(* Generated from Cooper.thy; DO NOT EDIT! *)
structure Cooper_Procedure : sig
type 'a equal
val equal : 'a equal -> 'a -> 'a -> bool
val eq : 'a equal -> 'a -> 'a -> bool
val suc : int -> int
datatype num = C of int | Bound of int | Cn of int * int * num | Neg of num |
Add of num * num | Sub of num * num | Mul of int * num
datatype fm = T | F | Lt of num | Le of num | Gt of num | Ge of num |
Eq of num | NEq of num | Dvd of int * num | NDvd of int * num | Not of fm |
And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm | E of fm |
A of fm | Closed of int | NClosed of int
val map : ('a -> 'b) -> 'a list -> 'b list
val equal_numa : num -> num -> bool
val equal_fm : fm -> fm -> bool
val djf : ('a -> fm) -> 'a -> fm -> fm
val foldr : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
val evaldjf : ('a -> fm) -> 'a list -> fm
val disjuncts : fm -> fm list
val dj : (fm -> fm) -> fm -> fm
val prep : fm -> fm
val conj : fm -> fm -> fm
val disj : fm -> fm -> fm
val nota : fm -> fm
val iffa : fm -> fm -> fm
val impa : fm -> fm -> fm
type 'a times
val times : 'a times -> 'a -> 'a -> 'a
type 'a dvd
val times_dvd : 'a dvd -> 'a times
type 'a diva
val dvd_div : 'a diva -> 'a dvd
val diva : 'a diva -> 'a -> 'a -> 'a
val moda : 'a diva -> 'a -> 'a -> 'a
type 'a zero
val zero : 'a zero -> 'a
type 'a no_zero_divisors
val times_no_zero_divisors : 'a no_zero_divisors -> 'a times
val zero_no_zero_divisors : 'a no_zero_divisors -> 'a zero
type 'a semigroup_mult
val times_semigroup_mult : 'a semigroup_mult -> 'a times
type 'a plus
val plus : 'a plus -> 'a -> 'a -> 'a
type 'a semigroup_add
val plus_semigroup_add : 'a semigroup_add -> 'a plus
type 'a ab_semigroup_add
val semigroup_add_ab_semigroup_add : 'a ab_semigroup_add -> 'a semigroup_add
type 'a semiring
val ab_semigroup_add_semiring : 'a semiring -> 'a ab_semigroup_add
val semigroup_mult_semiring : 'a semiring -> 'a semigroup_mult
type 'a mult_zero
val times_mult_zero : 'a mult_zero -> 'a times
val zero_mult_zero : 'a mult_zero -> 'a zero
type 'a monoid_add
val semigroup_add_monoid_add : 'a monoid_add -> 'a semigroup_add
val zero_monoid_add : 'a monoid_add -> 'a zero
type 'a comm_monoid_add
val ab_semigroup_add_comm_monoid_add :
'a comm_monoid_add -> 'a ab_semigroup_add
val monoid_add_comm_monoid_add : 'a comm_monoid_add -> 'a monoid_add
type 'a semiring_0
val comm_monoid_add_semiring_0 : 'a semiring_0 -> 'a comm_monoid_add
val mult_zero_semiring_0 : 'a semiring_0 -> 'a mult_zero
val semiring_semiring_0 : 'a semiring_0 -> 'a semiring
type 'a one
val one : 'a one -> 'a
type 'a power
val one_power : 'a power -> 'a one
val times_power : 'a power -> 'a times
type 'a monoid_mult
val semigroup_mult_monoid_mult : 'a monoid_mult -> 'a semigroup_mult
val power_monoid_mult : 'a monoid_mult -> 'a power
type 'a zero_neq_one
val one_zero_neq_one : 'a zero_neq_one -> 'a one
val zero_zero_neq_one : 'a zero_neq_one -> 'a zero
type 'a semiring_1
val monoid_mult_semiring_1 : 'a semiring_1 -> 'a monoid_mult
val semiring_0_semiring_1 : 'a semiring_1 -> 'a semiring_0
val zero_neq_one_semiring_1 : 'a semiring_1 -> 'a zero_neq_one
type 'a ab_semigroup_mult
val semigroup_mult_ab_semigroup_mult :
'a ab_semigroup_mult -> 'a semigroup_mult
type 'a comm_semiring
val ab_semigroup_mult_comm_semiring : 'a comm_semiring -> 'a ab_semigroup_mult
val semiring_comm_semiring : 'a comm_semiring -> 'a semiring
type 'a comm_semiring_0
val comm_semiring_comm_semiring_0 : 'a comm_semiring_0 -> 'a comm_semiring
val semiring_0_comm_semiring_0 : 'a comm_semiring_0 -> 'a semiring_0
type 'a comm_monoid_mult
val ab_semigroup_mult_comm_monoid_mult :
'a comm_monoid_mult -> 'a ab_semigroup_mult
val monoid_mult_comm_monoid_mult : 'a comm_monoid_mult -> 'a monoid_mult
type 'a comm_semiring_1
val comm_monoid_mult_comm_semiring_1 :
'a comm_semiring_1 -> 'a comm_monoid_mult
val comm_semiring_0_comm_semiring_1 : 'a comm_semiring_1 -> 'a comm_semiring_0
val dvd_comm_semiring_1 : 'a comm_semiring_1 -> 'a dvd
val semiring_1_comm_semiring_1 : 'a comm_semiring_1 -> 'a semiring_1
type 'a cancel_semigroup_add
val semigroup_add_cancel_semigroup_add :
'a cancel_semigroup_add -> 'a semigroup_add
type 'a cancel_ab_semigroup_add
val ab_semigroup_add_cancel_ab_semigroup_add :
'a cancel_ab_semigroup_add -> 'a ab_semigroup_add
val cancel_semigroup_add_cancel_ab_semigroup_add :
'a cancel_ab_semigroup_add -> 'a cancel_semigroup_add
type 'a cancel_comm_monoid_add
val cancel_ab_semigroup_add_cancel_comm_monoid_add :
'a cancel_comm_monoid_add -> 'a cancel_ab_semigroup_add
val comm_monoid_add_cancel_comm_monoid_add :
'a cancel_comm_monoid_add -> 'a comm_monoid_add
type 'a semiring_0_cancel
val cancel_comm_monoid_add_semiring_0_cancel :
'a semiring_0_cancel -> 'a cancel_comm_monoid_add
val semiring_0_semiring_0_cancel : 'a semiring_0_cancel -> 'a semiring_0
type 'a semiring_1_cancel
val semiring_0_cancel_semiring_1_cancel :
'a semiring_1_cancel -> 'a semiring_0_cancel
val semiring_1_semiring_1_cancel : 'a semiring_1_cancel -> 'a semiring_1
type 'a comm_semiring_0_cancel
val comm_semiring_0_comm_semiring_0_cancel :
'a comm_semiring_0_cancel -> 'a comm_semiring_0
val semiring_0_cancel_comm_semiring_0_cancel :
'a comm_semiring_0_cancel -> 'a semiring_0_cancel
type 'a comm_semiring_1_cancel
val comm_semiring_0_cancel_comm_semiring_1_cancel :
'a comm_semiring_1_cancel -> 'a comm_semiring_0_cancel
val comm_semiring_1_comm_semiring_1_cancel :
'a comm_semiring_1_cancel -> 'a comm_semiring_1
val semiring_1_cancel_comm_semiring_1_cancel :
'a comm_semiring_1_cancel -> 'a semiring_1_cancel
type 'a semiring_div
val div_semiring_div : 'a semiring_div -> 'a diva
val comm_semiring_1_cancel_semiring_div :
'a semiring_div -> 'a comm_semiring_1_cancel
val no_zero_divisors_semiring_div : 'a semiring_div -> 'a no_zero_divisors
val dvd : 'a semiring_div * 'a equal -> 'a -> 'a -> bool
val abs_int : int -> int
val equal_int : int equal
val numadd : num * num -> num
val nummul : int -> num -> num
val numneg : num -> num
val numsub : num -> num -> num
val simpnum : num -> num
val one_inta : int
val zero_inta : int
val times_int : int times
val dvd_int : int dvd
val fst : 'a * 'b -> 'a
val sgn_int : int -> int
val apsnd : ('a -> 'b) -> 'c * 'a -> 'c * 'b
val divmod_int : int -> int -> int * int
val div_inta : int -> int -> int
val snd : 'a * 'b -> 'b
val mod_int : int -> int -> int
val div_int : int diva
val zero_int : int zero
val no_zero_divisors_int : int no_zero_divisors
val semigroup_mult_int : int semigroup_mult
val plus_int : int plus
val semigroup_add_int : int semigroup_add
val ab_semigroup_add_int : int ab_semigroup_add
val semiring_int : int semiring
val mult_zero_int : int mult_zero
val monoid_add_int : int monoid_add
val comm_monoid_add_int : int comm_monoid_add
val semiring_0_int : int semiring_0
val one_int : int one
val power_int : int power
val monoid_mult_int : int monoid_mult
val zero_neq_one_int : int zero_neq_one
val semiring_1_int : int semiring_1
val ab_semigroup_mult_int : int ab_semigroup_mult
val comm_semiring_int : int comm_semiring
val comm_semiring_0_int : int comm_semiring_0
val comm_monoid_mult_int : int comm_monoid_mult
val comm_semiring_1_int : int comm_semiring_1
val cancel_semigroup_add_int : int cancel_semigroup_add
val cancel_ab_semigroup_add_int : int cancel_ab_semigroup_add
val cancel_comm_monoid_add_int : int cancel_comm_monoid_add
val semiring_0_cancel_int : int semiring_0_cancel
val semiring_1_cancel_int : int semiring_1_cancel
val comm_semiring_0_cancel_int : int comm_semiring_0_cancel
val comm_semiring_1_cancel_int : int comm_semiring_1_cancel
val semiring_div_int : int semiring_div
val simpfm : fm -> fm
val qelim : fm -> (fm -> fm) -> fm
val maps : ('a -> 'b list) -> 'a list -> 'b list
val uptoa : int -> int -> int list
val minus_nat : int -> int -> int
val decrnum : num -> num
val decr : fm -> fm
val beta : fm -> num list
val gcd_int : int -> int -> int
val lcm_int : int -> int -> int
val zeta : fm -> int
val zsplit0 : num -> int * num
val zlfm : fm -> fm
val alpha : fm -> num list
val delta : fm -> int
val member : 'a equal -> 'a list -> 'a -> bool
val remdups : 'a equal -> 'a list -> 'a list
val a_beta : fm -> int -> fm
val mirror : fm -> fm
val size_list : 'a list -> int
val equal_num : num equal
val unita : fm -> fm * (num list * int)
val numsubst0 : num -> num -> num
val subst0 : num -> fm -> fm
val minusinf : fm -> fm
val cooper : fm -> fm
val pa : fm -> fm
end = struct
type 'a equal = {equal : 'a -> 'a -> bool};
val equal = #equal : 'a equal -> 'a -> 'a -> bool;
fun eq A_ a b = equal A_ a b;
fun suc n = n + (1 : IntInf.int);
datatype num = C of int | Bound of int | Cn of int * int * num | Neg of num |
Add of num * num | Sub of num * num | Mul of int * num;
datatype fm = T | F | Lt of num | Le of num | Gt of num | Ge of num | Eq of num
| NEq of num | Dvd of int * num | NDvd of int * num | Not of fm |
And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm | E of fm |
A of fm | Closed of int | NClosed of int;
fun map f [] = []
| map f (x :: xs) = f x :: map f xs;
fun equal_numa (Mul (inta, num)) (Sub (num1, num2)) = false
| equal_numa (Sub (num1, num2)) (Mul (inta, num)) = false
| equal_numa (Mul (inta, num)) (Add (num1, num2)) = false
| equal_numa (Add (num1, num2)) (Mul (inta, num)) = false
| equal_numa (Sub (num1a, num2a)) (Add (num1, num2)) = false
| equal_numa (Add (num1a, num2a)) (Sub (num1, num2)) = false
| equal_numa (Mul (inta, numa)) (Neg num) = false
| equal_numa (Neg numa) (Mul (inta, num)) = false
| equal_numa (Sub (num1, num2)) (Neg num) = false
| equal_numa (Neg num) (Sub (num1, num2)) = false
| equal_numa (Add (num1, num2)) (Neg num) = false
| equal_numa (Neg num) (Add (num1, num2)) = false
| equal_numa (Mul (intaa, numa)) (Cn (nat, inta, num)) = false
| equal_numa (Cn (nat, intaa, numa)) (Mul (inta, num)) = false
| equal_numa (Sub (num1, num2)) (Cn (nat, inta, num)) = false
| equal_numa (Cn (nat, inta, num)) (Sub (num1, num2)) = false
| equal_numa (Add (num1, num2)) (Cn (nat, inta, num)) = false
| equal_numa (Cn (nat, inta, num)) (Add (num1, num2)) = false
| equal_numa (Neg numa) (Cn (nat, inta, num)) = false
| equal_numa (Cn (nat, inta, numa)) (Neg num) = false
| equal_numa (Mul (inta, num)) (Bound nat) = false
| equal_numa (Bound nat) (Mul (inta, num)) = false
| equal_numa (Sub (num1, num2)) (Bound nat) = false
| equal_numa (Bound nat) (Sub (num1, num2)) = false
| equal_numa (Add (num1, num2)) (Bound nat) = false
| equal_numa (Bound nat) (Add (num1, num2)) = false
| equal_numa (Neg num) (Bound nat) = false
