Theory Quotient

Up to index of Isabelle/HOL

theory Quotient
imports Hilbert_Choice Equiv_Relations
uses (Tools/Quotient/quotient_info.ML) (Tools/Quotient/quotient_typ.ML) (Tools/Quotient/quotient_def.ML) (Tools/Quotient/quotient_term.ML) (Tools/Quotient/quotient_tacs.ML)
(*  Title:      HOL/Quotient.thy
Author: Cezary Kaliszyk and Christian Urban
*)


header {* Definition of Quotient Types *}

theory Quotient
imports Plain Hilbert_Choice Equiv_Relations
uses
("Tools/Quotient/quotient_info.ML")
("Tools/Quotient/quotient_typ.ML")
("Tools/Quotient/quotient_def.ML")
("Tools/Quotient/quotient_term.ML")
("Tools/Quotient/quotient_tacs.ML")
begin


text {*
Basic definition for equivalence relations
that are represented by predicates.
*}


text {* Composition of Relations *}

abbreviation
rel_conj :: "('a => 'b => bool) => ('b => 'a => bool) => 'a => 'b => bool" (infixr "OOO" 75)
where
"r1 OOO r2 ≡ r1 OO r2 OO r1"


lemma eq_comp_r:
shows "((op =) OOO R) = R"

by (auto simp add: fun_eq_iff)

subsection {* Respects predicate *}

definition
Respects :: "('a => 'a => bool) => 'a set"
where
"Respects R = {x. R x x}"


lemma in_respects:
shows "x ∈ Respects R <-> R x x"

unfolding Respects_def by simp

subsection {* Function map and function relation *}

notation map_fun (infixr "--->" 55)

lemma map_fun_id:
"(id ---> id) = id"

by (simp add: fun_eq_iff)

definition
fun_rel :: "('a => 'c => bool) => ('b => 'd => bool) => ('a => 'b) => ('c => 'd) => bool" (infixr "===>" 55)
where
"fun_rel R1 R2 = (λf g. ∀x y. R1 x y --> R2 (f x) (g y))"


lemma fun_relI [intro]:
assumes "!!x y. R1 x y ==> R2 (f x) (g y)"
shows "(R1 ===> R2) f g"

using assms by (simp add: fun_rel_def)

lemma fun_relE:
assumes "(R1 ===> R2) f g" and "R1 x y"
obtains "R2 (f x) (g y)"

using assms by (simp add: fun_rel_def)

lemma fun_rel_eq:
shows "((op =) ===> (op =)) = (op =)"

by (auto simp add: fun_eq_iff elim: fun_relE)

subsection {* set map (vimage) and set relation *}

definition "set_rel R xs ys ≡ ∀x y. R x y --> x ∈ xs <-> y ∈ ys"

lemma vimage_id:
"vimage id = id"

unfolding vimage_def fun_eq_iff by auto

lemma set_rel_eq:
"set_rel op = = op ="

by (subst fun_eq_iff, subst fun_eq_iff) (simp add: set_eq_iff set_rel_def)

lemma set_rel_equivp:
assumes e: "equivp R"
shows "set_rel R xs ys <-> xs = ys ∧ (∀x y. x ∈ xs --> R x y --> y ∈ xs)"

unfolding set_rel_def
using equivp_reflp[OF e]
by auto (metis, metis equivp_symp[OF e])

subsection {* Quotient Predicate *}

definition
"Quotient R Abs Rep <->
(∀a. Abs (Rep a) = a) ∧ (∀a. R (Rep a) (Rep a)) ∧
(∀r s. R r s <-> R r r ∧ R s s ∧ Abs r = Abs s)"


lemma QuotientI:
assumes "!!a. Abs (Rep a) = a"
and "!!a. R (Rep a) (Rep a)"
and "!!r s. R r s <-> R r r ∧ R s s ∧ Abs r = Abs s"
shows "Quotient R Abs Rep"

using assms unfolding Quotient_def by blast

lemma Quotient_abs_rep:
assumes a: "Quotient R Abs Rep"
shows "Abs (Rep a) = a"

using a
unfolding Quotient_def
by simp

lemma Quotient_rep_reflp:
assumes a: "Quotient R Abs Rep"
shows "R (Rep a) (Rep a)"

using a
unfolding Quotient_def
by blast

lemma Quotient_rel:
assumes a: "Quotient R Abs Rep"
shows "R r r ∧ R s s ∧ Abs r = Abs s <-> R r s" -- {* orientation does not loop on rewriting *}

