Theory ZF

Up to index of Isabelle/ZF

theory ZF
imports FOL
(*  Title:      ZF/ZF.thy
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory
Copyright 1993 University of Cambridge
*)


header{*Zermelo-Fraenkel Set Theory*}

theory ZF
imports FOL
begin


declare [[eta_contract = false]]

typedecl i
arities i :: "term"

consts

zero :: "i" ("0") --{*the empty set*}
Pow :: "i => i" --{*power sets*}
Inf :: "i" --{*infinite set*}


text {*Bounded Quantifiers *}
consts
Ball :: "[i, i => o] => o"
Bex :: "[i, i => o] => o"


text {*General Union and Intersection *}
consts
Union :: "i => i"
Inter :: "i => i"


text {*Variations on Replacement *}
consts
PrimReplace :: "[i, [i, i] => o] => i"
Replace :: "[i, [i, i] => o] => i"
RepFun :: "[i, i => i] => i"
Collect :: "[i, i => o] => i"


text{*Definite descriptions -- via Replace over the set "1"*}
consts
The :: "(i => o) => i" (binder "THE " 10)
If :: "[o, i, i] => i" ("(if (_)/ then (_)/ else (_))" [10] 10)


abbreviation (input)
old_if :: "[o, i, i] => i" ("if '(_,_,_')") where
"if(P,a,b) == If(P,a,b)"



text {*Finite Sets *}
consts
Upair :: "[i, i] => i"
cons :: "[i, i] => i"
succ :: "i => i"


text {*Ordered Pairing *}
consts
Pair :: "[i, i] => i"
fst :: "i => i"
snd :: "i => i"
split :: "[[i, i] => 'a, i] => 'a::{}" --{*for pattern-matching*}


text {*Sigma and Pi Operators *}
consts
Sigma :: "[i, i => i] => i"
Pi :: "[i, i => i] => i"


text {*Relations and Functions *}
consts
"domain" :: "i => i"
range :: "i => i"
field :: "i => i"
converse :: "i => i"
relation :: "i => o" --{*recognizes sets of pairs*}
"function" :: "i => o" --{*recognizes functions; can have non-pairs*}
Lambda :: "[i, i => i] => i"
restrict :: "[i, i] => i"


text {*Infixes in order of decreasing precedence *}
consts

Image :: "[i, i] => i" (infixl "``" 90) --{*image*}
vimage :: "[i, i] => i" (infixl "-``" 90) --{*inverse image*}
"apply" :: "[i, i] => i" (infixl "`" 90) --{*function application*}
"Int" :: "[i, i] => i" (infixl "Int" 70) --{*binary intersection*}
"Un" :: "[i, i] => i" (infixl "Un" 65) --{*binary union*}
Diff :: "[i, i] => i" (infixl "-" 65) --{*set difference*}
Subset :: "[i, i] => o" (infixl "<=" 50) --{*subset relation*}
mem :: "[i, i] => o" (infixl ":" 50) --{*membership relation*}


abbreviation
not_mem :: "[i, i] => o" (infixl "~:" 50) --{*negated membership relation*}
where "x ~: y == ~ (x : y)"


abbreviation
cart_prod :: "[i, i] => i" (infixr "*" 80) --{*Cartesian product*}
where "A * B == Sigma(A, %_. B)"


abbreviation
function_space :: "[i, i] => i" (infixr "->" 60) --{*function space*}
where "A -> B == Pi(A, %_. B)"



nonterminal "is" and patterns

syntax
"" :: "i => is" ("_")
"_Enum" :: "[i, is] => is" ("_,/ _")

"_Finset" :: "is => i" ("{(_)}")
"_Tuple" :: "[i, is] => i" ("<(_,/ _)>")
"_Collect" :: "[pttrn, i, o] => i" ("(1{_: _ ./ _})")
"_Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _: _, _})")
"_RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _: _})" [51,0,51])
"_INTER" :: "[pttrn, i, i] => i" ("(3INT _:_./ _)" 10)
"_UNION" :: "[pttrn, i, i] => i" ("(3UN _:_./ _)" 10)
"_PROD" :: "[pttrn, i, i] => i" ("(3PROD _:_./ _)" 10)
"_SUM" :: "[pttrn, i, i] => i" ("(3SUM _:_./ _)" 10)
"_lam" :: "[pttrn, i, i] => i" ("(3lam _:_./ _)" 10)
"_Ball" :: "[pttrn, i, o] => o" ("(3ALL _:_./ _)" 10)
"_Bex" :: "[pttrn, i, o] => o" ("(3EX _:_./ _)" 10)