| equal_numa (Bound nat) (Neg num) = false
| equal_numa (Cn (nata, inta, num)) (Bound nat) = false
| equal_numa (Bound nata) (Cn (nat, inta, num)) = false
| equal_numa (Mul (intaa, num)) (C inta) = false
| equal_numa (C intaa) (Mul (inta, num)) = false
| equal_numa (Sub (num1, num2)) (C inta) = false
| equal_numa (C inta) (Sub (num1, num2)) = false
| equal_numa (Add (num1, num2)) (C inta) = false
| equal_numa (C inta) (Add (num1, num2)) = false
| equal_numa (Neg num) (C inta) = false
| equal_numa (C inta) (Neg num) = false
| equal_numa (Cn (nat, intaa, num)) (C inta) = false
| equal_numa (C intaa) (Cn (nat, inta, num)) = false
| equal_numa (Bound nat) (C inta) = false
| equal_numa (C inta) (Bound nat) = false
| equal_numa (Mul (intaa, numa)) (Mul (inta, num)) =
intaa = inta andalso equal_numa numa num
| equal_numa (Sub (num1a, num2a)) (Sub (num1, num2)) =
equal_numa num1a num1 andalso equal_numa num2a num2
| equal_numa (Add (num1a, num2a)) (Add (num1, num2)) =
equal_numa num1a num1 andalso equal_numa num2a num2
| equal_numa (Neg numa) (Neg num) = equal_numa numa num
| equal_numa (Cn (nata, intaa, numa)) (Cn (nat, inta, num)) =
nata = nat andalso (intaa = inta andalso equal_numa numa num)
| equal_numa (Bound nata) (Bound nat) = nata = nat
| equal_numa (C intaa) (C inta) = intaa = inta;
fun equal_fm (NClosed nata) (Closed nat) = false
| equal_fm (Closed nata) (NClosed nat) = false
| equal_fm (NClosed nat) (A fm) = false
| equal_fm (A fm) (NClosed nat) = false
| equal_fm (Closed nat) (A fm) = false
| equal_fm (A fm) (Closed nat) = false
| equal_fm (NClosed nat) (E fm) = false
| equal_fm (E fm) (NClosed nat) = false
| equal_fm (Closed nat) (E fm) = false
| equal_fm (E fm) (Closed nat) = false
| equal_fm (A fma) (E fm) = false
| equal_fm (E fma) (A fm) = false
| equal_fm (NClosed nat) (Iff (fm1, fm2)) = false
| equal_fm (Iff (fm1, fm2)) (NClosed nat) = false
| equal_fm (Closed nat) (Iff (fm1, fm2)) = false
| equal_fm (Iff (fm1, fm2)) (Closed nat) = false
| equal_fm (A fm) (Iff (fm1, fm2)) = false
| equal_fm (Iff (fm1, fm2)) (A fm) = false
| equal_fm (E fm) (Iff (fm1, fm2)) = false
| equal_fm (Iff (fm1, fm2)) (E fm) = false
| equal_fm (NClosed nat) (Imp (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (NClosed nat) = false
| equal_fm (Closed nat) (Imp (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (Closed nat) = false
| equal_fm (A fm) (Imp (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (A fm) = false
| equal_fm (E fm) (Imp (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (E fm) = false
| equal_fm (Iff (fm1a, fm2a)) (Imp (fm1, fm2)) = false
| equal_fm (Imp (fm1a, fm2a)) (Iff (fm1, fm2)) = false
| equal_fm (NClosed nat) (Or (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (NClosed nat) = false
| equal_fm (Closed nat) (Or (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (Closed nat) = false
| equal_fm (A fm) (Or (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (A fm) = false
| equal_fm (E fm) (Or (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (E fm) = false
| equal_fm (Iff (fm1a, fm2a)) (Or (fm1, fm2)) = false
| equal_fm (Or (fm1a, fm2a)) (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1a, fm2a)) (Or (fm1, fm2)) = false
| equal_fm (Or (fm1a, fm2a)) (Imp (fm1, fm2)) = false
| equal_fm (NClosed nat) (And (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (NClosed nat) = false
| equal_fm (Closed nat) (And (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (Closed nat) = false
| equal_fm (A fm) (And (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (A fm) = false
| equal_fm (E fm) (And (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (E fm) = false
| equal_fm (Iff (fm1a, fm2a)) (And (fm1, fm2)) = false
| equal_fm (And (fm1a, fm2a)) (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1a, fm2a)) (And (fm1, fm2)) = false
| equal_fm (And (fm1a, fm2a)) (Imp (fm1, fm2)) = false
| equal_fm (Or (fm1a, fm2a)) (And (fm1, fm2)) = false
| equal_fm (And (fm1a, fm2a)) (Or (fm1, fm2)) = false
| equal_fm (NClosed nat) (Not fm) = false
| equal_fm (Not fm) (NClosed nat) = false
| equal_fm (Closed nat) (Not fm) = false
| equal_fm (Not fm) (Closed nat) = false
| equal_fm (A fma) (Not fm) = false
| equal_fm (Not fma) (A fm) = false
| equal_fm (E fma) (Not fm) = false
| equal_fm (Not fma) (E fm) = false
| equal_fm (Iff (fm1, fm2)) (Not fm) = false
| equal_fm (Not fm) (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (Not fm) = false
| equal_fm (Not fm) (Imp (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (Not fm) = false
| equal_fm (Not fm) (Or (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (Not fm) = false
| equal_fm (Not fm) (And (fm1, fm2)) = false
| equal_fm (NClosed nat) (NDvd (inta, num)) = false
| equal_fm (NDvd (inta, num)) (NClosed nat) = false
| equal_fm (Closed nat) (NDvd (inta, num)) = false
| equal_fm (NDvd (inta, num)) (Closed nat) = false
| equal_fm (A fm) (NDvd (inta, num)) = false
| equal_fm (NDvd (inta, num)) (A fm) = false
| equal_fm (E fm) (NDvd (inta, num)) = false
| equal_fm (NDvd (inta, num)) (E fm) = false
| equal_fm (Iff (fm1, fm2)) (NDvd (inta, num)) = false
| equal_fm (NDvd (inta, num)) (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (NDvd (inta, num)) = false
| equal_fm (NDvd (inta, num)) (Imp (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (NDvd (inta, num)) = false
| equal_fm (NDvd (inta, num)) (Or (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (NDvd (inta, num)) = false
| equal_fm (NDvd (inta, num)) (And (fm1, fm2)) = false
| equal_fm (Not fm) (NDvd (inta, num)) = false
| equal_fm (NDvd (inta, num)) (Not fm) = false
| equal_fm (NClosed nat) (Dvd (inta, num)) = false
| equal_fm (Dvd (inta, num)) (NClosed nat) = false
| equal_fm (Closed nat) (Dvd (inta, num)) = false
| equal_fm (Dvd (inta, num)) (Closed nat) = false
| equal_fm (A fm) (Dvd (inta, num)) = false
| equal_fm (Dvd (inta, num)) (A fm) = false
| equal_fm (E fm) (Dvd (inta, num)) = false
| equal_fm (Dvd (inta, num)) (E fm) = false
| equal_fm (Iff (fm1, fm2)) (Dvd (inta, num)) = false
| equal_fm (Dvd (inta, num)) (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (Dvd (inta, num)) = false
| equal_fm (Dvd (inta, num)) (Imp (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (Dvd (inta, num)) = false
| equal_fm (Dvd (inta, num)) (Or (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (Dvd (inta, num)) = false
| equal_fm (Dvd (inta, num)) (And (fm1, fm2)) = false
| equal_fm (Not fm) (Dvd (inta, num)) = false
| equal_fm (Dvd (inta, num)) (Not fm) = false
| equal_fm (NDvd (intaa, numa)) (Dvd (inta, num)) = false
| equal_fm (Dvd (intaa, numa)) (NDvd (inta, num)) = false
| equal_fm (NClosed nat) (NEq num) = false
| equal_fm (NEq num) (NClosed nat) = false
| equal_fm (Closed nat) (NEq num) = false
| equal_fm (NEq num) (Closed nat) = false
| equal_fm (A fm) (NEq num) = false
| equal_fm (NEq num) (A fm) = false
| equal_fm (E fm) (NEq num) = false
| equal_fm (NEq num) (E fm) = false
| equal_fm (Iff (fm1, fm2)) (NEq num) = false
| equal_fm (NEq num) (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (NEq num) = false
| equal_fm (NEq num) (Imp (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (NEq num) = false
| equal_fm (NEq num) (Or (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (NEq num) = false
| equal_fm (NEq num) (And (fm1, fm2)) = false
| equal_fm (Not fm) (NEq num) = false
| equal_fm (NEq num) (Not fm) = false
| equal_fm (NDvd (inta, numa)) (NEq num) = false
| equal_fm (NEq numa) (NDvd (inta, num)) = false
| equal_fm (Dvd (inta, numa)) (NEq num) = false
| equal_fm (NEq numa) (Dvd (inta, num)) = false
| equal_fm (NClosed nat) (Eq num) = false
| equal_fm (Eq num) (NClosed nat) = false
| equal_fm (Closed nat) (Eq num) = false
| equal_fm (Eq num) (Closed nat) = false
| equal_fm (A fm) (Eq num) = false
| equal_fm (Eq num) (A fm) = false
| equal_fm (E fm) (Eq num) = false
| equal_fm (Eq num) (E fm) = false
| equal_fm (Iff (fm1, fm2)) (Eq num) = false
| equal_fm (Eq num) (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (Eq num) = false
| equal_fm (Eq num) (Imp (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (Eq num) = false
| equal_fm (Eq num) (Or (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (Eq num) = false
| equal_fm (Eq num) (And (fm1, fm2)) = false
| equal_fm (Not fm) (Eq num) = false
| equal_fm (Eq num) (Not fm) = false
| equal_fm (NDvd (inta, numa)) (Eq num) = false
| equal_fm (Eq numa) (NDvd (inta, num)) = false
| equal_fm (Dvd (inta, numa)) (Eq num) = false
| equal_fm (Eq numa) (Dvd (inta, num)) = false
| equal_fm (NEq numa) (Eq num) = false
| equal_fm (Eq numa) (NEq num) = false
| equal_fm (NClosed nat) (Ge num) = false
| equal_fm (Ge num) (NClosed nat) = false
| equal_fm (Closed nat) (Ge num) = false
| equal_fm (Ge num) (Closed nat) = false
| equal_fm (A fm) (Ge num) = false
| equal_fm (Ge num) (A fm) = false
| equal_fm (E fm) (Ge num) = false
| equal_fm (Ge num) (E fm) = false
| equal_fm (Iff (fm1, fm2)) (Ge num) = false
| equal_fm (Ge num) (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (Ge num) = false
| equal_fm (Ge num) (Imp (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (Ge num) = false
| equal_fm (Ge num) (Or (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (Ge num) = false
| equal_fm (Ge num) (And (fm1, fm2)) = false
| equal_fm (Not fm) (Ge num) = false
| equal_fm (Ge num) (Not fm) = false
| equal_fm (NDvd (inta, numa)) (Ge num) = false
| equal_fm (Ge numa) (NDvd (inta, num)) = false
| equal_fm (Dvd (inta, numa)) (Ge num) = false
| equal_fm (Ge numa) (Dvd (inta, num)) = false
| equal_fm (NEq numa) (Ge num) = false
| equal_fm (Ge numa) (NEq num) = false
| equal_fm (Eq numa) (Ge num) = false
| equal_fm (Ge numa) (Eq num) = false
| equal_fm (NClosed nat) (Gt num) = false
| equal_fm (Gt num) (NClosed nat) = false
| equal_fm (Closed nat) (Gt num) = false
| equal_fm (Gt num) (Closed nat) = false
| equal_fm (A fm) (Gt num) = false
| equal_fm (Gt num) (A fm) = false
| equal_fm (E fm) (Gt num) = false
| equal_fm (Gt num) (E fm) = false
| equal_fm (Iff (fm1, fm2)) (Gt num) = false
| equal_fm (Gt num) (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (Gt num) = false
| equal_fm (Gt num) (Imp (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (Gt num) = false
| equal_fm (Gt num) (Or (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (Gt num) = false
| equal_fm (Gt num) (And (fm1, fm2)) = false
| equal_fm (Not fm) (Gt num) = false
| equal_fm (Gt num) (Not fm) = false
