
if neg pv then nat_rec a f n
else f (nat pv + n) (nat_rec a f (nat pv + n)))"

apply (subst add_eq_if)
apply (simp split add: nat.split
del: nat_numeral_1_eq_1
add: nat_numeral_1_eq_1 [symmetric]
numeral_1_eq_Suc_0 [symmetric]
neg_number_of_pred_iff_0)

done


subsubsection{*Various Other Lemmas*}

lemma card_UNIV_bool[simp]: "card (UNIV :: bool set) = 2"
by(simp add: UNIV_bool)

text {*Evens and Odds, for Mutilated Chess Board*}

text{*Lemmas for specialist use, NOT as default simprules*}
lemma nat_mult_2: "2 * z = (z+z::nat)"
by (rule semiring_mult_2)

lemma nat_mult_2_right: "z * 2 = (z+z::nat)"
by (rule semiring_mult_2_right)

text{*Case analysis on @{term "n<2"}*}
lemma less_2_cases: "(n::nat) < 2 ==> n = 0 | n = Suc 0"
by (auto simp add: nat_1_add_1 [symmetric])

text{*Removal of Small Numerals: 0, 1 and (in additive positions) 2*}

lemma add_2_eq_Suc [simp]: "2 + n = Suc (Suc n)"
by simp

lemma add_2_eq_Suc' [simp]: "n + 2 = Suc (Suc n)"
by simp

text{*Can be used to eliminate long strings of Sucs, but not by default*}
lemma Suc3_eq_add_3: "Suc (Suc (Suc n)) = 3 + n"
by simp

end