(** Patterns -- extends pre-defined type "pttrn" used in abstractions **)

"_pattern" :: "patterns => pttrn" ("<_>")
"" :: "pttrn => patterns" ("_")
"_patterns" :: "[pttrn, patterns] => patterns" ("_,/_")


translations
"{x, xs}" == "CONST cons(x, {xs})"
"{x}" == "CONST cons(x, 0)"
"{x:A. P}" == "CONST Collect(A, %x. P)"
"{y. x:A, Q}" == "CONST Replace(A, %x y. Q)"
"{b. x:A}" == "CONST RepFun(A, %x. b)"
"INT x:A. B" == "CONST Inter({B. x:A})"
"UN x:A. B" == "CONST Union({B. x:A})"
"PROD x:A. B" == "CONST Pi(A, %x. B)"
"SUM x:A. B" == "CONST Sigma(A, %x. B)"
"lam x:A. f" == "CONST Lambda(A, %x. f)"
"ALL x:A. P" == "CONST Ball(A, %x. P)"
"EX x:A. P" == "CONST Bex(A, %x. P)"

"<x, y, z>" == "<x, <y, z>>"
"<x, y>" == "CONST Pair(x, y)"
"%<x,y,zs>.b" == "CONST split(%x <y,zs>.b)"
"%<x,y>.b" == "CONST split(%x y. b)"



notation (xsymbols)
cart_prod (infixr "×" 80) and
Int (infixl "∩" 70) and
Un (infixl "∪" 65) and
function_space (infixr "->" 60) and
Subset (infixl "⊆" 50) and
mem (infixl "∈" 50) and
not_mem (infixl "∉" 50) and
Union ("\<Union>_" [90] 90) and
Inter ("\<Inter>_" [90] 90)


syntax (xsymbols)
"_Collect" :: "[pttrn, i, o] => i" ("(1{_ ∈ _ ./ _})")
"_Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _ ∈ _, _})")
"_RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _ ∈ _})" [51,0,51])
"_UNION" :: "[pttrn, i, i] => i" ("(3\<Union>_∈_./ _)" 10)
"_INTER" :: "[pttrn, i, i] => i" ("(3\<Inter>_∈_./ _)" 10)
"_PROD" :: "[pttrn, i, i] => i" ("(3Π_∈_./ _)" 10)
"_SUM" :: "[pttrn, i, i] => i" ("(3Σ_∈_./ _)" 10)
"_lam" :: "[pttrn, i, i] => i" ("(3λ_∈_./ _)" 10)
"_Ball" :: "[pttrn, i, o] => o" ("(3∀_∈_./ _)" 10)
"_Bex" :: "[pttrn, i, o] => o" ("(3∃_∈_./ _)" 10)
"_Tuple" :: "[i, is] => i" ("⟨(_,/ _)⟩")
"_pattern" :: "patterns => pttrn" ("⟨_⟩")


notation (HTML output)
cart_prod (infixr "×" 80) and
Int (infixl "∩" 70) and
Un (infixl "∪" 65) and
Subset (infixl "⊆" 50) and
mem (infixl "∈" 50) and
not_mem (infixl "∉" 50) and
Union ("\<Union>_" [90] 90) and
Inter ("\<Inter>_" [90] 90)


syntax (HTML output)
"_Collect" :: "[pttrn, i, o] => i" ("(1{_ ∈ _ ./ _})")
"_Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _ ∈ _, _})")
"_RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _ ∈ _})" [51,0,51])
"_UNION" :: "[pttrn, i, i] => i" ("(3\<Union>_∈_./ _)" 10)
"_INTER" :: "[pttrn, i, i] => i" ("(3\<Inter>_∈_./ _)" 10)
"_PROD" :: "[pttrn, i, i] => i" ("(3Π_∈_./ _)" 10)
"_SUM" :: "[pttrn, i, i] => i" ("(3Σ_∈_./ _)" 10)
"_lam" :: "[pttrn, i, i] => i" ("(3λ_∈_./ _)" 10)
"_Ball" :: "[pttrn, i, o] => o" ("(3∀_∈_./ _)" 10)
"_Bex" :: "[pttrn, i, o] => o" ("(3∃_∈_./ _)" 10)
"_Tuple" :: "[i, is] => i" ("⟨(_,/ _)⟩")
"_pattern" :: "patterns => pttrn" ("⟨_⟩")