| equal_fm (NDvd (inta, numa)) (Gt num) = false
| equal_fm (Gt numa) (NDvd (inta, num)) = false
| equal_fm (Dvd (inta, numa)) (Gt num) = false
| equal_fm (Gt numa) (Dvd (inta, num)) = false
| equal_fm (NEq numa) (Gt num) = false
| equal_fm (Gt numa) (NEq num) = false
| equal_fm (Eq numa) (Gt num) = false
| equal_fm (Gt numa) (Eq num) = false
| equal_fm (Ge numa) (Gt num) = false
| equal_fm (Gt numa) (Ge num) = false
| equal_fm (NClosed nat) (Le num) = false
| equal_fm (Le num) (NClosed nat) = false
| equal_fm (Closed nat) (Le num) = false
| equal_fm (Le num) (Closed nat) = false
| equal_fm (A fm) (Le num) = false
| equal_fm (Le num) (A fm) = false
| equal_fm (E fm) (Le num) = false
| equal_fm (Le num) (E fm) = false
| equal_fm (Iff (fm1, fm2)) (Le num) = false
| equal_fm (Le num) (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (Le num) = false
| equal_fm (Le num) (Imp (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (Le num) = false
| equal_fm (Le num) (Or (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (Le num) = false
| equal_fm (Le num) (And (fm1, fm2)) = false
| equal_fm (Not fm) (Le num) = false
| equal_fm (Le num) (Not fm) = false
| equal_fm (NDvd (inta, numa)) (Le num) = false
| equal_fm (Le numa) (NDvd (inta, num)) = false
| equal_fm (Dvd (inta, numa)) (Le num) = false
| equal_fm (Le numa) (Dvd (inta, num)) = false
| equal_fm (NEq numa) (Le num) = false
| equal_fm (Le numa) (NEq num) = false
| equal_fm (Eq numa) (Le num) = false
| equal_fm (Le numa) (Eq num) = false
| equal_fm (Ge numa) (Le num) = false
| equal_fm (Le numa) (Ge num) = false
| equal_fm (Gt numa) (Le num) = false
| equal_fm (Le numa) (Gt num) = false
| equal_fm (NClosed nat) (Lt num) = false
| equal_fm (Lt num) (NClosed nat) = false
| equal_fm (Closed nat) (Lt num) = false
| equal_fm (Lt num) (Closed nat) = false
| equal_fm (A fm) (Lt num) = false
| equal_fm (Lt num) (A fm) = false
| equal_fm (E fm) (Lt num) = false
| equal_fm (Lt num) (E fm) = false
| equal_fm (Iff (fm1, fm2)) (Lt num) = false
| equal_fm (Lt num) (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) (Lt num) = false
| equal_fm (Lt num) (Imp (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) (Lt num) = false
| equal_fm (Lt num) (Or (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) (Lt num) = false
| equal_fm (Lt num) (And (fm1, fm2)) = false
| equal_fm (Not fm) (Lt num) = false
| equal_fm (Lt num) (Not fm) = false
| equal_fm (NDvd (inta, numa)) (Lt num) = false
| equal_fm (Lt numa) (NDvd (inta, num)) = false
| equal_fm (Dvd (inta, numa)) (Lt num) = false
| equal_fm (Lt numa) (Dvd (inta, num)) = false
| equal_fm (NEq numa) (Lt num) = false
| equal_fm (Lt numa) (NEq num) = false
| equal_fm (Eq numa) (Lt num) = false
| equal_fm (Lt numa) (Eq num) = false
| equal_fm (Ge numa) (Lt num) = false
| equal_fm (Lt numa) (Ge num) = false
| equal_fm (Gt numa) (Lt num) = false
| equal_fm (Lt numa) (Gt num) = false
| equal_fm (Le numa) (Lt num) = false
| equal_fm (Lt numa) (Le num) = false
| equal_fm (NClosed nat) F = false
| equal_fm F (NClosed nat) = false
| equal_fm (Closed nat) F = false
| equal_fm F (Closed nat) = false
| equal_fm (A fm) F = false
| equal_fm F (A fm) = false
| equal_fm (E fm) F = false
| equal_fm F (E fm) = false
| equal_fm (Iff (fm1, fm2)) F = false
| equal_fm F (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) F = false
| equal_fm F (Imp (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) F = false
| equal_fm F (Or (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) F = false
| equal_fm F (And (fm1, fm2)) = false
| equal_fm (Not fm) F = false
| equal_fm F (Not fm) = false
| equal_fm (NDvd (inta, num)) F = false
| equal_fm F (NDvd (inta, num)) = false
| equal_fm (Dvd (inta, num)) F = false
| equal_fm F (Dvd (inta, num)) = false
| equal_fm (NEq num) F = false
| equal_fm F (NEq num) = false
| equal_fm (Eq num) F = false
| equal_fm F (Eq num) = false
| equal_fm (Ge num) F = false
| equal_fm F (Ge num) = false
| equal_fm (Gt num) F = false
| equal_fm F (Gt num) = false
| equal_fm (Le num) F = false
| equal_fm F (Le num) = false
| equal_fm (Lt num) F = false
| equal_fm F (Lt num) = false
| equal_fm (NClosed nat) T = false
| equal_fm T (NClosed nat) = false
| equal_fm (Closed nat) T = false
| equal_fm T (Closed nat) = false
| equal_fm (A fm) T = false
| equal_fm T (A fm) = false
| equal_fm (E fm) T = false
| equal_fm T (E fm) = false
| equal_fm (Iff (fm1, fm2)) T = false
| equal_fm T (Iff (fm1, fm2)) = false
| equal_fm (Imp (fm1, fm2)) T = false
| equal_fm T (Imp (fm1, fm2)) = false
| equal_fm (Or (fm1, fm2)) T = false
| equal_fm T (Or (fm1, fm2)) = false
| equal_fm (And (fm1, fm2)) T = false
| equal_fm T (And (fm1, fm2)) = false
| equal_fm (Not fm) T = false
| equal_fm T (Not fm) = false
| equal_fm (NDvd (inta, num)) T = false
| equal_fm T (NDvd (inta, num)) = false
| equal_fm (Dvd (inta, num)) T = false
| equal_fm T (Dvd (inta, num)) = false
| equal_fm (NEq num) T = false
| equal_fm T (NEq num) = false
| equal_fm (Eq num) T = false
| equal_fm T (Eq num) = false
| equal_fm (Ge num) T = false
| equal_fm T (Ge num) = false
| equal_fm (Gt num) T = false
| equal_fm T (Gt num) = false
| equal_fm (Le num) T = false
| equal_fm T (Le num) = false
| equal_fm (Lt num) T = false
| equal_fm T (Lt num) = false
| equal_fm F T = false
| equal_fm T F = false
| equal_fm (NClosed nata) (NClosed nat) = nata = nat
| equal_fm (Closed nata) (Closed nat) = nata = nat
| equal_fm (A fma) (A fm) = equal_fm fma fm
| equal_fm (E fma) (E fm) = equal_fm fma fm
| equal_fm (Iff (fm1a, fm2a)) (Iff (fm1, fm2)) =
equal_fm fm1a fm1 andalso equal_fm fm2a fm2
| equal_fm (Imp (fm1a, fm2a)) (Imp (fm1, fm2)) =
equal_fm fm1a fm1 andalso equal_fm fm2a fm2
| equal_fm (Or (fm1a, fm2a)) (Or (fm1, fm2)) =
equal_fm fm1a fm1 andalso equal_fm fm2a fm2
| equal_fm (And (fm1a, fm2a)) (And (fm1, fm2)) =
equal_fm fm1a fm1 andalso equal_fm fm2a fm2
| equal_fm (Not fma) (Not fm) = equal_fm fma fm
| equal_fm (NDvd (intaa, numa)) (NDvd (inta, num)) =
intaa = inta andalso equal_numa numa num
| equal_fm (Dvd (intaa, numa)) (Dvd (inta, num)) =
intaa = inta andalso equal_numa numa num
| equal_fm (NEq numa) (NEq num) = equal_numa numa num
| equal_fm (Eq numa) (Eq num) = equal_numa numa num
| equal_fm (Ge numa) (Ge num) = equal_numa numa num
| equal_fm (Gt numa) (Gt num) = equal_numa numa num
| equal_fm (Le numa) (Le num) = equal_numa numa num
| equal_fm (Lt numa) (Lt num) = equal_numa numa num
| equal_fm F F = true
| equal_fm T T = true;
fun djf f p q =
(if equal_fm q T then T
else (if equal_fm q F then f p
else (case f p of T => T | F => q | Lt _ => Or (f p, q)
| Le _ => Or (f p, q) | Gt _ => Or (f p, q)
| Ge _ => Or (f p, q) | Eq _ => Or (f p, q)
| NEq _ => Or (f p, q) | Dvd (_, _) => Or (f p, q)
| NDvd (_, _) => Or (f p, q) | Not _ => Or (f p, q)
| And (_, _) => Or (f p, q) | Or (_, _) => Or (f p, q)
| Imp (_, _) => Or (f p, q) | Iff (_, _) => Or (f p, q)
| E _ => Or (f p, q) | A _ => Or (f p, q)
| Closed _ => Or (f p, q) | NClosed _ => Or (f p, q))));
fun foldr f [] a = a
| foldr f (x :: xs) a = f x (foldr f xs a);
fun evaldjf f ps = foldr (djf f) ps F;
fun disjuncts (Or (p, q)) = disjuncts p @ disjuncts q
| disjuncts F = []
| disjuncts T = [T]
| disjuncts (Lt v) = [Lt v]
| disjuncts (Le v) = [Le v]
| disjuncts (Gt v) = [Gt v]
| disjuncts (Ge v) = [Ge v]
| disjuncts (Eq v) = [Eq v]
| disjuncts (NEq v) = [NEq v]
| disjuncts (Dvd (v, va)) = [Dvd (v, va)]
| disjuncts (NDvd (v, va)) = [NDvd (v, va)]
| disjuncts (Not v) = [Not v]
| disjuncts (And (v, va)) = [And (v, va)]
| disjuncts (Imp (v, va)) = [Imp (v, va)]
| disjuncts (Iff (v, va)) = [Iff (v, va)]
| disjuncts (E v) = [E v]
| disjuncts (A v) = [A v]
| disjuncts (Closed v) = [Closed v]
| disjuncts (NClosed v) = [NClosed v];
fun dj f p = evaldjf f (disjuncts p);
fun prep (E T) = T
| prep (E F) = F
| prep (E (Or (p, q))) = Or (prep (E p), prep (E q))
| prep (E (Imp (p, q))) = Or (prep (E (Not p)), prep (E q))
| prep (E (Iff (p, q))) =
Or (prep (E (And (p, q))), prep (E (And (Not p, Not q))))
| prep (E (Not (And (p, q)))) = Or (prep (E (Not p)), prep (E (Not q)))
| prep (E (Not (Imp (p, q)))) = prep (E (And (p, Not q)))
| prep (E (Not (Iff (p, q)))) =
Or (prep (E (And (p, Not q))), prep (E (And (Not p, q))))
| prep (E (Lt ef)) = E (prep (Lt ef))
| prep (E (Le eg)) = E (prep (Le eg))
| prep (E (Gt eh)) = E (prep (Gt eh))
| prep (E (Ge ei)) = E (prep (Ge ei))
| prep (E (Eq ej)) = E (prep (Eq ej))
| prep (E (NEq ek)) = E (prep (NEq ek))
| prep (E (Dvd (el, em))) = E (prep (Dvd (el, em)))
| prep (E (NDvd (en, eo))) = E (prep (NDvd (en, eo)))
| prep (E (Not T)) = E (prep (Not T))
| prep (E (Not F)) = E (prep (Not F))
| prep (E (Not (Lt gw))) = E (prep (Not (Lt gw)))
| prep (E (Not (Le gx))) = E (prep (Not (Le gx)))
| prep (E (Not (Gt gy))) = E (prep (Not (Gt gy)))
| prep (E (Not (Ge gz))) = E (prep (Not (Ge gz)))
| prep (E (Not (Eq ha))) = E (prep (Not (Eq ha)))
| prep (E (Not (NEq hb))) = E (prep (Not (NEq hb)))
| prep (E (Not (Dvd (hc, hd)))) = E (prep (Not (Dvd (hc, hd))))
| prep (E (Not (NDvd (he, hf)))) = E (prep (Not (NDvd (he, hf))))
| prep (E (Not (Not hg))) = E (prep (Not (Not hg)))
| prep (E (Not (Or (hj, hk)))) = E (prep (Not (Or (hj, hk))))
| prep (E (Not (E hp))) = E (prep (Not (E hp)))
| prep (E (Not (A hq))) = E (prep (Not (A hq)))
| prep (E (Not (Closed hr))) = E (prep (Not (Closed hr)))
| prep (E (Not (NClosed hs))) = E (prep (Not (NClosed hs)))
| prep (E (And (eq, er))) = E (prep (And (eq, er)))
| prep (E (E ey)) = E (prep (E ey))
| prep (E (A ez)) = E (prep (A ez))
| prep (E (Closed fa)) = E (prep (Closed fa))
| prep (E (NClosed fb)) = E (prep (NClosed fb))
| prep (A (And (p, q))) = And (prep (A p), prep (A q))
| prep (A T) = prep (Not (E (Not T)))
| prep (A F) = prep (Not (E (Not F)))
| prep (A (Lt jn)) = prep (Not (E (Not (Lt jn))))
| prep (A (Le jo)) = prep (Not (E (Not (Le jo))))
| prep (A (Gt jp)) = prep (Not (E (Not (Gt jp))))
| prep (A (Ge jq)) = prep (Not (E (Not (Ge jq))))
| prep (A (Eq jr)) = prep (Not (E (Not (Eq jr))))
| prep (A (NEq js)) = prep (Not (E (Not (NEq js))))
| prep (A (Dvd (jt, ju))) = prep (Not (E (Not (Dvd (jt, ju)))))
| prep (A (NDvd (jv, jw))) = prep (Not (E (Not (NDvd (jv, jw)))))
| prep (A (Not jx)) = prep (Not (E (Not (Not jx))))
| prep (A (Or (ka, kb))) = prep (Not (E (Not (Or (ka, kb)))))
| prep (A (Imp (kc, kd))) = prep (Not (E (Not (Imp (kc, kd)))))
| prep (A (Iff (ke, kf))) = prep (Not (E (Not (Iff (ke, kf)))))
| prep (A (E kg)) = prep (Not (E (Not (E kg))))