using a
unfolding Quotient_def
by blast

lemma Quotient_rel_rep:
assumes a: "Quotient R Abs Rep"
shows "R (Rep a) (Rep b) <-> a = b"

using a
unfolding Quotient_def
by metis

lemma Quotient_rep_abs:
assumes a: "Quotient R Abs Rep"
shows "R r r ==> R (Rep (Abs r)) r"

using a unfolding Quotient_def
by blast

lemma Quotient_rel_abs:
assumes a: "Quotient R Abs Rep"
shows "R r s ==> Abs r = Abs s"

using a unfolding Quotient_def
by blast

lemma Quotient_symp:
assumes a: "Quotient R Abs Rep"
shows "symp R"

using a unfolding Quotient_def using sympI by metis

lemma Quotient_transp:
assumes a: "Quotient R Abs Rep"
shows "transp R"

using a unfolding Quotient_def using transpI by metis

lemma identity_quotient:
shows "Quotient (op =) id id"

unfolding Quotient_def id_def
by blast

lemma fun_quotient:
assumes q1: "Quotient R1 abs1 rep1"
and q2: "Quotient R2 abs2 rep2"
shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"

proof -
have "!!a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
using q1 q2 by (simp add: Quotient_def fun_eq_iff)
moreover
have "!!a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
by (rule fun_relI)
(insert q1 q2 Quotient_rel_abs [of R1 abs1 rep1] Quotient_rel_rep [of R2 abs2 rep2],
simp (no_asm) add: Quotient_def, simp)

moreover
have "!!r s. (R1 ===> R2) r s = ((R1 ===> R2) r r ∧ (R1 ===> R2) s s ∧
(rep1 ---> abs2) r = (rep1 ---> abs2) s)"

apply(auto simp add: fun_rel_def fun_eq_iff)
using q1 q2 unfolding Quotient_def
apply(metis)
using q1 q2 unfolding Quotient_def
apply(metis)
using q1 q2 unfolding Quotient_def
apply(metis)
using q1 q2 unfolding Quotient_def
apply(metis)
done
ultimately
show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
unfolding Quotient_def by blast
qed

lemma abs_o_rep:
assumes a: "Quotient R Abs Rep"
shows "Abs o Rep = id"

unfolding fun_eq_iff
by (simp add: Quotient_abs_rep[OF a])

lemma equals_rsp:
assumes q: "Quotient R Abs Rep"
and a: "R xa xb" "R ya yb"
shows "R xa ya = R xb yb"

using a Quotient_symp[OF q] Quotient_transp[OF q]
by (blast elim: sympE transpE)

lemma lambda_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> Abs2) (λx. Rep2 (f (Abs1 x))) = (λx. f x)"

unfolding fun_eq_iff
using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
by simp

lemma lambda_prs1:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> Abs2) (λx. (Abs1 ---> Rep2) f x) = (λx. f x)"

unfolding fun_eq_iff
using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
by simp

lemma rep_abs_rsp:
assumes q: "Quotient R Abs Rep"
and a: "R x1 x2"
shows "R x1 (Rep (Abs x2))"

using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
by metis

lemma rep_abs_rsp_left:
assumes q: "Quotient R Abs Rep"
and a: "R x1 x2"
shows "R (Rep (Abs x1)) x2"

using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
by metis

text{*
In the following theorem R1 can be instantiated with anything,
but we know some of the types of the Rep and Abs functions;
so by solving Quotient assumptions we can get a unique R1 that
will be provable; which is why we need to use @{text apply_rsp} and
not the primed version *}


lemma apply_rsp:
fixes f g::"'a => 'c"
assumes q: "Quotient R1 Abs1 Rep1"
and a: "(R1 ===> R2) f g" "R1 x y"
shows "R2 (f x) (g y)"

using a by (auto elim: fun_relE)

lemma apply_rsp':
assumes a: "(R1 ===> R2) f g" "R1 x y"
shows "R2 (f x) (g y)"

using a by (auto elim: fun_relE)

subsection {* lemmas for regularisation of ball and bex *}

lemma ball_reg_eqv:
fixes P :: "'a => bool"
assumes a: "equivp R"
shows "Ball (Respects R) P = (All P)"

using a
unfolding equivp_def
by (auto simp add: in_respects)

lemma bex_reg_eqv:
fixes P :: "'a => bool"
assumes a: "equivp R"
shows "Bex (Respects R) P = (Ex P)"

