Theory Nitpick

Up to index of Isabelle/HOL

theory Nitpick
imports SAT
uses (Tools/Nitpick/kodkod.ML) (Tools/Nitpick/kodkod_sat.ML) (Tools/Nitpick/nitpick_util.ML) (Tools/Nitpick/nitpick_hol.ML) (Tools/Nitpick/nitpick_preproc.ML) (Tools/Nitpick/nitpick_mono.ML) (Tools/Nitpick/nitpick_scope.ML) (Tools/Nitpick/nitpick_peephole.ML) (Tools/Nitpick/nitpick_rep.ML) (Tools/Nitpick/nitpick_nut.ML) (Tools/Nitpick/nitpick_kodkod.ML) (Tools/Nitpick/nitpick_model.ML) (Tools/Nitpick/nitpick.ML) (Tools/Nitpick/nitpick_isar.ML) (Tools/Nitpick/nitpick_tests.ML) (Tools/Nitpick/nitrox.ML)
(*  Title:      HOL/Nitpick.thy
Author: Jasmin Blanchette, TU Muenchen
Copyright 2008, 2009, 2010

Nitpick: Yet another counterexample generator for Isabelle/HOL.
*)


header {* Nitpick: Yet Another Counterexample Generator for Isabelle/HOL *}

theory Nitpick
imports Map Quotient SAT Record
uses ("Tools/Nitpick/kodkod.ML")
("Tools/Nitpick/kodkod_sat.ML")
("Tools/Nitpick/nitpick_util.ML")
("Tools/Nitpick/nitpick_hol.ML")
("Tools/Nitpick/nitpick_preproc.ML")
("Tools/Nitpick/nitpick_mono.ML")
("Tools/Nitpick/nitpick_scope.ML")
("Tools/Nitpick/nitpick_peephole.ML")
("Tools/Nitpick/nitpick_rep.ML")
("Tools/Nitpick/nitpick_nut.ML")
("Tools/Nitpick/nitpick_kodkod.ML")
("Tools/Nitpick/nitpick_model.ML")
("Tools/Nitpick/nitpick.ML")
("Tools/Nitpick/nitpick_isar.ML")
("Tools/Nitpick/nitpick_tests.ML")
("Tools/Nitpick/nitrox.ML")
begin


typedecl iota (* for Nitrox *)
typedecl bisim_iterator

axiomatization unknown :: 'a
and is_unknown :: "'a => bool"
and bisim :: "bisim_iterator => 'a => 'a => bool"
and bisim_iterator_max :: bisim_iterator
and Quot :: "'a => 'b"
and safe_The :: "('a => bool) => 'a"


datatype ('a, 'b) fun_box = FunBox "('a => 'b)"
datatype ('a, 'b) pair_box = PairBox 'a 'b

typedecl unsigned_bit
typedecl signed_bit

datatype 'a word = Word "('a set)"

text {*
Alternative definitions.
*}


lemma Ex1_unfold [nitpick_unfold, no_atp]:
"Ex1 P ≡ ∃x. P = {x}"

apply (rule eq_reflection)
apply (simp add: Ex1_def set_eq_iff)
apply (rule iffI)
apply (erule exE)
apply (erule conjE)
apply (rule_tac x = x in exI)
apply (rule allI)
apply (rename_tac y)
apply (erule_tac x = y in allE)
by (auto simp: mem_def)

lemma rtrancl_unfold [nitpick_unfold, no_atp]: "r* ≡ (r+)="
by simp

lemma rtranclp_unfold [nitpick_unfold, no_atp]:
"rtranclp r a b ≡ (a = b ∨ tranclp r a b)"

by (rule eq_reflection) (auto dest: rtranclpD)

lemma tranclp_unfold [nitpick_unfold, no_atp]:
"tranclp r a b ≡ trancl (split r) (a, b)"

by (simp add: trancl_def Collect_def mem_def)

definition prod :: "'a set => 'b set => ('a × 'b) set" where
"prod A B = {(a, b). a ∈ A ∧ b ∈ B}"