| prep (A (A kh)) = prep (Not (E (Not (A kh))))
| prep (A (Closed ki)) = prep (Not (E (Not (Closed ki))))
| prep (A (NClosed kj)) = prep (Not (E (Not (NClosed kj))))
| prep (Not (Not p)) = prep p
| prep (Not (And (p, q))) = Or (prep (Not p), prep (Not q))
| prep (Not (A p)) = prep (E (Not p))
| prep (Not (Or (p, q))) = And (prep (Not p), prep (Not q))
| prep (Not (Imp (p, q))) = And (prep p, prep (Not q))
| prep (Not (Iff (p, q))) = Or (prep (And (p, Not q)), prep (And (Not p, q)))
| prep (Not T) = Not (prep T)
| prep (Not F) = Not (prep F)
| prep (Not (Lt bo)) = Not (prep (Lt bo))
| prep (Not (Le bp)) = Not (prep (Le bp))
| prep (Not (Gt bq)) = Not (prep (Gt bq))
| prep (Not (Ge br)) = Not (prep (Ge br))
| prep (Not (Eq bs)) = Not (prep (Eq bs))
| prep (Not (NEq bt)) = Not (prep (NEq bt))
| prep (Not (Dvd (bu, bv))) = Not (prep (Dvd (bu, bv)))
| prep (Not (NDvd (bw, bx))) = Not (prep (NDvd (bw, bx)))
| prep (Not (E ch)) = Not (prep (E ch))
| prep (Not (Closed cj)) = Not (prep (Closed cj))
| prep (Not (NClosed ck)) = Not (prep (NClosed ck))
| prep (Or (p, q)) = Or (prep p, prep q)
| prep (And (p, q)) = And (prep p, prep q)
| prep (Imp (p, q)) = prep (Or (Not p, q))
| prep (Iff (p, q)) = Or (prep (And (p, q)), prep (And (Not p, Not q)))
| prep T = T
| prep F = F
| prep (Lt u) = Lt u
| prep (Le v) = Le v
| prep (Gt w) = Gt w
| prep (Ge x) = Ge x
| prep (Eq y) = Eq y
| prep (NEq z) = NEq z
| prep (Dvd (aa, ab)) = Dvd (aa, ab)
| prep (NDvd (ac, ad)) = NDvd (ac, ad)
| prep (Closed ap) = Closed ap
| prep (NClosed aq) = NClosed aq;
fun conj p q =
(if equal_fm p F orelse equal_fm q F then F
else (if equal_fm p T then q
else (if equal_fm q T then p else And (p, q))));
fun disj p q =
(if equal_fm p T orelse equal_fm q T then T
else (if equal_fm p F then q else (if equal_fm q F then p else Or (p, q))));
fun nota (Not p) = p
| nota T = F
| nota F = T
| nota (Lt v) = Not (Lt v)
| nota (Le v) = Not (Le v)
| nota (Gt v) = Not (Gt v)
| nota (Ge v) = Not (Ge v)
| nota (Eq v) = Not (Eq v)
| nota (NEq v) = Not (NEq v)
| nota (Dvd (v, va)) = Not (Dvd (v, va))
| nota (NDvd (v, va)) = Not (NDvd (v, va))
| nota (And (v, va)) = Not (And (v, va))
| nota (Or (v, va)) = Not (Or (v, va))
| nota (Imp (v, va)) = Not (Imp (v, va))
| nota (Iff (v, va)) = Not (Iff (v, va))
| nota (E v) = Not (E v)
| nota (A v) = Not (A v)
| nota (Closed v) = Not (Closed v)
| nota (NClosed v) = Not (NClosed v);
fun iffa p q =
(if equal_fm p q then T
else (if equal_fm p (nota q) orelse equal_fm (nota p) q then F
else (if equal_fm p F then nota q
else (if equal_fm q F then nota p
else (if equal_fm p T then q
else (if equal_fm q T then p
else Iff (p, q)))))));
fun impa p q =
(if equal_fm p F orelse equal_fm q T then T
else (if equal_fm p T then q
else (if equal_fm q F then nota p else Imp (p, q))));
type 'a times = {times : 'a -> 'a -> 'a};
val times = #times : 'a times -> 'a -> 'a -> 'a;
type 'a dvd = {times_dvd : 'a times};
val times_dvd = #times_dvd : 'a dvd -> 'a times;
type 'a diva = {dvd_div : 'a dvd, diva : 'a -> 'a -> 'a, moda : 'a -> 'a -> 'a};
val dvd_div = #dvd_div : 'a diva -> 'a dvd;
val diva = #diva : 'a diva -> 'a -> 'a -> 'a;
val moda = #moda : 'a diva -> 'a -> 'a -> 'a;
type 'a zero = {zero : 'a};
val zero = #zero : 'a zero -> 'a;
type 'a no_zero_divisors =
{times_no_zero_divisors : 'a times, zero_no_zero_divisors : 'a zero};
val times_no_zero_divisors = #times_no_zero_divisors :
'a no_zero_divisors -> 'a times;
val zero_no_zero_divisors = #zero_no_zero_divisors :
'a no_zero_divisors -> 'a zero;
type 'a semigroup_mult = {times_semigroup_mult : 'a times};
val times_semigroup_mult = #times_semigroup_mult :
'a semigroup_mult -> 'a times;
type 'a plus = {plus : 'a -> 'a -> 'a};
val plus = #plus : 'a plus -> 'a -> 'a -> 'a;
type 'a semigroup_add = {plus_semigroup_add : 'a plus};
val plus_semigroup_add = #plus_semigroup_add : 'a semigroup_add -> 'a plus;
type 'a ab_semigroup_add = {semigroup_add_ab_semigroup_add : 'a semigroup_add};
val semigroup_add_ab_semigroup_add = #semigroup_add_ab_semigroup_add :
'a ab_semigroup_add -> 'a semigroup_add;
type 'a semiring =
{ab_semigroup_add_semiring : 'a ab_semigroup_add,
semigroup_mult_semiring : 'a semigroup_mult};
val ab_semigroup_add_semiring = #ab_semigroup_add_semiring :
'a semiring -> 'a ab_semigroup_add;
val semigroup_mult_semiring = #semigroup_mult_semiring :
'a semiring -> 'a semigroup_mult;
type 'a mult_zero = {times_mult_zero : 'a times, zero_mult_zero : 'a zero};
val times_mult_zero = #times_mult_zero : 'a mult_zero -> 'a times;
val zero_mult_zero = #zero_mult_zero : 'a mult_zero -> 'a zero;
type 'a monoid_add =
{semigroup_add_monoid_add : 'a semigroup_add, zero_monoid_add : 'a zero};
val semigroup_add_monoid_add = #semigroup_add_monoid_add :
'a monoid_add -> 'a semigroup_add;
val zero_monoid_add = #zero_monoid_add : 'a monoid_add -> 'a zero;
type 'a comm_monoid_add =
{ab_semigroup_add_comm_monoid_add : 'a ab_semigroup_add,
monoid_add_comm_monoid_add : 'a monoid_add};
val ab_semigroup_add_comm_monoid_add = #ab_semigroup_add_comm_monoid_add :
'a comm_monoid_add -> 'a ab_semigroup_add;
val monoid_add_comm_monoid_add = #monoid_add_comm_monoid_add :
'a comm_monoid_add -> 'a monoid_add;
type 'a semiring_0 =
{comm_monoid_add_semiring_0 : 'a comm_monoid_add,
mult_zero_semiring_0 : 'a mult_zero, semiring_semiring_0 : 'a semiring};
val comm_monoid_add_semiring_0 = #comm_monoid_add_semiring_0 :
'a semiring_0 -> 'a comm_monoid_add;
val mult_zero_semiring_0 = #mult_zero_semiring_0 :
'a semiring_0 -> 'a mult_zero;
val semiring_semiring_0 = #semiring_semiring_0 : 'a semiring_0 -> 'a semiring;
type 'a one = {one : 'a};
val one = #one : 'a one -> 'a;
type 'a power = {one_power : 'a one, times_power : 'a times};
val one_power = #one_power : 'a power -> 'a one;
val times_power = #times_power : 'a power -> 'a times;
type 'a monoid_mult =
{semigroup_mult_monoid_mult : 'a semigroup_mult,
power_monoid_mult : 'a power};
val semigroup_mult_monoid_mult = #semigroup_mult_monoid_mult :
'a monoid_mult -> 'a semigroup_mult;
val power_monoid_mult = #power_monoid_mult : 'a monoid_mult -> 'a power;
type 'a zero_neq_one = {one_zero_neq_one : 'a one, zero_zero_neq_one : 'a zero};
val one_zero_neq_one = #one_zero_neq_one : 'a zero_neq_one -> 'a one;
val zero_zero_neq_one = #zero_zero_neq_one : 'a zero_neq_one -> 'a zero;
type 'a semiring_1 =
{monoid_mult_semiring_1 : 'a monoid_mult,
semiring_0_semiring_1 : 'a semiring_0,
zero_neq_one_semiring_1 : 'a zero_neq_one};
val monoid_mult_semiring_1 = #monoid_mult_semiring_1 :
'a semiring_1 -> 'a monoid_mult;
val semiring_0_semiring_1 = #semiring_0_semiring_1 :
'a semiring_1 -> 'a semiring_0;
val zero_neq_one_semiring_1 = #zero_neq_one_semiring_1 :
'a semiring_1 -> 'a zero_neq_one;
type 'a ab_semigroup_mult =
{semigroup_mult_ab_semigroup_mult : 'a semigroup_mult};
val semigroup_mult_ab_semigroup_mult = #semigroup_mult_ab_semigroup_mult :
'a ab_semigroup_mult -> 'a semigroup_mult;
type 'a comm_semiring =
{ab_semigroup_mult_comm_semiring : 'a ab_semigroup_mult,
semiring_comm_semiring : 'a semiring};
val ab_semigroup_mult_comm_semiring = #ab_semigroup_mult_comm_semiring :
'a comm_semiring -> 'a ab_semigroup_mult;
val semiring_comm_semiring = #semiring_comm_semiring :
'a comm_semiring -> 'a semiring;
type 'a comm_semiring_0 =
{comm_semiring_comm_semiring_0 : 'a comm_semiring,
semiring_0_comm_semiring_0 : 'a semiring_0};
val comm_semiring_comm_semiring_0 = #comm_semiring_comm_semiring_0 :
'a comm_semiring_0 -> 'a comm_semiring;
val semiring_0_comm_semiring_0 = #semiring_0_comm_semiring_0 :
'a comm_semiring_0 -> 'a semiring_0;
type 'a comm_monoid_mult =
{ab_semigroup_mult_comm_monoid_mult : 'a ab_semigroup_mult,
monoid_mult_comm_monoid_mult : 'a monoid_mult};
val ab_semigroup_mult_comm_monoid_mult = #ab_semigroup_mult_comm_monoid_mult :
'a comm_monoid_mult -> 'a ab_semigroup_mult;
val monoid_mult_comm_monoid_mult = #monoid_mult_comm_monoid_mult :
'a comm_monoid_mult -> 'a monoid_mult;
type 'a comm_semiring_1 =
{comm_monoid_mult_comm_semiring_1 : 'a comm_monoid_mult,
comm_semiring_0_comm_semiring_1 : 'a comm_semiring_0,
dvd_comm_semiring_1 : 'a dvd, semiring_1_comm_semiring_1 : 'a semiring_1};
val comm_monoid_mult_comm_semiring_1 = #comm_monoid_mult_comm_semiring_1 :
'a comm_semiring_1 -> 'a comm_monoid_mult;
val comm_semiring_0_comm_semiring_1 = #comm_semiring_0_comm_semiring_1 :
'a comm_semiring_1 -> 'a comm_semiring_0;
val dvd_comm_semiring_1 = #dvd_comm_semiring_1 : 'a comm_semiring_1 -> 'a dvd;
val semiring_1_comm_semiring_1 = #semiring_1_comm_semiring_1 :
'a comm_semiring_1 -> 'a semiring_1;
type 'a cancel_semigroup_add =
{semigroup_add_cancel_semigroup_add : 'a semigroup_add};
val semigroup_add_cancel_semigroup_add = #semigroup_add_cancel_semigroup_add :
'a cancel_semigroup_add -> 'a semigroup_add;
type 'a cancel_ab_semigroup_add =
{ab_semigroup_add_cancel_ab_semigroup_add : 'a ab_semigroup_add,
cancel_semigroup_add_cancel_ab_semigroup_add : 'a cancel_semigroup_add};
val ab_semigroup_add_cancel_ab_semigroup_add =
#ab_semigroup_add_cancel_ab_semigroup_add :
'a cancel_ab_semigroup_add -> 'a ab_semigroup_add;
val cancel_semigroup_add_cancel_ab_semigroup_add =
#cancel_semigroup_add_cancel_ab_semigroup_add :
'a cancel_ab_semigroup_add -> 'a cancel_semigroup_add;
type 'a cancel_comm_monoid_add =
{cancel_ab_semigroup_add_cancel_comm_monoid_add : 'a cancel_ab_semigroup_add,
comm_monoid_add_cancel_comm_monoid_add : 'a comm_monoid_add};
val cancel_ab_semigroup_add_cancel_comm_monoid_add =
#cancel_ab_semigroup_add_cancel_comm_monoid_add :
'a cancel_comm_monoid_add -> 'a cancel_ab_semigroup_add;
val comm_monoid_add_cancel_comm_monoid_add =
#comm_monoid_add_cancel_comm_monoid_add :
'a cancel_comm_monoid_add -> 'a comm_monoid_add;
type 'a semiring_0_cancel =
{cancel_comm_monoid_add_semiring_0_cancel : 'a cancel_comm_monoid_add,
semiring_0_semiring_0_cancel : 'a semiring_0};
val cancel_comm_monoid_add_semiring_0_cancel =
#cancel_comm_monoid_add_semiring_0_cancel :
'a semiring_0_cancel -> 'a cancel_comm_monoid_add;
val semiring_0_semiring_0_cancel = #semiring_0_semiring_0_cancel :
'a semiring_0_cancel -> 'a semiring_0;
type 'a semiring_1_cancel =
{semiring_0_cancel_semiring_1_cancel : 'a semiring_0_cancel,
semiring_1_semiring_1_cancel : 'a semiring_1};
val semiring_0_cancel_semiring_1_cancel = #semiring_0_cancel_semiring_1_cancel :
'a semiring_1_cancel -> 'a semiring_0_cancel;
val semiring_1_semiring_1_cancel = #semiring_1_semiring_1_cancel :
'a semiring_1_cancel -> 'a semiring_1;