finalconsts
0 Pow Inf Union PrimReplace mem


defs (* Bounded Quantifiers *)
Ball_def: "Ball(A, P) == ∀x. x∈A --> P(x)"
Bex_def: "Bex(A, P) == ∃x. x∈A & P(x)"

subset_def: "A <= B == ∀x∈A. x∈B"



axiomatization where

(* ZF axioms -- see Suppes p.238
Axioms for Union, Pow and Replace state existence only,
uniqueness is derivable using extensionality. *)


extension: "A = B <-> A <= B & B <= A" and
Union_iff: "A ∈ Union(C) <-> (∃B∈C. A∈B)" and
Pow_iff: "A ∈ Pow(B) <-> A <= B" and

(*We may name this set, though it is not uniquely defined.*)
infinity: "0∈Inf & (∀y∈Inf. succ(y): Inf)" and

(*This formulation facilitates case analysis on A.*)
foundation: "A=0 | (∃x∈A. ∀y∈x. y~:A)" and

(*Schema axiom since predicate P is a higher-order variable*)
replacement: "(∀x∈A. ∀y z. P(x,y) & P(x,z) --> y=z) ==>
b ∈ PrimReplace(A,P) <-> (∃x∈A. P(x,b))"



defs

(* Derived form of replacement, restricting P to its functional part.
The resulting set (for functional P) is the same as with
PrimReplace, but the rules are simpler. *)


Replace_def: "Replace(A,P) == PrimReplace(A, %x y. (EX!z. P(x,z)) & P(x,y))"

(* Functional form of replacement -- analgous to ML's map functional *)

RepFun_def: "RepFun(A,f) == {y . x∈A, y=f(x)}"

(* Separation and Pairing can be derived from the Replacement
and Powerset Axioms using the following definitions. *)


Collect_def: "Collect(A,P) == {y . x∈A, x=y & P(x)}"

(*Unordered pairs (Upair) express binary union/intersection and cons;
set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*)


Upair_def: "Upair(a,b) == {y. x∈Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"
cons_def: "cons(a,A) == Upair(a,a) Un A"
succ_def: "succ(i) == cons(i, i)"

(* Difference, general intersection, binary union and small intersection *)

Diff_def: "A - B == { x∈A . ~(x∈B) }"
Inter_def: "Inter(A) == { x∈Union(A) . ∀y∈A. x∈y}"
Un_def: "A Un B == Union(Upair(A,B))"
Int_def: "A Int B == Inter(Upair(A,B))"

(* definite descriptions *)
the_def: "The(P) == Union({y . x ∈ {0}, P(y)})"
if_def: "if(P,a,b) == THE z. P & z=a | ~P & z=b"

(* this "symmetric" definition works better than {{a}, {a,b}} *)
Pair_def: "<a,b> == {{a,a}, {a,b}}"
fst_def: "fst(p) == THE a. ∃b. p=<a,b>"
snd_def: "snd(p) == THE b. ∃a. p=<a,b>"
split_def: "split(c) == %p. c(fst(p), snd(p))"
Sigma_def: "Sigma(A,B) == \<Union>x∈A. \<Union>y∈B(x). {<x,y>}"

(* Operations on relations *)

(*converse of relation r, inverse of function*)
converse_def: "converse(r) == {z. w∈r, ∃x y. w=<x,y> & z=<y,x>}"

domain_def: "domain(r) == {x. w∈r, ∃y. w=<x,y>}"
range_def: "range(r) == domain(converse(r))"
field_def: "field(r) == domain(r) Un range(r)"
relation_def: "relation(r) == ∀z∈r. ∃x y. z = <x,y>"
function_def: "function(r) ==
∀x y. <x,y>:r --> (∀y'. <x,y'>:r --> y=y')"

image_def: "r `` A == {y : range(r) . ∃x∈A. <x,y> : r}"
vimage_def: "r -`` A == converse(r)``A"