using a
unfolding equivp_def
by (auto simp add: in_respects)

lemma ball_reg_right:
assumes a: "!!x. x ∈ R ==> P x --> Q x"
shows "All P --> Ball R Q"

using a by fast

lemma bex_reg_left:
assumes a: "!!x. x ∈ R ==> Q x --> P x"
shows "Bex R Q --> Ex P"

using a by fast

lemma ball_reg_left:
assumes a: "equivp R"
shows "(!!x. (Q x --> P x)) ==> Ball (Respects R) Q --> All P"

using a by (metis equivp_reflp in_respects)

lemma bex_reg_right:
assumes a: "equivp R"
shows "(!!x. (Q x --> P x)) ==> Ex Q --> Bex (Respects R) P"

using a by (metis equivp_reflp in_respects)

lemma ball_reg_eqv_range:
fixes P::"'a => bool"
and x::"'a"
assumes a: "equivp R2"
shows "(Ball (Respects (R1 ===> R2)) (λf. P (f x)) = All (λf. P (f x)))"

apply(rule iffI)
apply(rule allI)
apply(drule_tac x="λy. f x" in bspec)
apply(simp add: in_respects fun_rel_def)
apply(rule impI)
using a equivp_reflp_symp_transp[of "R2"]
apply (auto elim: equivpE reflpE)
done

lemma bex_reg_eqv_range:
assumes a: "equivp R2"
shows "(Bex (Respects (R1 ===> R2)) (λf. P (f x)) = Ex (λf. P (f x)))"

apply(auto)
apply(rule_tac x="λy. f x" in bexI)
apply(simp)
apply(simp add: Respects_def in_respects fun_rel_def)
apply(rule impI)
using a equivp_reflp_symp_transp[of "R2"]
apply (auto elim: equivpE reflpE)
done

(* Next four lemmas are unused *)
lemma all_reg:
assumes a: "!x :: 'a. (P x --> Q x)"
and b: "All P"
shows "All Q"

using a b by fast

lemma ex_reg:
assumes a: "!x :: 'a. (P x --> Q x)"
and b: "Ex P"
shows "Ex Q"

using a b by fast

lemma ball_reg:
assumes a: "!x :: 'a. (x ∈ R --> P x --> Q x)"
and b: "Ball R P"
shows "Ball R Q"

using a b by fast

lemma bex_reg:
assumes a: "!x :: 'a. (x ∈ R --> P x --> Q x)"
and b: "Bex R P"
shows "Bex R Q"

using a b by fast


lemma ball_all_comm:
assumes "!!y. (∀x∈P. A x y) --> (∀x. B x y)"
shows "(∀x∈P. ∀y. A x y) --> (∀x. ∀y. B x y)"

using assms by auto

lemma bex_ex_comm:
assumes "(∃y. ∃x. A x y) --> (∃y. ∃x∈P. B x y)"
shows "(∃x. ∃y. A x y) --> (∃x∈P. ∃y. B x y)"

using assms by auto

subsection {* Bounded abstraction *}

definition
Babs :: "'a set => ('a => 'b) => 'a => 'b"
where
"x ∈ p ==> Babs p m x = m x"


lemma babs_rsp:
assumes q: "Quotient R1 Abs1 Rep1"
and a: "(R1 ===> R2) f g"
shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"

apply (auto simp add: Babs_def in_respects fun_rel_def)
apply (subgoal_tac "x ∈ Respects R1 ∧ y ∈ Respects R1")
using a apply (simp add: Babs_def fun_rel_def)
apply (simp add: in_respects fun_rel_def)
using Quotient_rel[OF q]
by metis

lemma babs_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f"

apply (rule ext)
apply (simp add:)
apply (subgoal_tac "Rep1 x ∈ Respects R1")
apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
apply (simp add: in_respects Quotient_rel_rep[OF q1])
done

lemma babs_simp:
assumes q: "Quotient R1 Abs Rep"
shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"

apply(rule iffI)
apply(simp_all only: babs_rsp[OF q])
apply(auto simp add: Babs_def fun_rel_def)
apply (subgoal_tac "x ∈ Respects R1 ∧ y ∈ Respects R1")
apply(metis Babs_def)
apply (simp add: in_respects)
using Quotient_rel[OF q]
by metis