type 'a comm_semiring_0_cancel =
{comm_semiring_0_comm_semiring_0_cancel : 'a comm_semiring_0,
semiring_0_cancel_comm_semiring_0_cancel : 'a semiring_0_cancel};
val comm_semiring_0_comm_semiring_0_cancel =
#comm_semiring_0_comm_semiring_0_cancel :
'a comm_semiring_0_cancel -> 'a comm_semiring_0;
val semiring_0_cancel_comm_semiring_0_cancel =
#semiring_0_cancel_comm_semiring_0_cancel :
'a comm_semiring_0_cancel -> 'a semiring_0_cancel;
type 'a comm_semiring_1_cancel =
{comm_semiring_0_cancel_comm_semiring_1_cancel : 'a comm_semiring_0_cancel,
comm_semiring_1_comm_semiring_1_cancel : 'a comm_semiring_1,
semiring_1_cancel_comm_semiring_1_cancel : 'a semiring_1_cancel};
val comm_semiring_0_cancel_comm_semiring_1_cancel =
#comm_semiring_0_cancel_comm_semiring_1_cancel :
'a comm_semiring_1_cancel -> 'a comm_semiring_0_cancel;
val comm_semiring_1_comm_semiring_1_cancel =
#comm_semiring_1_comm_semiring_1_cancel :
'a comm_semiring_1_cancel -> 'a comm_semiring_1;
val semiring_1_cancel_comm_semiring_1_cancel =
#semiring_1_cancel_comm_semiring_1_cancel :
'a comm_semiring_1_cancel -> 'a semiring_1_cancel;
type 'a semiring_div =
{div_semiring_div : 'a diva,
comm_semiring_1_cancel_semiring_div : 'a comm_semiring_1_cancel,
no_zero_divisors_semiring_div : 'a no_zero_divisors};
val div_semiring_div = #div_semiring_div : 'a semiring_div -> 'a diva;
val comm_semiring_1_cancel_semiring_div = #comm_semiring_1_cancel_semiring_div :
'a semiring_div -> 'a comm_semiring_1_cancel;
val no_zero_divisors_semiring_div = #no_zero_divisors_semiring_div :
'a semiring_div -> 'a no_zero_divisors;
fun dvd (A1_, A2_) a b =
eq A2_ (moda (div_semiring_div A1_) b a)
(zero ((zero_mult_zero o mult_zero_semiring_0 o semiring_0_semiring_1 o
semiring_1_comm_semiring_1 o
comm_semiring_1_comm_semiring_1_cancel o
comm_semiring_1_cancel_semiring_div)
A1_));
fun abs_int i = (if i < (0 : IntInf.int) then ~ i else i);
val equal_int = {equal = (fn a => fn b => a = b)} : int equal;
fun numadd (Cn (n1, c1, r1), Cn (n2, c2, r2)) =
(if n1 = n2
then let
val c = c1 + c2;
in
(if c = (0 : IntInf.int) then numadd (r1, r2)
else Cn (n1, c, numadd (r1, r2)))
end
else (if n1 <= n2
then Cn (n1, c1, numadd (r1, Add (Mul (c2, Bound n2), r2)))
else Cn (n2, c2, numadd (Add (Mul (c1, Bound n1), r1), r2))))
| numadd (Cn (n1, c1, r1), C dd) = Cn (n1, c1, numadd (r1, C dd))
| numadd (Cn (n1, c1, r1), Bound de) = Cn (n1, c1, numadd (r1, Bound de))
| numadd (Cn (n1, c1, r1), Neg di) = Cn (n1, c1, numadd (r1, Neg di))
| numadd (Cn (n1, c1, r1), Add (dj, dk)) =
Cn (n1, c1, numadd (r1, Add (dj, dk)))
| numadd (Cn (n1, c1, r1), Sub (dl, dm)) =
Cn (n1, c1, numadd (r1, Sub (dl, dm)))
| numadd (Cn (n1, c1, r1), Mul (dn, doa)) =
Cn (n1, c1, numadd (r1, Mul (dn, doa)))
| numadd (C w, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (C w, r2))
| numadd (Bound x, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Bound x, r2))
| numadd (Neg ac, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Neg ac, r2))
| numadd (Add (ad, ae), Cn (n2, c2, r2)) =
Cn (n2, c2, numadd (Add (ad, ae), r2))
| numadd (Sub (af, ag), Cn (n2, c2, r2)) =
Cn (n2, c2, numadd (Sub (af, ag), r2))
| numadd (Mul (ah, ai), Cn (n2, c2, r2)) =
Cn (n2, c2, numadd (Mul (ah, ai), r2))
| numadd (C b1, C b2) = C (b1 + b2)
| numadd (C aj, Bound bi) = Add (C aj, Bound bi)
| numadd (C aj, Neg bm) = Add (C aj, Neg bm)
| numadd (C aj, Add (bn, bo)) = Add (C aj, Add (bn, bo))
| numadd (C aj, Sub (bp, bq)) = Add (C aj, Sub (bp, bq))
| numadd (C aj, Mul (br, bs)) = Add (C aj, Mul (br, bs))
| numadd (Bound ak, C cf) = Add (Bound ak, C cf)
| numadd (Bound ak, Bound cg) = Add (Bound ak, Bound cg)
| numadd (Bound ak, Neg ck) = Add (Bound ak, Neg ck)
| numadd (Bound ak, Add (cl, cm)) = Add (Bound ak, Add (cl, cm))
| numadd (Bound ak, Sub (cn, co)) = Add (Bound ak, Sub (cn, co))
| numadd (Bound ak, Mul (cp, cq)) = Add (Bound ak, Mul (cp, cq))
| numadd (Neg ao, C en) = Add (Neg ao, C en)
| numadd (Neg ao, Bound eo) = Add (Neg ao, Bound eo)
| numadd (Neg ao, Neg et) = Add (Neg ao, Neg et)
| numadd (Neg ao, Add (eu, ev)) = Add (Neg ao, Add (eu, ev))
| numadd (Neg ao, Sub (ew, ex)) = Add (Neg ao, Sub (ew, ex))
| numadd (Neg ao, Mul (ey, ez)) = Add (Neg ao, Mul (ey, ez))
| numadd (Add (ap, aq), C fm) = Add (Add (ap, aq), C fm)
| numadd (Add (ap, aq), Bound fna) = Add (Add (ap, aq), Bound fna)
| numadd (Add (ap, aq), Neg fr) = Add (Add (ap, aq), Neg fr)
| numadd (Add (ap, aq), Add (fs, ft)) = Add (Add (ap, aq), Add (fs, ft))
| numadd (Add (ap, aq), Sub (fu, fv)) = Add (Add (ap, aq), Sub (fu, fv))
| numadd (Add (ap, aq), Mul (fw, fx)) = Add (Add (ap, aq), Mul (fw, fx))
| numadd (Sub (ar, asa), C gk) = Add (Sub (ar, asa), C gk)
| numadd (Sub (ar, asa), Bound gl) = Add (Sub (ar, asa), Bound gl)
| numadd (Sub (ar, asa), Neg gp) = Add (Sub (ar, asa), Neg gp)
| numadd (Sub (ar, asa), Add (gq, gr)) = Add (Sub (ar, asa), Add (gq, gr))
| numadd (Sub (ar, asa), Sub (gs, gt)) = Add (Sub (ar, asa), Sub (gs, gt))
| numadd (Sub (ar, asa), Mul (gu, gv)) = Add (Sub (ar, asa), Mul (gu, gv))
| numadd (Mul (at, au), C hi) = Add (Mul (at, au), C hi)
| numadd (Mul (at, au), Bound hj) = Add (Mul (at, au), Bound hj)
| numadd (Mul (at, au), Neg hn) = Add (Mul (at, au), Neg hn)
| numadd (Mul (at, au), Add (ho, hp)) = Add (Mul (at, au), Add (ho, hp))
| numadd (Mul (at, au), Sub (hq, hr)) = Add (Mul (at, au), Sub (hq, hr))
| numadd (Mul (at, au), Mul (hs, ht)) = Add (Mul (at, au), Mul (hs, ht));
fun nummul i (C j) = C (i * j)
| nummul i (Cn (n, c, t)) = Cn (n, c * i, nummul i t)
| nummul i (Bound v) = Mul (i, Bound v)
| nummul i (Neg v) = Mul (i, Neg v)
| nummul i (Add (v, va)) = Mul (i, Add (v, va))
| nummul i (Sub (v, va)) = Mul (i, Sub (v, va))
| nummul i (Mul (v, va)) = Mul (i, Mul (v, va));
fun numneg t = nummul (~ (1 : IntInf.int)) t;
fun numsub s t =
(if equal_numa s t then C (0 : IntInf.int) else numadd (s, numneg t));
fun simpnum (C j) = C j
| simpnum (Bound n) = Cn (n, (1 : IntInf.int), C (0 : IntInf.int))
| simpnum (Neg t) = numneg (simpnum t)
| simpnum (Add (t, s)) = numadd (simpnum t, simpnum s)
| simpnum (Sub (t, s)) = numsub (simpnum t) (simpnum s)
| simpnum (Mul (i, t)) =
(if i = (0 : IntInf.int) then C (0 : IntInf.int) else nummul i (simpnum t))
| simpnum (Cn (v, va, vb)) = Cn (v, va, vb);
val one_inta : int = (1 : IntInf.int);
val zero_inta : int = (0 : IntInf.int);
val times_int = {times = (fn a => fn b => a * b)} : int times;
val dvd_int = {times_dvd = times_int} : int dvd;
fun fst (a, b) = a;
fun sgn_int i =
(if i = (0 : IntInf.int) then (0 : IntInf.int)
else (if (0 : IntInf.int) < i then (1 : IntInf.int)
else ~ (1 : IntInf.int)));
fun apsnd f (x, y) = (x, f y);
fun divmod_int k l =
(if k = (0 : IntInf.int) then ((0 : IntInf.int), (0 : IntInf.int))
else (if l = (0 : IntInf.int) then ((0 : IntInf.int), k)
else apsnd (fn a => sgn_int l * a)
(if sgn_int k = sgn_int l then Integer.div_mod (abs k) (abs l)
else let
val (r, s) = Integer.div_mod (abs k) (abs l);
in
(if s = (0 : IntInf.int) then (~ r, (0 : IntInf.int))
else (~ r - (1 : IntInf.int), abs_int l - s))
end)));
fun div_inta a b = fst (divmod_int a b);
fun snd (a, b) = b;
fun mod_int a b = snd (divmod_int a b);
val div_int = {dvd_div = dvd_int, diva = div_inta, moda = mod_int} : int diva;
val zero_int = {zero = zero_inta} : int zero;
val no_zero_divisors_int =
{times_no_zero_divisors = times_int, zero_no_zero_divisors = zero_int} :
int no_zero_divisors;
val semigroup_mult_int = {times_semigroup_mult = times_int} :
int semigroup_mult;
val plus_int = {plus = (fn a => fn b => a + b)} : int plus;
val semigroup_add_int = {plus_semigroup_add = plus_int} : int semigroup_add;
val ab_semigroup_add_int = {semigroup_add_ab_semigroup_add = semigroup_add_int}
: int ab_semigroup_add;
val semiring_int =
{ab_semigroup_add_semiring = ab_semigroup_add_int,
semigroup_mult_semiring = semigroup_mult_int}
: int semiring;
val mult_zero_int = {times_mult_zero = times_int, zero_mult_zero = zero_int} :
int mult_zero;
val monoid_add_int =
{semigroup_add_monoid_add = semigroup_add_int, zero_monoid_add = zero_int} :
int monoid_add;
val comm_monoid_add_int =
{ab_semigroup_add_comm_monoid_add = ab_semigroup_add_int,
monoid_add_comm_monoid_add = monoid_add_int}
: int comm_monoid_add;
val semiring_0_int =
{comm_monoid_add_semiring_0 = comm_monoid_add_int,
mult_zero_semiring_0 = mult_zero_int, semiring_semiring_0 = semiring_int}
: int semiring_0;
val one_int = {one = one_inta} : int one;
val power_int = {one_power = one_int, times_power = times_int} : int power;
val monoid_mult_int =
{semigroup_mult_monoid_mult = semigroup_mult_int,
power_monoid_mult = power_int}
: int monoid_mult;
val zero_neq_one_int =
{one_zero_neq_one = one_int, zero_zero_neq_one = zero_int} : int zero_neq_one;
val semiring_1_int =
{monoid_mult_semiring_1 = monoid_mult_int,
semiring_0_semiring_1 = semiring_0_int,
zero_neq_one_semiring_1 = zero_neq_one_int}
: int semiring_1;
val ab_semigroup_mult_int =
{semigroup_mult_ab_semigroup_mult = semigroup_mult_int} :
int ab_semigroup_mult;
val comm_semiring_int =
{ab_semigroup_mult_comm_semiring = ab_semigroup_mult_int,
semiring_comm_semiring = semiring_int}
: int comm_semiring;
val comm_semiring_0_int =
{comm_semiring_comm_semiring_0 = comm_semiring_int,
semiring_0_comm_semiring_0 = semiring_0_int}
: int comm_semiring_0;
val comm_monoid_mult_int =
{ab_semigroup_mult_comm_monoid_mult = ab_semigroup_mult_int,
monoid_mult_comm_monoid_mult = monoid_mult_int}
: int comm_monoid_mult;
val comm_semiring_1_int =
{comm_monoid_mult_comm_semiring_1 = comm_monoid_mult_int,
comm_semiring_0_comm_semiring_1 = comm_semiring_0_int,
dvd_comm_semiring_1 = dvd_int, semiring_1_comm_semiring_1 = semiring_1_int}
: int comm_semiring_1;
val cancel_semigroup_add_int =
{semigroup_add_cancel_semigroup_add = semigroup_add_int} :
int cancel_semigroup_add;
val cancel_ab_semigroup_add_int =
{ab_semigroup_add_cancel_ab_semigroup_add = ab_semigroup_add_int,
cancel_semigroup_add_cancel_ab_semigroup_add = cancel_semigroup_add_int}
: int cancel_ab_semigroup_add;
val cancel_comm_monoid_add_int =
{cancel_ab_semigroup_add_cancel_comm_monoid_add = cancel_ab_semigroup_add_int,
comm_monoid_add_cancel_comm_monoid_add = comm_monoid_add_int}
: int cancel_comm_monoid_add;
val semiring_0_cancel_int =
{cancel_comm_monoid_add_semiring_0_cancel = cancel_comm_monoid_add_int,
semiring_0_semiring_0_cancel = semiring_0_int}
: int semiring_0_cancel;
val semiring_1_cancel_int =
{semiring_0_cancel_semiring_1_cancel = semiring_0_cancel_int,
semiring_1_semiring_1_cancel = semiring_1_int}