(* Abstraction, application and Cartesian product of a family of sets *)

lam_def: "Lambda(A,b) == {<x,b(x)> . x∈A}"
apply_def: "f`a == Union(f``{a})"
Pi_def: "Pi(A,B) == {f∈Pow(Sigma(A,B)). A<=domain(f) & function(f)}"

(* Restrict the relation r to the domain A *)
restrict_def: "restrict(r,A) == {z : r. ∃x∈A. ∃y. z = <x,y>}"



subsection {* Substitution*}

(*Useful examples: singletonI RS subst_elem, subst_elem RSN (2,IntI) *)
lemma subst_elem: "[| b∈A; a=b |] ==> a∈A"
by (erule ssubst, assumption)


subsection{*Bounded universal quantifier*}

lemma ballI [intro!]: "[| !!x. x∈A ==> P(x) |] ==> ∀x∈A. P(x)"
by (simp add: Ball_def)

lemmas strip = impI allI ballI

lemma bspec [dest?]: "[| ∀x∈A. P(x); x: A |] ==> P(x)"
by (simp add: Ball_def)

(*Instantiates x first: better for automatic theorem proving?*)
lemma rev_ballE [elim]:
"[| ∀x∈A. P(x); x~:A ==> Q; P(x) ==> Q |] ==> Q"

by (simp add: Ball_def, blast)

lemma ballE: "[| ∀x∈A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q"
by blast

(*Used in the datatype package*)
lemma rev_bspec: "[| x: A; ∀x∈A. P(x) |] ==> P(x)"
by (simp add: Ball_def)

(*Trival rewrite rule; (∀x∈A.P)<->P holds only if A is nonempty!*)
lemma ball_triv [simp]: "(∀x∈A. P) <-> ((∃x. x∈A) --> P)"
by (simp add: Ball_def)

(*Congruence rule for rewriting*)
lemma ball_cong [cong]:
"[| A=A'; !!x. x∈A' ==> P(x) <-> P'(x) |] ==> (∀x∈A. P(x)) <-> (∀x∈A'. P'(x))"

by (simp add: Ball_def)

lemma atomize_ball:
"(!!x. x ∈ A ==> P(x)) == Trueprop (∀x∈A. P(x))"

by (simp only: Ball_def atomize_all atomize_imp)

lemmas [symmetric, rulify] = atomize_ball
and [symmetric, defn] = atomize_ball



subsection{*Bounded existential quantifier*}

lemma bexI [intro]: "[| P(x); x: A |] ==> ∃x∈A. P(x)"
by (simp add: Bex_def, blast)

(*The best argument order when there is only one x∈A*)
lemma rev_bexI: "[| x∈A; P(x) |] ==> ∃x∈A. P(x)"
by blast

(*Not of the general form for such rules; ~∃has become ALL~ *)
lemma bexCI: "[| ∀x∈A. ~P(x) ==> P(a); a: A |] ==> ∃x∈A. P(x)"
by blast

lemma bexE [elim!]: "[| ∃x∈A. P(x); !!x. [| x∈A; P(x) |] ==> Q |] ==> Q"
by (simp add: Bex_def, blast)

(*We do not even have (∃x∈A. True) <-> True unless A is nonempty!!*)
lemma bex_triv [simp]: "(∃x∈A. P) <-> ((∃x. x∈A) & P)"
by (simp add: Bex_def)

lemma bex_cong [cong]:
"[| A=A'; !!x. x∈A' ==> P(x) <-> P'(x) |]
==> (∃x∈A. P(x)) <-> (∃x∈A'. P'(x))"

by (simp add: Bex_def cong: conj_cong)



subsection{*Rules for subsets*}

lemma subsetI [intro!]:
"(!!x. x∈A ==> x∈B) ==> A <= B"

by (simp add: subset_def)

(*Rule in Modus Ponens style [was called subsetE] *)
lemma subsetD [elim]: "[| A <= B; c∈A |] ==> c∈B"
apply (unfold subset_def)
apply (erule bspec, assumption)
done