(* If a user proves that a particular functional relation
is an equivalence this may be useful in regularising *)

lemma babs_reg_eqv:
shows "equivp R ==> Babs (Respects R) P = P"

by (simp add: fun_eq_iff Babs_def in_respects equivp_reflp)


(* 3 lemmas needed for proving repabs_inj *)
lemma ball_rsp:
assumes a: "(R ===> (op =)) f g"
shows "Ball (Respects R) f = Ball (Respects R) g"

using a by (auto simp add: Ball_def in_respects elim: fun_relE)

lemma bex_rsp:
assumes a: "(R ===> (op =)) f g"
shows "(Bex (Respects R) f = Bex (Respects R) g)"

using a by (auto simp add: Bex_def in_respects elim: fun_relE)

lemma bex1_rsp:
assumes a: "(R ===> (op =)) f g"
shows "Ex1 (λx. x ∈ Respects R ∧ f x) = Ex1 (λx. x ∈ Respects R ∧ g x)"

using a by (auto elim: fun_relE simp add: Ex1_def in_respects)

(* 2 lemmas needed for cleaning of quantifiers *)
lemma all_prs:
assumes a: "Quotient R absf repf"
shows "Ball (Respects R) ((absf ---> id) f) = All f"

using a unfolding Quotient_def Ball_def in_respects id_apply comp_def map_fun_def
by metis

lemma ex_prs:
assumes a: "Quotient R absf repf"
shows "Bex (Respects R) ((absf ---> id) f) = Ex f"

using a unfolding Quotient_def Bex_def in_respects id_apply comp_def map_fun_def
by metis

subsection {* @{text Bex1_rel} quantifier *}

definition
Bex1_rel :: "('a => 'a => bool) => ('a => bool) => bool"
where
"Bex1_rel R P <-> (∃x ∈ Respects R. P x) ∧ (∀x ∈ Respects R. ∀y ∈ Respects R. ((P x ∧ P y) --> (R x y)))"


lemma bex1_rel_aux:
"[|∀xa ya. R xa ya --> x xa = y ya; Bex1_rel R x|] ==> Bex1_rel R y"

unfolding Bex1_rel_def
apply (erule conjE)+
apply (erule bexE)
apply rule
apply (rule_tac x="xa" in bexI)
apply metis
apply metis
apply rule+
apply (erule_tac x="xaa" in ballE)
prefer 2
apply (metis)
apply (erule_tac x="ya" in ballE)
prefer 2
apply (metis)
apply (metis in_respects)
done

lemma bex1_rel_aux2:
"[|∀xa ya. R xa ya --> x xa = y ya; Bex1_rel R y|] ==> Bex1_rel R x"

unfolding Bex1_rel_def
apply (erule conjE)+
apply (erule bexE)
apply rule
apply (rule_tac x="xa" in bexI)
apply metis
apply metis
apply rule+
apply (erule_tac x="xaa" in ballE)
prefer 2
apply (metis)
apply (erule_tac x="ya" in ballE)
prefer 2
apply (metis)
apply (metis in_respects)
done

lemma bex1_rel_rsp:
assumes a: "Quotient R absf repf"
shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)"

apply (simp add: fun_rel_def)
apply clarify
apply rule
apply (simp_all add: bex1_rel_aux bex1_rel_aux2)
apply (erule bex1_rel_aux2)
apply assumption
done


lemma ex1_prs:
assumes a: "Quotient R absf repf"
shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f"

apply (simp add:)
apply (subst Bex1_rel_def)
apply (subst Bex_def)
apply (subst Ex1_def)
apply simp
apply rule
apply (erule conjE)+
apply (erule_tac exE)
apply (erule conjE)
apply (subgoal_tac "∀y. R y y --> f (absf y) --> R x y")
apply (rule_tac x="absf x" in exI)
apply (simp)
apply rule+
using a unfolding Quotient_def
apply metis
apply rule+
apply (erule_tac x="x" in ballE)
apply (erule_tac x="y" in ballE)
apply simp
apply (simp add: in_respects)
apply (simp add: in_respects)
apply (erule_tac exE)
apply rule
apply (rule_tac x="repf x" in exI)
apply (simp only: in_respects)
apply rule
apply (metis Quotient_rel_rep[OF a])
using a unfolding Quotient_def apply (simp)
apply rule+
using a unfolding Quotient_def in_respects
apply metis
done

lemma bex1_bexeq_reg:
shows "(∃!x∈Respects R. P x) --> (Bex1_rel R (λx. P x))"