: int semiring_1_cancel;
val comm_semiring_0_cancel_int =
{comm_semiring_0_comm_semiring_0_cancel = comm_semiring_0_int,
semiring_0_cancel_comm_semiring_0_cancel = semiring_0_cancel_int}
: int comm_semiring_0_cancel;
val comm_semiring_1_cancel_int =
{comm_semiring_0_cancel_comm_semiring_1_cancel = comm_semiring_0_cancel_int,
comm_semiring_1_comm_semiring_1_cancel = comm_semiring_1_int,
semiring_1_cancel_comm_semiring_1_cancel = semiring_1_cancel_int}
: int comm_semiring_1_cancel;
val semiring_div_int =
{div_semiring_div = div_int,
comm_semiring_1_cancel_semiring_div = comm_semiring_1_cancel_int,
no_zero_divisors_semiring_div = no_zero_divisors_int}
: int semiring_div;
fun simpfm (And (p, q)) = conj (simpfm p) (simpfm q)
| simpfm (Or (p, q)) = disj (simpfm p) (simpfm q)
| simpfm (Imp (p, q)) = impa (simpfm p) (simpfm q)
| simpfm (Iff (p, q)) = iffa (simpfm p) (simpfm q)
| simpfm (Not p) = nota (simpfm p)
| simpfm (Lt a) =
let
val aa = simpnum a;
in
(case aa of C v => (if v < (0 : IntInf.int) then T else F)
| Bound _ => Lt aa | Cn (_, _, _) => Lt aa | Neg _ => Lt aa
| Add (_, _) => Lt aa | Sub (_, _) => Lt aa | Mul (_, _) => Lt aa)
end
| simpfm (Le a) =
let
val aa = simpnum a;
in
(case aa of C v => (if v <= (0 : IntInf.int) then T else F)
| Bound _ => Le aa | Cn (_, _, _) => Le aa | Neg _ => Le aa
| Add (_, _) => Le aa | Sub (_, _) => Le aa | Mul (_, _) => Le aa)
end
| simpfm (Gt a) =
let
val aa = simpnum a;
in
(case aa of C v => (if (0 : IntInf.int) < v then T else F)
| Bound _ => Gt aa | Cn (_, _, _) => Gt aa | Neg _ => Gt aa
| Add (_, _) => Gt aa | Sub (_, _) => Gt aa | Mul (_, _) => Gt aa)
end
| simpfm (Ge a) =
let
val aa = simpnum a;
in
(case aa of C v => (if (0 : IntInf.int) <= v then T else F)
| Bound _ => Ge aa | Cn (_, _, _) => Ge aa | Neg _ => Ge aa
| Add (_, _) => Ge aa | Sub (_, _) => Ge aa | Mul (_, _) => Ge aa)
end
| simpfm (Eq a) =
let
val aa = simpnum a;
in
(case aa of C v => (if v = (0 : IntInf.int) then T else F)
| Bound _ => Eq aa | Cn (_, _, _) => Eq aa | Neg _ => Eq aa
| Add (_, _) => Eq aa | Sub (_, _) => Eq aa | Mul (_, _) => Eq aa)
end
| simpfm (NEq a) =
let
val aa = simpnum a;
in
(case aa of C v => (if not (v = (0 : IntInf.int)) then T else F)
| Bound _ => NEq aa | Cn (_, _, _) => NEq aa | Neg _ => NEq aa
| Add (_, _) => NEq aa | Sub (_, _) => NEq aa | Mul (_, _) => NEq aa)
end
| simpfm (Dvd (i, a)) =
(if i = (0 : IntInf.int) then simpfm (Eq a)
else (if abs_int i = (1 : IntInf.int) then T
else let
val aa = simpnum a;
in
(case aa
of C v =>
(if dvd (semiring_div_int, equal_int) i v then T else F)
| Bound _ => Dvd (i, aa) | Cn (_, _, _) => Dvd (i, aa)
| Neg _ => Dvd (i, aa) | Add (_, _) => Dvd (i, aa)
| Sub (_, _) => Dvd (i, aa) | Mul (_, _) => Dvd (i, aa))
end))
| simpfm (NDvd (i, a)) =
(if i = (0 : IntInf.int) then simpfm (NEq a)
else (if abs_int i = (1 : IntInf.int) then F
else let
val aa = simpnum a;
in
(case aa
of C v =>
(if not (dvd (semiring_div_int, equal_int) i v) then T
else F)
| Bound _ => NDvd (i, aa) | Cn (_, _, _) => NDvd (i, aa)
| Neg _ => NDvd (i, aa) | Add (_, _) => NDvd (i, aa)
| Sub (_, _) => NDvd (i, aa) | Mul (_, _) => NDvd (i, aa))
end))
| simpfm T = T
| simpfm F = F
| simpfm (E v) = E v
| simpfm (A v) = A v
| simpfm (Closed v) = Closed v
| simpfm (NClosed v) = NClosed v;
fun qelim (E p) = (fn qe => dj qe (qelim p qe))
| qelim (A p) = (fn qe => nota (qe (qelim (Not p) qe)))
| qelim (Not p) = (fn qe => nota (qelim p qe))
| qelim (And (p, q)) = (fn qe => conj (qelim p qe) (qelim q qe))
| qelim (Or (p, q)) = (fn qe => disj (qelim p qe) (qelim q qe))
| qelim (Imp (p, q)) = (fn qe => impa (qelim p qe) (qelim q qe))
| qelim (Iff (p, q)) = (fn qe => iffa (qelim p qe) (qelim q qe))
| qelim T = (fn _ => simpfm T)
| qelim F = (fn _ => simpfm F)
| qelim (Lt v) = (fn _ => simpfm (Lt v))
| qelim (Le v) = (fn _ => simpfm (Le v))
| qelim (Gt v) = (fn _ => simpfm (Gt v))
| qelim (Ge v) = (fn _ => simpfm (Ge v))
| qelim (Eq v) = (fn _ => simpfm (Eq v))
| qelim (NEq v) = (fn _ => simpfm (NEq v))
| qelim (Dvd (v, va)) = (fn _ => simpfm (Dvd (v, va)))
| qelim (NDvd (v, va)) = (fn _ => simpfm (NDvd (v, va)))
| qelim (Closed v) = (fn _ => simpfm (Closed v))
| qelim (NClosed v) = (fn _ => simpfm (NClosed v));
fun maps f [] = []
| maps f (x :: xs) = f x @ maps f xs;
fun uptoa i j = (if i <= j then i :: uptoa (i + (1 : IntInf.int)) j else []);
fun minus_nat n m = Integer.max (n - m) 0;
fun decrnum (Bound n) = Bound (minus_nat n (1 : IntInf.int))
| decrnum (Neg a) = Neg (decrnum a)
| decrnum (Add (a, b)) = Add (decrnum a, decrnum b)
| decrnum (Sub (a, b)) = Sub (decrnum a, decrnum b)
| decrnum (Mul (c, a)) = Mul (c, decrnum a)
| decrnum (Cn (n, i, a)) = Cn (minus_nat n (1 : IntInf.int), i, decrnum a)
| decrnum (C v) = C v;
fun decr (Lt a) = Lt (decrnum a)
| decr (Le a) = Le (decrnum a)
| decr (Gt a) = Gt (decrnum a)
| decr (Ge a) = Ge (decrnum a)
| decr (Eq a) = Eq (decrnum a)
| decr (NEq a) = NEq (decrnum a)
| decr (Dvd (i, a)) = Dvd (i, decrnum a)
| decr (NDvd (i, a)) = NDvd (i, decrnum a)
| decr (Not p) = Not (decr p)
| decr (And (p, q)) = And (decr p, decr q)
| decr (Or (p, q)) = Or (decr p, decr q)
| decr (Imp (p, q)) = Imp (decr p, decr q)
| decr (Iff (p, q)) = Iff (decr p, decr q)
| decr T = T
| decr F = F
| decr (E v) = E v
| decr (A v) = A v
| decr (Closed v) = Closed v
| decr (NClosed v) = NClosed v;
fun beta (And (p, q)) = beta p @ beta q
| beta (Or (p, q)) = beta p @ beta q
| beta T = []
| beta F = []
| beta (Lt (C bo)) = []
| beta (Lt (Bound bp)) = []
| beta (Lt (Neg bt)) = []
| beta (Lt (Add (bu, bv))) = []
| beta (Lt (Sub (bw, bx))) = []
| beta (Lt (Mul (by, bz))) = []
| beta (Le (C co)) = []
| beta (Le (Bound cp)) = []
| beta (Le (Neg ct)) = []
| beta (Le (Add (cu, cv))) = []
| beta (Le (Sub (cw, cx))) = []
| beta (Le (Mul (cy, cz))) = []
| beta (Gt (C doa)) = []
| beta (Gt (Bound dp)) = []
| beta (Gt (Neg dt)) = []
| beta (Gt (Add (du, dv))) = []
| beta (Gt (Sub (dw, dx))) = []
| beta (Gt (Mul (dy, dz))) = []
| beta (Ge (C eo)) = []
| beta (Ge (Bound ep)) = []
| beta (Ge (Neg et)) = []
| beta (Ge (Add (eu, ev))) = []
| beta (Ge (Sub (ew, ex))) = []
| beta (Ge (Mul (ey, ez))) = []
| beta (Eq (C fo)) = []
| beta (Eq (Bound fp)) = []
| beta (Eq (Neg ft)) = []
| beta (Eq (Add (fu, fv))) = []
| beta (Eq (Sub (fw, fx))) = []
| beta (Eq (Mul (fy, fz))) = []
| beta (NEq (C go)) = []
| beta (NEq (Bound gp)) = []
| beta (NEq (Neg gt)) = []
| beta (NEq (Add (gu, gv))) = []
| beta (NEq (Sub (gw, gx))) = []
| beta (NEq (Mul (gy, gz))) = []
| beta (Dvd (aa, ab)) = []
| beta (NDvd (ac, ad)) = []
| beta (Not ae) = []
| beta (Imp (aj, ak)) = []
| beta (Iff (al, am)) = []
| beta (E an) = []
| beta (A ao) = []
| beta (Closed ap) = []
| beta (NClosed aq) = []
| beta (Lt (Cn (cm, c, e))) = (if cm = (0 : IntInf.int) then [] else [])
| beta (Le (Cn (dm, c, e))) = (if dm = (0 : IntInf.int) then [] else [])
| beta (Gt (Cn (em, c, e))) = (if em = (0 : IntInf.int) then [Neg e] else [])
| beta (Ge (Cn (fm, c, e))) =
(if fm = (0 : IntInf.int) then [Sub (C (~1 : IntInf.int), e)] else [])
| beta (Eq (Cn (gm, c, e))) =
(if gm = (0 : IntInf.int) then [Sub (C (~1 : IntInf.int), e)] else [])
| beta (NEq (Cn (hm, c, e))) =
(if hm = (0 : IntInf.int) then [Neg e] else []);
fun gcd_int k l =
abs_int
(if l = (0 : IntInf.int) then k
else gcd_int l (mod_int (abs_int k) (abs_int l)));
fun lcm_int a b = div_inta (abs_int a * abs_int b) (gcd_int a b);
fun zeta (And (p, q)) = lcm_int (zeta p) (zeta q)
| zeta (Or (p, q)) = lcm_int (zeta p) (zeta q)
| zeta T = (1 : IntInf.int)
| zeta F = (1 : IntInf.int)
| zeta (Lt (C bo)) = (1 : IntInf.int)
| zeta (Lt (Bound bp)) = (1 : IntInf.int)
| zeta (Lt (Neg bt)) = (1 : IntInf.int)
| zeta (Lt (Add (bu, bv))) = (1 : IntInf.int)
| zeta (Lt (Sub (bw, bx))) = (1 : IntInf.int)
| zeta (Lt (Mul (by, bz))) = (1 : IntInf.int)
| zeta (Le (C co)) = (1 : IntInf.int)
| zeta (Le (Bound cp)) = (1 : IntInf.int)
| zeta (Le (Neg ct)) = (1 : IntInf.int)
| zeta (Le (Add (cu, cv))) = (1 : IntInf.int)
| zeta (Le (Sub (cw, cx))) = (1 : IntInf.int)
| zeta (Le (Mul (cy, cz))) = (1 : IntInf.int)
| zeta (Gt (C doa)) = (1 : IntInf.int)
| zeta (Gt (Bound dp)) = (1 : IntInf.int)
| zeta (Gt (Neg dt)) = (1 : IntInf.int)
| zeta (Gt (Add (du, dv))) = (1 : IntInf.int)
| zeta (Gt (Sub (dw, dx))) = (1 : IntInf.int)
| zeta (Gt (Mul (dy, dz))) = (1 : IntInf.int)
| zeta (Ge (C eo)) = (1 : IntInf.int)
| zeta (Ge (Bound ep)) = (1 : IntInf.int)
| zeta (Ge (Neg et)) = (1 : IntInf.int)
| zeta (Ge (Add (eu, ev))) = (1 : IntInf.int)
| zeta (Ge (Sub (ew, ex))) = (1 : IntInf.int)
| zeta (Ge (Mul (ey, ez))) = (1 : IntInf.int)
| zeta (Eq (C fo)) = (1 : IntInf.int)
| zeta (Eq (Bound fp)) = (1 : IntInf.int)
| zeta (Eq (Neg ft)) = (1 : IntInf.int)
| zeta (Eq (Add (fu, fv))) = (1 : IntInf.int)
| zeta (Eq (Sub (fw, fx))) = (1 : IntInf.int)
| zeta (Eq (Mul (fy, fz))) = (1 : IntInf.int)
| zeta (NEq (C go)) = (1 : IntInf.int)
| zeta (NEq (Bound gp)) = (1 : IntInf.int)
| zeta (NEq (Neg gt)) = (1 : IntInf.int)
| zeta (NEq (Add (gu, gv))) = (1 : IntInf.int)
| zeta (NEq (Sub (gw, gx))) = (1 : IntInf.int)
| zeta (NEq (Mul (gy, gz))) = (1 : IntInf.int)
| zeta (Dvd (aa, C ho)) = (1 : IntInf.int)
| zeta (Dvd (aa, Bound hp)) = (1 : IntInf.int)
| zeta (Dvd (aa, Neg ht)) = (1 : IntInf.int)
| zeta (Dvd (aa, Add (hu, hv))) = (1 : IntInf.int)
| zeta (Dvd (aa, Sub (hw, hx))) = (1 : IntInf.int)
| zeta (Dvd (aa, Mul (hy, hz))) = (1 : IntInf.int)
| zeta (NDvd (ac, C io)) = (1 : IntInf.int)
| zeta (NDvd (ac, Bound ip)) = (1 : IntInf.int)
| zeta (NDvd (ac, Neg it)) = (1 : IntInf.int)
| zeta (NDvd (ac, Add (iu, iv))) = (1 : IntInf.int)
| zeta (NDvd (ac, Sub (iw, ix))) = (1 : IntInf.int)
| zeta (NDvd (ac, Mul (iy, iz))) = (1 : IntInf.int)
| zeta (Not ae) = (1 : IntInf.int)
| zeta (Imp (aj, ak)) = (1 : IntInf.int)
| zeta (Iff (al, am)) = (1 : IntInf.int)
| zeta (E an) = (1 : IntInf.int)
| zeta (A ao) = (1 : IntInf.int)
| zeta (Closed ap) = (1 : IntInf.int)
| zeta (NClosed aq) = (1 : IntInf.int)
| zeta (Lt (Cn (cm, c, e))) =
(if cm = (0 : IntInf.int) then c else (1 : IntInf.int))
| zeta (Le (Cn (dm, c, e))) =
(if dm = (0 : IntInf.int) then c else (1 : IntInf.int))
| zeta (Gt (Cn (em, c, e))) =
(if em = (0 : IntInf.int) then c else (1 : IntInf.int))
| zeta (Ge (Cn (fm, c, e))) =
(if fm = (0 : IntInf.int) then c else (1 : IntInf.int))
| zeta (Eq (Cn (gm, c, e))) =
(if gm = (0 : IntInf.int) then c else (1 : IntInf.int))
| zeta (NEq (Cn (hm, c, e))) =
(if hm = (0 : IntInf.int) then c else (1 : IntInf.int))
| zeta (Dvd (i, Cn (im, c, e))) =