(*Classical elimination rule*)
lemma subsetCE [elim]:
"[| A <= B; c~:A ==> P; c∈B ==> P |] ==> P"

by (simp add: subset_def, blast)

(*Sometimes useful with premises in this order*)
lemma rev_subsetD: "[| c∈A; A<=B |] ==> c∈B"
by blast

lemma contra_subsetD: "[| A <= B; c ~: B |] ==> c ~: A"
by blast

lemma rev_contra_subsetD: "[| c ~: B; A <= B |] ==> c ~: A"
by blast

lemma subset_refl [simp]: "A <= A"
by blast

lemma subset_trans: "[| A<=B; B<=C |] ==> A<=C"
by blast

(*Useful for proving A<=B by rewriting in some cases*)
lemma subset_iff:
"A<=B <-> (∀x. x∈A --> x∈B)"

apply (unfold subset_def Ball_def)
apply (rule iff_refl)
done


subsection{*Rules for equality*}

(*Anti-symmetry of the subset relation*)
lemma equalityI [intro]: "[| A <= B; B <= A |] ==> A = B"
by (rule extension [THEN iffD2], rule conjI)


lemma equality_iffI: "(!!x. x∈A <-> x∈B) ==> A = B"
by (rule equalityI, blast+)

lemmas equalityD1 = extension [THEN iffD1, THEN conjunct1, standard]
lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2, standard]

lemma equalityE: "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P"
by (blast dest: equalityD1 equalityD2)

lemma equalityCE:
"[| A = B; [| c∈A; c∈B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P"

by (erule equalityE, blast)

lemma equality_iffD:
"A = B ==> (!!x. x : A <-> x : B)"

by auto


subsection{*Rules for Replace -- the derived form of replacement*}

lemma Replace_iff:
"b : {y. x∈A, P(x,y)} <-> (∃x∈A. P(x,b) & (∀y. P(x,y) --> y=b))"

apply (unfold Replace_def)
apply (rule replacement [THEN iff_trans], blast+)
done

(*Introduction; there must be a unique y such that P(x,y), namely y=b. *)
lemma ReplaceI [intro]:
"[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==>
b : {y. x∈A, P(x,y)}"

by (rule Replace_iff [THEN iffD2], blast)

(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *)
lemma ReplaceE:
"[| b : {y. x∈A, P(x,y)};
!!x. [| x: A; P(x,b); ∀y. P(x,y)-->y=b |] ==> R
|] ==> R"

by (rule Replace_iff [THEN iffD1, THEN bexE], simp+)

(*As above but without the (generally useless) 3rd assumption*)
lemma ReplaceE2 [elim!]:
"[| b : {y. x∈A, P(x,y)};
!!x. [| x: A; P(x,b) |] ==> R
|] ==> R"

by (erule ReplaceE, blast)

lemma Replace_cong [cong]:
"[| A=B; !!x y. x∈B ==> P(x,y) <-> Q(x,y) |] ==>
Replace(A,P) = Replace(B,Q)"

apply (rule equality_iffI)
apply (simp add: Replace_iff)
done


subsection{*Rules for RepFun*}

lemma RepFunI: "a ∈ A ==> f(a) : {f(x). x∈A}"
by (simp add: RepFun_def Replace_iff, blast)

(*Useful for coinduction proofs*)
lemma RepFun_eqI [intro]: "[| b=f(a); a ∈ A |] ==> b : {f(x). x∈A}"
apply (erule ssubst)
apply (erule RepFunI)
done

lemma RepFunE [elim!]:
"[| b : {f(x). x∈A};
!!x.[| x∈A; b=f(x) |] ==> P |] ==>
P"

by (simp add: RepFun_def Replace_iff, blast)

lemma RepFun_cong [cong]:
"[| A=B; !!x. x∈B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)"

by (simp add: RepFun_def)

lemma RepFun_iff [simp]: "b : {f(x). x∈A} <-> (∃x∈A. b=f(x))"
by (unfold Bex_def, blast)

lemma triv_RepFun [simp]: "{x. x∈A} = A"
by blast


subsection{*Rules for Collect -- forming a subset by separation*}

(*Separation is derivable from Replacement*)
lemma separation [simp]: "a : {x∈A. P(x)} <-> a∈A & P(a)"
by (unfold Collect_def, blast)