apply (simp add: Ex1_def Bex1_rel_def in_respects)
apply clarify
apply auto
apply (rule bexI)
apply assumption
apply (simp add: in_respects)
apply (simp add: in_respects)
apply auto
done

lemma bex1_bexeq_reg_eqv:
assumes a: "equivp R"
shows "(∃!x. P x) --> Bex1_rel R P"

using equivp_reflp[OF a]
apply (intro impI)
apply (elim ex1E)
apply (rule mp[OF bex1_bexeq_reg])
apply (rule_tac a="x" in ex1I)
apply (subst in_respects)
apply (rule conjI)
apply assumption
apply assumption
apply clarify
apply (erule_tac x="xa" in allE)
apply simp
done

subsection {* Various respects and preserve lemmas *}

lemma quot_rel_rsp:
assumes a: "Quotient R Abs Rep"
shows "(R ===> R ===> op =) R R"

apply(rule fun_relI)+
apply(rule equals_rsp[OF a])
apply(assumption)+
done

lemma o_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and q3: "Quotient R3 Abs3 Rep3"
shows "((Abs2 ---> Rep3) ---> (Abs1 ---> Rep2) ---> (Rep1 ---> Abs3)) op o = op o"
and "(id ---> (Abs1 ---> id) ---> Rep1 ---> id) op o = op o"

using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
by (simp_all add: fun_eq_iff)

lemma o_rsp:
"((R2 ===> R3) ===> (R1 ===> R2) ===> (R1 ===> R3)) op o op o"
"(op = ===> (R1 ===> op =) ===> R1 ===> op =) op o op o"

by (force elim: fun_relE)+

lemma cond_prs:
assumes a: "Quotient R absf repf"
shows "absf (if a then repf b else repf c) = (if a then b else c)"

using a unfolding Quotient_def by auto

lemma if_prs:
assumes q: "Quotient R Abs Rep"
shows "(id ---> Rep ---> Rep ---> Abs) If = If"

using Quotient_abs_rep[OF q]
by (auto simp add: fun_eq_iff)

lemma if_rsp:
assumes q: "Quotient R Abs Rep"
shows "(op = ===> R ===> R ===> R) If If"

by force

lemma let_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(Rep2 ---> (Abs2 ---> Rep1) ---> Abs1) Let = Let"

using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
by (auto simp add: fun_eq_iff)

lemma let_rsp:
shows "(R1 ===> (R1 ===> R2) ===> R2) Let Let"

by (force elim: fun_relE)

lemma id_rsp:
shows "(R ===> R) id id"

by auto

lemma id_prs:
assumes a: "Quotient R Abs Rep"
shows "(Rep ---> Abs) id = id"

by (simp add: fun_eq_iff Quotient_abs_rep [OF a])


locale quot_type =
fixes R :: "'a => 'a => bool"
and Abs :: "'a set => 'b"
and Rep :: "'b => 'a set"
assumes equivp: "part_equivp R"
and rep_prop: "!!y. ∃x. R x x ∧ Rep y = Collect (R x)"
and rep_inverse: "!!x. Abs (Rep x) = x"
and abs_inverse: "!!c. (∃x. ((R x x) ∧ (c = Collect (R x)))) ==> (Rep (Abs c)) = c"
and rep_inject: "!!x y. (Rep x = Rep y) = (x = y)"
begin


definition
abs :: "'a => 'b"
where
"abs x = Abs (Collect (R x))"


definition
rep :: "'b => 'a"
where
"rep a = (SOME x. x ∈ Rep a)"


lemma some_collect:
assumes "R r r"
shows "R (SOME x. x ∈ Collect (R r)) = R r"

apply simp
by (metis assms exE_some equivp[simplified part_equivp_def])

lemma Quotient:
shows "Quotient R abs rep"