definition refl' :: "('a × 'a) set => bool" where
"refl' r ≡ ∀x. (x, x) ∈ r"


definition wf' :: "('a × 'a) set => bool" where
"wf' r ≡ acyclic r ∧ (finite r ∨ unknown)"


definition card' :: "'a set => nat" where
"card' A ≡ if finite A then length (SOME xs. set xs = A ∧ distinct xs) else 0"


definition setsum' :: "('a => 'b::comm_monoid_add) => 'a set => 'b" where
"setsum' f A ≡ if finite A then listsum (map f (SOME xs. set xs = A ∧ distinct xs)) else 0"


inductive fold_graph' :: "('a => 'b => 'b) => 'b => 'a set => 'b => bool" where
"fold_graph' f z {} z" |
"[|x ∈ A; fold_graph' f z (A - {x}) y|] ==> fold_graph' f z A (f x y)"


text {*
The following lemmas are not strictly necessary but they help the
\textit{special\_level} optimization.
*}


lemma The_psimp [nitpick_psimp, no_atp]:
"P = {x} ==> The P = x"

by (subgoal_tac "{x} = (λy. y = x)") (auto simp: mem_def)

lemma Eps_psimp [nitpick_psimp, no_atp]:
"[|P x; ¬ P y; Eps P = y|] ==> Eps P = x"

apply (case_tac "P (Eps P)")
apply auto
apply (erule contrapos_np)
by (rule someI)

lemma unit_case_unfold [nitpick_unfold, no_atp]:
"unit_case x u ≡ x"

apply (subgoal_tac "u = ()")
apply (simp only: unit.cases)
by simp

declare unit.cases [nitpick_simp del]

lemma nat_case_unfold [nitpick_unfold, no_atp]:
"nat_case x f n ≡ if n = 0 then x else f (n - 1)"

apply (rule eq_reflection)
by (case_tac n) auto

declare nat.cases [nitpick_simp del]

lemma list_size_simp [nitpick_simp, no_atp]:
"list_size f xs = (if xs = [] then 0
else Suc (f (hd xs) + list_size f (tl xs)))"

"size xs = (if xs = [] then 0 else Suc (size (tl xs)))"

by (case_tac xs) auto

text {*
Auxiliary definitions used to provide an alternative representation for
@{text rat} and @{text real}.
*}


function nat_gcd :: "nat => nat => nat" where
[simp del]: "nat_gcd x y = (if y = 0 then x else nat_gcd y (x mod y))"

by auto
termination
apply (relation "measure (λ(x, y). x + y + (if y > x then 1 else 0))")
apply auto
apply (metis mod_less_divisor xt1(9))
by (metis mod_mod_trivial mod_self nat_neq_iff xt1(10))

definition nat_lcm :: "nat => nat => nat" where
"nat_lcm x y = x * y div (nat_gcd x y)"


definition int_gcd :: "int => int => int" where
"int_gcd x y = int (nat_gcd (nat (abs x)) (nat (abs y)))"


definition int_lcm :: "int => int => int" where
"int_lcm x y = int (nat_lcm (nat (abs x)) (nat (abs y)))"


definition Frac :: "int × int => bool" where
"Frac ≡ λ(a, b). b > 0 ∧ int_gcd a b = 1"


axiomatization Abs_Frac :: "int × int => 'a"
and Rep_Frac :: "'a => int × int"


definition zero_frac :: 'a where
"zero_frac ≡ Abs_Frac (0, 1)"


definition one_frac :: 'a where
"one_frac ≡ Abs_Frac (1, 1)"


definition num :: "'a => int" where
"num ≡ fst o Rep_Frac"


definition denom :: "'a => int" where
"denom ≡ snd o Rep_Frac"


function norm_frac :: "int => int => int × int" where
[simp del]: "norm_frac a b = (if b < 0 then norm_frac (- a) (- b)
else if a = 0 ∨ b = 0 then (0, 1)
else let c = int_gcd a b in (a div c, b div c))"