(if im = (0 : IntInf.int) then c else (1 : IntInf.int))
| zeta (NDvd (i, Cn (jm, c, e))) =
(if jm = (0 : IntInf.int) then c else (1 : IntInf.int));
fun zsplit0 (C c) = ((0 : IntInf.int), C c)
| zsplit0 (Bound n) =
(if n = (0 : IntInf.int) then ((1 : IntInf.int), C (0 : IntInf.int))
else ((0 : IntInf.int), Bound n))
| zsplit0 (Cn (n, i, a)) =
let
val (ia, aa) = zsplit0 a;
in
(if n = (0 : IntInf.int) then (i + ia, aa) else (ia, Cn (n, i, aa)))
end
| zsplit0 (Neg a) = let
val (i, aa) = zsplit0 a;
in
(~ i, Neg aa)
end
| zsplit0 (Add (a, b)) =
let
val (ia, aa) = zsplit0 a;
val (ib, ba) = zsplit0 b;
in
(ia + ib, Add (aa, ba))
end
| zsplit0 (Sub (a, b)) =
let
val (ia, aa) = zsplit0 a;
val (ib, ba) = zsplit0 b;
in
(ia - ib, Sub (aa, ba))
end
| zsplit0 (Mul (i, a)) =
let
val (ia, aa) = zsplit0 a;
in
(i * ia, Mul (i, aa))
end;
fun zlfm (And (p, q)) = And (zlfm p, zlfm q)
| zlfm (Or (p, q)) = Or (zlfm p, zlfm q)
| zlfm (Imp (p, q)) = Or (zlfm (Not p), zlfm q)
| zlfm (Iff (p, q)) =
Or (And (zlfm p, zlfm q), And (zlfm (Not p), zlfm (Not q)))
| zlfm (Lt a) =
let
val (c, r) = zsplit0 a;
in
(if c = (0 : IntInf.int) then Lt r
else (if (0 : IntInf.int) < c then Lt (Cn ((0 : IntInf.int), c, r))
else Gt (Cn ((0 : IntInf.int), ~ c, Neg r))))
end
| zlfm (Le a) =
let
val (c, r) = zsplit0 a;
in
(if c = (0 : IntInf.int) then Le r
else (if (0 : IntInf.int) < c then Le (Cn ((0 : IntInf.int), c, r))
else Ge (Cn ((0 : IntInf.int), ~ c, Neg r))))
end
| zlfm (Gt a) =
let
val (c, r) = zsplit0 a;
in
(if c = (0 : IntInf.int) then Gt r
else (if (0 : IntInf.int) < c then Gt (Cn ((0 : IntInf.int), c, r))
else Lt (Cn ((0 : IntInf.int), ~ c, Neg r))))
end
| zlfm (Ge a) =
let
val (c, r) = zsplit0 a;
in
(if c = (0 : IntInf.int) then Ge r
else (if (0 : IntInf.int) < c then Ge (Cn ((0 : IntInf.int), c, r))
else Le (Cn ((0 : IntInf.int), ~ c, Neg r))))
end
| zlfm (Eq a) =
let
val (c, r) = zsplit0 a;
in
(if c = (0 : IntInf.int) then Eq r
else (if (0 : IntInf.int) < c then Eq (Cn ((0 : IntInf.int), c, r))
else Eq (Cn ((0 : IntInf.int), ~ c, Neg r))))
end
| zlfm (NEq a) =
let
val (c, r) = zsplit0 a;
in
(if c = (0 : IntInf.int) then NEq r
else (if (0 : IntInf.int) < c then NEq (Cn ((0 : IntInf.int), c, r))
else NEq (Cn ((0 : IntInf.int), ~ c, Neg r))))
end
| zlfm (Dvd (i, a)) =
(if i = (0 : IntInf.int) then zlfm (Eq a)
else let
val (c, r) = zsplit0 a;
in
(if c = (0 : IntInf.int) then Dvd (abs_int i, r)
else (if (0 : IntInf.int) < c
then Dvd (abs_int i, Cn ((0 : IntInf.int), c, r))
else Dvd (abs_int i, Cn ((0 : IntInf.int), ~ c, Neg r))))
end)
| zlfm (NDvd (i, a)) =
(if i = (0 : IntInf.int) then zlfm (NEq a)
else let
val (c, r) = zsplit0 a;
in
(if c = (0 : IntInf.int) then NDvd (abs_int i, r)
else (if (0 : IntInf.int) < c
then NDvd (abs_int i, Cn ((0 : IntInf.int), c, r))
else NDvd (abs_int i, Cn ((0 : IntInf.int), ~ c, Neg r))))
end)
| zlfm (Not (And (p, q))) = Or (zlfm (Not p), zlfm (Not q))
| zlfm (Not (Or (p, q))) = And (zlfm (Not p), zlfm (Not q))
| zlfm (Not (Imp (p, q))) = And (zlfm p, zlfm (Not q))
| zlfm (Not (Iff (p, q))) =
Or (And (zlfm p, zlfm (Not q)), And (zlfm (Not p), zlfm q))
| zlfm (Not (Not p)) = zlfm p
| zlfm (Not T) = F
| zlfm (Not F) = T
| zlfm (Not (Lt a)) = zlfm (Ge a)
| zlfm (Not (Le a)) = zlfm (Gt a)
| zlfm (Not (Gt a)) = zlfm (Le a)
| zlfm (Not (Ge a)) = zlfm (Lt a)
| zlfm (Not (Eq a)) = zlfm (NEq a)
| zlfm (Not (NEq a)) = zlfm (Eq a)
| zlfm (Not (Dvd (i, a))) = zlfm (NDvd (i, a))
| zlfm (Not (NDvd (i, a))) = zlfm (Dvd (i, a))
| zlfm (Not (Closed p)) = NClosed p
| zlfm (Not (NClosed p)) = Closed p
| zlfm T = T
| zlfm F = F
| zlfm (Not (E ci)) = Not (E ci)
| zlfm (Not (A cj)) = Not (A cj)
| zlfm (E ao) = E ao
| zlfm (A ap) = A ap
| zlfm (Closed aq) = Closed aq
| zlfm (NClosed ar) = NClosed ar;
fun alpha (And (p, q)) = alpha p @ alpha q
| alpha (Or (p, q)) = alpha p @ alpha q
| alpha T = []
| alpha F = []
| alpha (Lt (C bo)) = []
| alpha (Lt (Bound bp)) = []
| alpha (Lt (Neg bt)) = []
| alpha (Lt (Add (bu, bv))) = []
| alpha (Lt (Sub (bw, bx))) = []
| alpha (Lt (Mul (by, bz))) = []
| alpha (Le (C co)) = []
| alpha (Le (Bound cp)) = []
| alpha (Le (Neg ct)) = []
| alpha (Le (Add (cu, cv))) = []
| alpha (Le (Sub (cw, cx))) = []
| alpha (Le (Mul (cy, cz))) = []
| alpha (Gt (C doa)) = []
| alpha (Gt (Bound dp)) = []
| alpha (Gt (Neg dt)) = []
| alpha (Gt (Add (du, dv))) = []
| alpha (Gt (Sub (dw, dx))) = []
| alpha (Gt (Mul (dy, dz))) = []
| alpha (Ge (C eo)) = []
| alpha (Ge (Bound ep)) = []
| alpha (Ge (Neg et)) = []
| alpha (Ge (Add (eu, ev))) = []
| alpha (Ge (Sub (ew, ex))) = []
| alpha (Ge (Mul (ey, ez))) = []
| alpha (Eq (C fo)) = []
| alpha (Eq (Bound fp)) = []
| alpha (Eq (Neg ft)) = []
| alpha (Eq (Add (fu, fv))) = []
| alpha (Eq (Sub (fw, fx))) = []
| alpha (Eq (Mul (fy, fz))) = []
| alpha (NEq (C go)) = []
| alpha (NEq (Bound gp)) = []
| alpha (NEq (Neg gt)) = []
| alpha (NEq (Add (gu, gv))) = []
| alpha (NEq (Sub (gw, gx))) = []
| alpha (NEq (Mul (gy, gz))) = []
| alpha (Dvd (aa, ab)) = []
| alpha (NDvd (ac, ad)) = []
| alpha (Not ae) = []
| alpha (Imp (aj, ak)) = []
| alpha (Iff (al, am)) = []
| alpha (E an) = []
| alpha (A ao) = []
| alpha (Closed ap) = []
| alpha (NClosed aq) = []
| alpha (Lt (Cn (cm, c, e))) = (if cm = (0 : IntInf.int) then [e] else [])
| alpha (Le (Cn (dm, c, e))) =
(if dm = (0 : IntInf.int) then [Add (C (~1 : IntInf.int), e)] else [])
| alpha (Gt (Cn (em, c, e))) = (if em = (0 : IntInf.int) then [] else [])
| alpha (Ge (Cn (fm, c, e))) = (if fm = (0 : IntInf.int) then [] else [])
| alpha (Eq (Cn (gm, c, e))) =
(if gm = (0 : IntInf.int) then [Add (C (~1 : IntInf.int), e)] else [])
| alpha (NEq (Cn (hm, c, e))) = (if hm = (0 : IntInf.int) then [e] else []);
fun delta (And (p, q)) = lcm_int (delta p) (delta q)
| delta (Or (p, q)) = lcm_int (delta p) (delta q)
| delta T = (1 : IntInf.int)
| delta F = (1 : IntInf.int)
| delta (Lt u) = (1 : IntInf.int)
| delta (Le v) = (1 : IntInf.int)
| delta (Gt w) = (1 : IntInf.int)
| delta (Ge x) = (1 : IntInf.int)
| delta (Eq y) = (1 : IntInf.int)
| delta (NEq z) = (1 : IntInf.int)
| delta (Dvd (aa, C bo)) = (1 : IntInf.int)
| delta (Dvd (aa, Bound bp)) = (1 : IntInf.int)
| delta (Dvd (aa, Neg bt)) = (1 : IntInf.int)
| delta (Dvd (aa, Add (bu, bv))) = (1 : IntInf.int)
| delta (Dvd (aa, Sub (bw, bx))) = (1 : IntInf.int)
| delta (Dvd (aa, Mul (by, bz))) = (1 : IntInf.int)
| delta (NDvd (ac, C co)) = (1 : IntInf.int)
| delta (NDvd (ac, Bound cp)) = (1 : IntInf.int)
| delta (NDvd (ac, Neg ct)) = (1 : IntInf.int)
| delta (NDvd (ac, Add (cu, cv))) = (1 : IntInf.int)
| delta (NDvd (ac, Sub (cw, cx))) = (1 : IntInf.int)
| delta (NDvd (ac, Mul (cy, cz))) = (1 : IntInf.int)
| delta (Not ae) = (1 : IntInf.int)
| delta (Imp (aj, ak)) = (1 : IntInf.int)
| delta (Iff (al, am)) = (1 : IntInf.int)
| delta (E an) = (1 : IntInf.int)
| delta (A ao) = (1 : IntInf.int)
| delta (Closed ap) = (1 : IntInf.int)
| delta (NClosed aq) = (1 : IntInf.int)
| delta (Dvd (i, Cn (cm, c, e))) =
(if cm = (0 : IntInf.int) then i else (1 : IntInf.int))
| delta (NDvd (i, Cn (dm, c, e))) =
(if dm = (0 : IntInf.int) then i else (1 : IntInf.int));
fun member A_ [] y = false
| member A_ (x :: xs) y = eq A_ x y orelse member A_ xs y;
fun remdups A_ [] = []
| remdups A_ (x :: xs) =
(if member A_ xs x then remdups A_ xs else x :: remdups A_ xs);
fun a_beta (And (p, q)) = (fn k => And (a_beta p k, a_beta q k))
| a_beta (Or (p, q)) = (fn k => Or (a_beta p k, a_beta q k))
| a_beta T = (fn _ => T)
| a_beta F = (fn _ => F)
| a_beta (Lt (C bo)) = (fn _ => Lt (C bo))
| a_beta (Lt (Bound bp)) = (fn _ => Lt (Bound bp))
| a_beta (Lt (Neg bt)) = (fn _ => Lt (Neg bt))
| a_beta (Lt (Add (bu, bv))) = (fn _ => Lt (Add (bu, bv)))
| a_beta (Lt (Sub (bw, bx))) = (fn _ => Lt (Sub (bw, bx)))
| a_beta (Lt (Mul (by, bz))) = (fn _ => Lt (Mul (by, bz)))
| a_beta (Le (C co)) = (fn _ => Le (C co))
| a_beta (Le (Bound cp)) = (fn _ => Le (Bound cp))
| a_beta (Le (Neg ct)) = (fn _ => Le (Neg ct))
| a_beta (Le (Add (cu, cv))) = (fn _ => Le (Add (cu, cv)))
| a_beta (Le (Sub (cw, cx))) = (fn _ => Le (Sub (cw, cx)))
| a_beta (Le (Mul (cy, cz))) = (fn _ => Le (Mul (cy, cz)))
| a_beta (Gt (C doa)) = (fn _ => Gt (C doa))
| a_beta (Gt (Bound dp)) = (fn _ => Gt (Bound dp))
| a_beta (Gt (Neg dt)) = (fn _ => Gt (Neg dt))
| a_beta (Gt (Add (du, dv))) = (fn _ => Gt (Add (du, dv)))
| a_beta (Gt (Sub (dw, dx))) = (fn _ => Gt (Sub (dw, dx)))
| a_beta (Gt (Mul (dy, dz))) = (fn _ => Gt (Mul (dy, dz)))
| a_beta (Ge (C eo)) = (fn _ => Ge (C eo))
| a_beta (Ge (Bound ep)) = (fn _ => Ge (Bound ep))
| a_beta (Ge (Neg et)) = (fn _ => Ge (Neg et))
| a_beta (Ge (Add (eu, ev))) = (fn _ => Ge (Add (eu, ev)))
| a_beta (Ge (Sub (ew, ex))) = (fn _ => Ge (Sub (ew, ex)))
| a_beta (Ge (Mul (ey, ez))) = (fn _ => Ge (Mul (ey, ez)))
| a_beta (Eq (C fo)) = (fn _ => Eq (C fo))
| a_beta (Eq (Bound fp)) = (fn _ => Eq (Bound fp))
| a_beta (Eq (Neg ft)) = (fn _ => Eq (Neg ft))
| a_beta (Eq (Add (fu, fv))) = (fn _ => Eq (Add (fu, fv)))
| a_beta (Eq (Sub (fw, fx))) = (fn _ => Eq (Sub (fw, fx)))
| a_beta (Eq (Mul (fy, fz))) = (fn _ => Eq (Mul (fy, fz)))
| a_beta (NEq (C go)) = (fn _ => NEq (C go))
| a_beta (NEq (Bound gp)) = (fn _ => NEq (Bound gp))
| a_beta (NEq (Neg gt)) = (fn _ => NEq (Neg gt))
| a_beta (NEq (Add (gu, gv))) = (fn _ => NEq (Add (gu, gv)))
| a_beta (NEq (Sub (gw, gx))) = (fn _ => NEq (Sub (gw, gx)))
| a_beta (NEq (Mul (gy, gz))) = (fn _ => NEq (Mul (gy, gz)))
| a_beta (Dvd (aa, C ho)) = (fn _ => Dvd (aa, C ho))
| a_beta (Dvd (aa, Bound hp)) = (fn _ => Dvd (aa, Bound hp))
| a_beta (Dvd (aa, Neg ht)) = (fn _ => Dvd (aa, Neg ht))
| a_beta (Dvd (aa, Add (hu, hv))) = (fn _ => Dvd (aa, Add (hu, hv)))
| a_beta (Dvd (aa, Sub (hw, hx))) = (fn _ => Dvd (aa, Sub (hw, hx)))
| a_beta (Dvd (aa, Mul (hy, hz))) = (fn _ => Dvd (aa, Mul (hy, hz)))
| a_beta (NDvd (ac, C io)) = (fn _ => NDvd (ac, C io))
| a_beta (NDvd (ac, Bound ip)) = (fn _ => NDvd (ac, Bound ip))
| a_beta (NDvd (ac, Neg it)) = (fn _ => NDvd (ac, Neg it))
| a_beta (NDvd (ac, Add (iu, iv))) = (fn _ => NDvd (ac, Add (iu, iv)))
| a_beta (NDvd (ac, Sub (iw, ix))) = (fn _ => NDvd (ac, Sub (iw, ix)))
| a_beta (NDvd (ac, Mul (iy, iz))) = (fn _ => NDvd (ac, Mul (iy, iz)))
| a_beta (Not ae) = (fn _ => Not ae)
| a_beta (Imp (aj, ak)) = (fn _ => Imp (aj, ak))
| a_beta (Iff (al, am)) = (fn _ => Iff (al, am))
| a_beta (E an) = (fn _ => E an)
| a_beta (A ao) = (fn _ => A ao)
| a_beta (Closed ap) = (fn _ => Closed ap)
| a_beta (NClosed aq) = (fn _ => NClosed aq)
| a_beta (Lt (Cn (cm, c, e))) =
(if cm = (0 : IntInf.int)
then (fn k =>