unfolding Quotient_def abs_def rep_def
proof (intro conjI allI)
fix a r s
show x: "R (SOME x. x ∈ Rep a) (SOME x. x ∈ Rep a)" proof -
obtain x where r: "R x x" and rep: "Rep a = Collect (R x)" using rep_prop[of a] by auto
have "R (SOME x. x ∈ Rep a) x" using r rep some_collect by metis
then have "R x (SOME x. x ∈ Rep a)" using part_equivp_symp[OF equivp] by fast
then show "R (SOME x. x ∈ Rep a) (SOME x. x ∈ Rep a)"
using part_equivp_transp[OF equivp] by (metis `R (SOME x. x ∈ Rep a) x`)
qed
have "Collect (R (SOME x. x ∈ Rep a)) = (Rep a)" by (metis some_collect rep_prop)
then show "Abs (Collect (R (SOME x. x ∈ Rep a))) = a" using rep_inverse by auto
have "R r r ==> R s s ==> Abs (Collect (R r)) = Abs (Collect (R s)) <-> R r = R s"
proof -
assume "R r r" and "R s s"
then have "Abs (Collect (R r)) = Abs (Collect (R s)) <-> Collect (R r) = Collect (R s)"
by (metis abs_inverse)
also have "Collect (R r) = Collect (R s) <-> (λA x. x ∈ A) (Collect (R r)) = (λA x. x ∈ A) (Collect (R s))"
by rule simp_all
finally show "Abs (Collect (R r)) = Abs (Collect (R s)) <-> R r = R s" by simp
qed
then show "R r s <-> R r r ∧ R s s ∧ (Abs (Collect (R r)) = Abs (Collect (R s)))"
using equivp[simplified part_equivp_def] by metis
qed

end

subsection {* ML setup *}

text {* Auxiliary data for the quotient package *}

use "Tools/Quotient/quotient_info.ML"
setup Quotient_Info.setup

declare [[map "fun" = (map_fun, fun_rel)]]
declare [[map set = (vimage, set_rel)]]

lemmas [quot_thm] = fun_quotient
lemmas [quot_respect] = quot_rel_rsp if_rsp o_rsp let_rsp id_rsp
lemmas [quot_preserve] = if_prs o_prs let_prs id_prs
lemmas [quot_equiv] = identity_equivp


text {* Lemmas about simplifying id's. *}
lemmas [id_simps] =
id_def[symmetric]
map_fun_id
id_apply
id_o
o_id
eq_comp_r
set_rel_eq
vimage_id


text {* Translation functions for the lifting process. *}
use "Tools/Quotient/quotient_term.ML"


text {* Definitions of the quotient types. *}
use "Tools/Quotient/quotient_typ.ML"


text {* Definitions for quotient constants. *}
use "Tools/Quotient/quotient_def.ML"


text {*
An auxiliary constant for recording some information
about the lifted theorem in a tactic.
*}

definition
Quot_True :: "'a => bool"
where
"Quot_True x <-> True"


lemma
shows QT_all: "Quot_True (All P) ==> Quot_True P"
and QT_ex: "Quot_True (Ex P) ==> Quot_True P"
and QT_ex1: "Quot_True (Ex1 P) ==> Quot_True P"
and QT_lam: "Quot_True (λx. P x) ==> (!!x. Quot_True (P x))"
and QT_ext: "(!!x. Quot_True (a x) ==> f x = g x) ==> (Quot_True a ==> f = g)"

by (simp_all add: Quot_True_def ext)

lemma QT_imp: "Quot_True a ≡ Quot_True b"
by (simp add: Quot_True_def)


text {* Tactics for proving the lifted theorems *}
use "Tools/Quotient/quotient_tacs.ML"

subsection {* Methods / Interface *}

method_setup lifting =
{* Attrib.thms >> (fn thms => fn ctxt =>
SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.lift_tac ctxt [] thms))) *}

{* lift theorems to quotient types *}


method_setup lifting_setup =
{* Attrib.thm >> (fn thm => fn ctxt =>
SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.lift_procedure_tac ctxt [] thm))) *}

{* set up the three goals for the quotient lifting procedure *}


method_setup descending =
{* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.descend_tac ctxt []))) *}
{* decend theorems to the raw level *}


method_setup descending_setup =
{* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.descend_procedure_tac ctxt []))) *}
{* set up the three goals for the decending theorems *}


method_setup regularize =
{* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.regularize_tac ctxt))) *}
{* prove the regularization goals from the quotient lifting procedure *}


method_setup injection =
{* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.all_injection_tac ctxt))) *}
{* prove the rep/abs injection goals from the quotient lifting procedure *}


method_setup cleaning =
{* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.clean_tac ctxt))) *}
{* prove the cleaning goals from the quotient lifting procedure *}


attribute_setup quot_lifted =
{* Scan.succeed Quotient_Tacs.lifted_attrib *}
{* lift theorems to quotient types *}


no_notation
rel_conj (infixr "OOO" 75) and
map_fun (infixr "--->" 55) and
fun_rel (infixr "===>" 55)


end