by pat_completeness auto
termination by (relation "measure (λ(_, b). if b < 0 then 1 else 0)") auto

definition frac :: "int => int => 'a" where
"frac a b ≡ Abs_Frac (norm_frac a b)"


definition plus_frac :: "'a => 'a => 'a" where
[nitpick_simp]:
"plus_frac q r = (let d = int_lcm (denom q) (denom r) in
frac (num q * (d div denom q) + num r * (d div denom r)) d)"


definition times_frac :: "'a => 'a => 'a" where
[nitpick_simp]:
"times_frac q r = frac (num q * num r) (denom q * denom r)"


definition uminus_frac :: "'a => 'a" where
"uminus_frac q ≡ Abs_Frac (- num q, denom q)"


definition number_of_frac :: "int => 'a" where
"number_of_frac n ≡ Abs_Frac (n, 1)"


definition inverse_frac :: "'a => 'a" where
"inverse_frac q ≡ frac (denom q) (num q)"


definition less_frac :: "'a => 'a => bool" where
[nitpick_simp]:
"less_frac q r <-> num (plus_frac q (uminus_frac r)) < 0"


definition less_eq_frac :: "'a => 'a => bool" where
[nitpick_simp]:
"less_eq_frac q r <-> num (plus_frac q (uminus_frac r)) ≤ 0"


definition of_frac :: "'a => 'b::{inverse,ring_1}" where
"of_frac q ≡ of_int (num q) / of_int (denom q)"


use "Tools/Nitpick/kodkod.ML"
use "Tools/Nitpick/kodkod_sat.ML"
use "Tools/Nitpick/nitpick_util.ML"
use "Tools/Nitpick/nitpick_hol.ML"
use "Tools/Nitpick/nitpick_mono.ML"
use "Tools/Nitpick/nitpick_preproc.ML"
use "Tools/Nitpick/nitpick_scope.ML"
use "Tools/Nitpick/nitpick_peephole.ML"
use "Tools/Nitpick/nitpick_rep.ML"
use "Tools/Nitpick/nitpick_nut.ML"
use "Tools/Nitpick/nitpick_kodkod.ML"
use "Tools/Nitpick/nitpick_model.ML"
use "Tools/Nitpick/nitpick.ML"
use "Tools/Nitpick/nitpick_isar.ML"
use "Tools/Nitpick/nitpick_tests.ML"
use "Tools/Nitpick/nitrox.ML"

setup {*
Nitpick_Isar.setup #>
Nitpick_HOL.register_ersatz_global
[(@{const_name card}, @{const_name card'}),
(@{const_name setsum}, @{const_name setsum'}),
(@{const_name fold_graph}, @{const_name fold_graph'}),
(@{const_name wf}, @{const_name wf'})]
*}


hide_const (open) unknown is_unknown bisim bisim_iterator_max Quot safe_The
FunBox PairBox Word prod refl' wf' card' setsum'
fold_graph' nat_gcd nat_lcm int_gcd int_lcm Frac Abs_Frac Rep_Frac zero_frac
one_frac num denom norm_frac frac plus_frac times_frac uminus_frac
number_of_frac inverse_frac less_frac less_eq_frac of_frac

hide_type (open) iota bisim_iterator fun_box pair_box unsigned_bit signed_bit
word

hide_fact (open) Ex1_unfold rtrancl_unfold rtranclp_unfold tranclp_unfold
prod_def refl'_def wf'_def card'_def setsum'_def
fold_graph'_def The_psimp Eps_psimp unit_case_unfold nat_case_unfold
list_size_simp nat_gcd_def nat_lcm_def int_gcd_def int_lcm_def Frac_def
zero_frac_def one_frac_def num_def denom_def norm_frac_def frac_def
plus_frac_def times_frac_def uminus_frac_def number_of_frac_def
inverse_frac_def less_frac_def less_eq_frac_def of_frac_def


end