Lt (Cn ((0 : IntInf.int), (1 : IntInf.int),
Mul (div_inta k c, e))))
else (fn _ => Lt (Cn (suc (minus_nat cm (1 : IntInf.int)), c, e))))
| a_beta (Le (Cn (dm, c, e))) =
(if dm = (0 : IntInf.int)
then (fn k =>
Le (Cn ((0 : IntInf.int), (1 : IntInf.int),
Mul (div_inta k c, e))))
else (fn _ => Le (Cn (suc (minus_nat dm (1 : IntInf.int)), c, e))))
| a_beta (Gt (Cn (em, c, e))) =
(if em = (0 : IntInf.int)
then (fn k =>
Gt (Cn ((0 : IntInf.int), (1 : IntInf.int),
Mul (div_inta k c, e))))
else (fn _ => Gt (Cn (suc (minus_nat em (1 : IntInf.int)), c, e))))
| a_beta (Ge (Cn (fm, c, e))) =
(if fm = (0 : IntInf.int)
then (fn k =>
Ge (Cn ((0 : IntInf.int), (1 : IntInf.int),
Mul (div_inta k c, e))))
else (fn _ => Ge (Cn (suc (minus_nat fm (1 : IntInf.int)), c, e))))
| a_beta (Eq (Cn (gm, c, e))) =
(if gm = (0 : IntInf.int)
then (fn k =>
Eq (Cn ((0 : IntInf.int), (1 : IntInf.int),
Mul (div_inta k c, e))))
else (fn _ => Eq (Cn (suc (minus_nat gm (1 : IntInf.int)), c, e))))
| a_beta (NEq (Cn (hm, c, e))) =
(if hm = (0 : IntInf.int)
then (fn k =>
NEq (Cn ((0 : IntInf.int), (1 : IntInf.int),
Mul (div_inta k c, e))))
else (fn _ => NEq (Cn (suc (minus_nat hm (1 : IntInf.int)), c, e))))
| a_beta (Dvd (i, Cn (im, c, e))) =
(if im = (0 : IntInf.int)
then (fn k =>
Dvd (div_inta k c * i,
Cn ((0 : IntInf.int), (1 : IntInf.int),
Mul (div_inta k c, e))))
else (fn _ => Dvd (i, Cn (suc (minus_nat im (1 : IntInf.int)), c, e))))
| a_beta (NDvd (i, Cn (jm, c, e))) =
(if jm = (0 : IntInf.int)
then (fn k =>
NDvd (div_inta k c * i,
Cn ((0 : IntInf.int), (1 : IntInf.int),
Mul (div_inta k c, e))))
else (fn _ => NDvd (i, Cn (suc (minus_nat jm (1 : IntInf.int)), c, e))));
fun mirror (And (p, q)) = And (mirror p, mirror q)
| mirror (Or (p, q)) = Or (mirror p, mirror q)
| mirror T = T
| mirror F = F
| mirror (Lt (C bo)) = Lt (C bo)
| mirror (Lt (Bound bp)) = Lt (Bound bp)
| mirror (Lt (Neg bt)) = Lt (Neg bt)
| mirror (Lt (Add (bu, bv))) = Lt (Add (bu, bv))
| mirror (Lt (Sub (bw, bx))) = Lt (Sub (bw, bx))
| mirror (Lt (Mul (by, bz))) = Lt (Mul (by, bz))
| mirror (Le (C co)) = Le (C co)
| mirror (Le (Bound cp)) = Le (Bound cp)
| mirror (Le (Neg ct)) = Le (Neg ct)
| mirror (Le (Add (cu, cv))) = Le (Add (cu, cv))
| mirror (Le (Sub (cw, cx))) = Le (Sub (cw, cx))
| mirror (Le (Mul (cy, cz))) = Le (Mul (cy, cz))
| mirror (Gt (C doa)) = Gt (C doa)
| mirror (Gt (Bound dp)) = Gt (Bound dp)
| mirror (Gt (Neg dt)) = Gt (Neg dt)
| mirror (Gt (Add (du, dv))) = Gt (Add (du, dv))
| mirror (Gt (Sub (dw, dx))) = Gt (Sub (dw, dx))
| mirror (Gt (Mul (dy, dz))) = Gt (Mul (dy, dz))
| mirror (Ge (C eo)) = Ge (C eo)
| mirror (Ge (Bound ep)) = Ge (Bound ep)
| mirror (Ge (Neg et)) = Ge (Neg et)
| mirror (Ge (Add (eu, ev))) = Ge (Add (eu, ev))
| mirror (Ge (Sub (ew, ex))) = Ge (Sub (ew, ex))
| mirror (Ge (Mul (ey, ez))) = Ge (Mul (ey, ez))
| mirror (Eq (C fo)) = Eq (C fo)
| mirror (Eq (Bound fp)) = Eq (Bound fp)
| mirror (Eq (Neg ft)) = Eq (Neg ft)
| mirror (Eq (Add (fu, fv))) = Eq (Add (fu, fv))
| mirror (Eq (Sub (fw, fx))) = Eq (Sub (fw, fx))
| mirror (Eq (Mul (fy, fz))) = Eq (Mul (fy, fz))
| mirror (NEq (C go)) = NEq (C go)
| mirror (NEq (Bound gp)) = NEq (Bound gp)
| mirror (NEq (Neg gt)) = NEq (Neg gt)
| mirror (NEq (Add (gu, gv))) = NEq (Add (gu, gv))
| mirror (NEq (Sub (gw, gx))) = NEq (Sub (gw, gx))
| mirror (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz))
| mirror (Dvd (aa, C ho)) = Dvd (aa, C ho)
| mirror (Dvd (aa, Bound hp)) = Dvd (aa, Bound hp)
| mirror (Dvd (aa, Neg ht)) = Dvd (aa, Neg ht)
| mirror (Dvd (aa, Add (hu, hv))) = Dvd (aa, Add (hu, hv))
| mirror (Dvd (aa, Sub (hw, hx))) = Dvd (aa, Sub (hw, hx))
| mirror (Dvd (aa, Mul (hy, hz))) = Dvd (aa, Mul (hy, hz))
| mirror (NDvd (ac, C io)) = NDvd (ac, C io)
| mirror (NDvd (ac, Bound ip)) = NDvd (ac, Bound ip)
| mirror (NDvd (ac, Neg it)) = NDvd (ac, Neg it)
| mirror (NDvd (ac, Add (iu, iv))) = NDvd (ac, Add (iu, iv))
| mirror (NDvd (ac, Sub (iw, ix))) = NDvd (ac, Sub (iw, ix))
| mirror (NDvd (ac, Mul (iy, iz))) = NDvd (ac, Mul (iy, iz))
| mirror (Not ae) = Not ae
| mirror (Imp (aj, ak)) = Imp (aj, ak)
| mirror (Iff (al, am)) = Iff (al, am)
| mirror (E an) = E an
| mirror (A ao) = A ao
| mirror (Closed ap) = Closed ap
| mirror (NClosed aq) = NClosed aq
| mirror (Lt (Cn (cm, c, e))) =
(if cm = (0 : IntInf.int) then Gt (Cn ((0 : IntInf.int), c, Neg e))
else Lt (Cn (suc (minus_nat cm (1 : IntInf.int)), c, e)))
| mirror (Le (Cn (dm, c, e))) =
(if dm = (0 : IntInf.int) then Ge (Cn ((0 : IntInf.int), c, Neg e))
else Le (Cn (suc (minus_nat dm (1 : IntInf.int)), c, e)))
| mirror (Gt (Cn (em, c, e))) =
(if em = (0 : IntInf.int) then Lt (Cn ((0 : IntInf.int), c, Neg e))
else Gt (Cn (suc (minus_nat em (1 : IntInf.int)), c, e)))
| mirror (Ge (Cn (fm, c, e))) =
(if fm = (0 : IntInf.int) then Le (Cn ((0 : IntInf.int), c, Neg e))
else Ge (Cn (suc (minus_nat fm (1 : IntInf.int)), c, e)))
| mirror (Eq (Cn (gm, c, e))) =
(if gm = (0 : IntInf.int) then Eq (Cn ((0 : IntInf.int), c, Neg e))
else Eq (Cn (suc (minus_nat gm (1 : IntInf.int)), c, e)))
| mirror (NEq (Cn (hm, c, e))) =
(if hm = (0 : IntInf.int) then NEq (Cn ((0 : IntInf.int), c, Neg e))
else NEq (Cn (suc (minus_nat hm (1 : IntInf.int)), c, e)))
| mirror (Dvd (i, Cn (im, c, e))) =
(if im = (0 : IntInf.int) then Dvd (i, Cn ((0 : IntInf.int), c, Neg e))
else Dvd (i, Cn (suc (minus_nat im (1 : IntInf.int)), c, e)))
| mirror (NDvd (i, Cn (jm, c, e))) =
(if jm = (0 : IntInf.int) then NDvd (i, Cn ((0 : IntInf.int), c, Neg e))
else NDvd (i, Cn (suc (minus_nat jm (1 : IntInf.int)), c, e)));
fun size_list [] = (0 : IntInf.int)
| size_list (a :: lista) = size_list lista + suc (0 : IntInf.int);
val equal_num = {equal = equal_numa} : num equal;
fun unita p =
let
val pa = zlfm p;
val l = zeta pa;
val q =
And (Dvd (l, Cn ((0 : IntInf.int), (1 : IntInf.int), C (0 : IntInf.int))),
a_beta pa l);
val d = delta q;
val b = remdups equal_num (map simpnum (beta q));
val a = remdups equal_num (map simpnum (alpha q));
in
(if size_list b <= size_list a then (q, (b, d)) else (mirror q, (a, d)))
end;
fun numsubst0 t (C c) = C c
| numsubst0 t (Bound n) = (if n = (0 : IntInf.int) then t else Bound n)
| numsubst0 t (Neg a) = Neg (numsubst0 t a)
| numsubst0 t (Add (a, b)) = Add (numsubst0 t a, numsubst0 t b)
| numsubst0 t (Sub (a, b)) = Sub (numsubst0 t a, numsubst0 t b)
| numsubst0 t (Mul (i, a)) = Mul (i, numsubst0 t a)
| numsubst0 t (Cn (v, i, a)) =
(if v = (0 : IntInf.int) then Add (Mul (i, t), numsubst0 t a)
else Cn (suc (minus_nat v (1 : IntInf.int)), i, numsubst0 t a));
fun subst0 t T = T
| subst0 t F = F
| subst0 t (Lt a) = Lt (numsubst0 t a)
| subst0 t (Le a) = Le (numsubst0 t a)
| subst0 t (Gt a) = Gt (numsubst0 t a)
| subst0 t (Ge a) = Ge (numsubst0 t a)
| subst0 t (Eq a) = Eq (numsubst0 t a)
| subst0 t (NEq a) = NEq (numsubst0 t a)
| subst0 t (Dvd (i, a)) = Dvd (i, numsubst0 t a)
| subst0 t (NDvd (i, a)) = NDvd (i, numsubst0 t a)
| subst0 t (Not p) = Not (subst0 t p)
| subst0 t (And (p, q)) = And (subst0 t p, subst0 t q)
| subst0 t (Or (p, q)) = Or (subst0 t p, subst0 t q)
| subst0 t (Imp (p, q)) = Imp (subst0 t p, subst0 t q)
| subst0 t (Iff (p, q)) = Iff (subst0 t p, subst0 t q)
| subst0 t (Closed p) = Closed p
| subst0 t (NClosed p) = NClosed p;
fun minusinf (And (p, q)) = And (minusinf p, minusinf q)
| minusinf (Or (p, q)) = Or (minusinf p, minusinf q)
| minusinf T = T
| minusinf F = F
| minusinf (Lt (C bo)) = Lt (C bo)
| minusinf (Lt (Bound bp)) = Lt (Bound bp)
| minusinf (Lt (Neg bt)) = Lt (Neg bt)
| minusinf (Lt (Add (bu, bv))) = Lt (Add (bu, bv))
| minusinf (Lt (Sub (bw, bx))) = Lt (Sub (bw, bx))
| minusinf (Lt (Mul (by, bz))) = Lt (Mul (by, bz))
| minusinf (Le (C co)) = Le (C co)
| minusinf (Le (Bound cp)) = Le (Bound cp)
| minusinf (Le (Neg ct)) = Le (Neg ct)
| minusinf (Le (Add (cu, cv))) = Le (Add (cu, cv))
| minusinf (Le (Sub (cw, cx))) = Le (Sub (cw, cx))
| minusinf (Le (Mul (cy, cz))) = Le (Mul (cy, cz))
| minusinf (Gt (C doa)) = Gt (C doa)
| minusinf (Gt (Bound dp)) = Gt (Bound dp)
| minusinf (Gt (Neg dt)) = Gt (Neg dt)
| minusinf (Gt (Add (du, dv))) = Gt (Add (du, dv))
| minusinf (Gt (Sub (dw, dx))) = Gt (Sub (dw, dx))
| minusinf (Gt (Mul (dy, dz))) = Gt (Mul (dy, dz))
| minusinf (Ge (C eo)) = Ge (C eo)
| minusinf (Ge (Bound ep)) = Ge (Bound ep)
| minusinf (Ge (Neg et)) = Ge (Neg et)
| minusinf (Ge (Add (eu, ev))) = Ge (Add (eu, ev))
| minusinf (Ge (Sub (ew, ex))) = Ge (Sub (ew, ex))
| minusinf (Ge (Mul (ey, ez))) = Ge (Mul (ey, ez))
| minusinf (Eq (C fo)) = Eq (C fo)
| minusinf (Eq (Bound fp)) = Eq (Bound fp)
| minusinf (Eq (Neg ft)) = Eq (Neg ft)
| minusinf (Eq (Add (fu, fv))) = Eq (Add (fu, fv))
| minusinf (Eq (Sub (fw, fx))) = Eq (Sub (fw, fx))
| minusinf (Eq (Mul (fy, fz))) = Eq (Mul (fy, fz))
| minusinf (NEq (C go)) = NEq (C go)
| minusinf (NEq (Bound gp)) = NEq (Bound gp)
| minusinf (NEq (Neg gt)) = NEq (Neg gt)
| minusinf (NEq (Add (gu, gv))) = NEq (Add (gu, gv))
| minusinf (NEq (Sub (gw, gx))) = NEq (Sub (gw, gx))
| minusinf (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz))
| minusinf (Dvd (aa, ab)) = Dvd (aa, ab)
| minusinf (NDvd (ac, ad)) = NDvd (ac, ad)
| minusinf (Not ae) = Not ae
| minusinf (Imp (aj, ak)) = Imp (aj, ak)
| minusinf (Iff (al, am)) = Iff (al, am)
| minusinf (E an) = E an
| minusinf (A ao) = A ao
| minusinf (Closed ap) = Closed ap
| minusinf (NClosed aq) = NClosed aq
| minusinf (Lt (Cn (cm, c, e))) =
(if cm = (0 : IntInf.int) then T
else Lt (Cn (suc (minus_nat cm (1 : IntInf.int)), c, e)))
| minusinf (Le (Cn (dm, c, e))) =
(if dm = (0 : IntInf.int) then T
else Le (Cn (suc (minus_nat dm (1 : IntInf.int)), c, e)))
| minusinf (Gt (Cn (em, c, e))) =
(if em = (0 : IntInf.int) then F
else Gt (Cn (suc (minus_nat em (1 : IntInf.int)), c, e)))
| minusinf (Ge (Cn (fm, c, e))) =
(if fm = (0 : IntInf.int) then F
else Ge (Cn (suc (minus_nat fm (1 : IntInf.int)), c, e)))
| minusinf (Eq (Cn (gm, c, e))) =
(if gm = (0 : IntInf.int) then F
else Eq (Cn (suc (minus_nat gm (1 : IntInf.int)), c, e)))
| minusinf (NEq (Cn (hm, c, e))) =
(if hm = (0 : IntInf.int) then T
else NEq (Cn (suc (minus_nat hm (1 : IntInf.int)), c, e)));
fun cooper p =
let
val (q, (b, d)) = unita p;
val js = uptoa (1 : IntInf.int) d;
val mq = simpfm (minusinf q);
val md = evaldjf (fn j => simpfm (subst0 (C j) mq)) js;
in
(if equal_fm md T then T
else let
val qd =
evaldjf (fn (ba, j) => simpfm (subst0 (Add (ba, C j)) q))
(maps (fn ba => map (fn a => (ba, a)) js) b);
in
decr (disj md qd)
end)
end;
fun pa p = qelim (prep p) cooper;
end; (*struct Cooper_Procedure*)