lemma CollectI [intro!]: "[| a∈A; P(a) |] ==> a : {x∈A. P(x)}"
by simp

lemma CollectE [elim!]: "[| a : {x∈A. P(x)}; [| a∈A; P(a) |] ==> R |] ==> R"
by simp

lemma CollectD1: "a : {x∈A. P(x)} ==> a∈A"
by (erule CollectE, assumption)

lemma CollectD2: "a : {x∈A. P(x)} ==> P(a)"
by (erule CollectE, assumption)

lemma Collect_cong [cong]:
"[| A=B; !!x. x∈B ==> P(x) <-> Q(x) |]
==> Collect(A, %x. P(x)) = Collect(B, %x. Q(x))"

by (simp add: Collect_def)


subsection{*Rules for Unions*}

declare Union_iff [simp]

(*The order of the premises presupposes that C is rigid; A may be flexible*)
lemma UnionI [intro]: "[| B: C; A: B |] ==> A: Union(C)"
by (simp, blast)

lemma UnionE [elim!]: "[| A ∈ Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R"
by (simp, blast)


subsection{*Rules for Unions of families*}
(* \<Union>x∈A. B(x) abbreviates Union({B(x). x∈A}) *)

lemma UN_iff [simp]: "b : (\<Union>x∈A. B(x)) <-> (∃x∈A. b ∈ B(x))"
by (simp add: Bex_def, blast)

(*The order of the premises presupposes that A is rigid; b may be flexible*)
lemma UN_I: "[| a: A; b: B(a) |] ==> b: (\<Union>x∈A. B(x))"
by (simp, blast)


lemma UN_E [elim!]:
"[| b : (\<Union>x∈A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R"

by blast

lemma UN_cong:
"[| A=B; !!x. x∈B ==> C(x)=D(x) |] ==> (\<Union>x∈A. C(x)) = (\<Union>x∈B. D(x))"

by simp


(*No "Addcongs [UN_cong]" because \<Union>is a combination of constants*)

(* UN_E appears before UnionE so that it is tried first, to avoid expensive
calls to hyp_subst_tac. Cannot include UN_I as it is unsafe: would enlarge
the search space.*)



subsection{*Rules for the empty set*}

(*The set {x∈0. False} is empty; by foundation it equals 0
See Suppes, page 21.*)

lemma not_mem_empty [simp]: "a ~: 0"
apply (cut_tac foundation)
apply (best dest: equalityD2)
done

lemmas emptyE [elim!] = not_mem_empty [THEN notE, standard]


lemma empty_subsetI [simp]: "0 <= A"
by blast

lemma equals0I: "[| !!y. y∈A ==> False |] ==> A=0"
by blast

lemma equals0D [dest]: "A=0 ==> a ~: A"
by blast

declare sym [THEN equals0D, dest]

lemma not_emptyI: "a∈A ==> A ~= 0"
by blast

lemma not_emptyE: "[| A ~= 0; !!x. x∈A ==> R |] ==> R"
by blast


subsection{*Rules for Inter*}

(*Not obviously useful for proving InterI, InterD, InterE*)
lemma Inter_iff: "A ∈ Inter(C) <-> (∀x∈C. A: x) & C≠0"
by (simp add: Inter_def Ball_def, blast)

(* Intersection is well-behaved only if the family is non-empty! *)
lemma InterI [intro!]:
"[| !!x. x: C ==> A: x; C≠0 |] ==> A ∈ Inter(C)"

by (simp add: Inter_iff)

(*A "destruct" rule -- every B in C contains A as an element, but
A∈B can hold when B∈C does not! This rule is analogous to "spec". *)

lemma InterD [elim, Pure.elim]: "[| A ∈ Inter(C); B ∈ C |] ==> A ∈ B"
by (unfold Inter_def, blast)

(*"Classical" elimination rule -- does not require exhibiting B∈C *)
lemma InterE [elim]:
"[| A ∈ Inter(C); B~:C ==> R; A∈B ==> R |] ==> R"

by (simp add: Inter_def, blast)


subsection{*Rules for Intersections of families*}

(* \<Inter>x∈A. B(x) abbreviates Inter({B(x). x∈A}) *)

lemma INT_iff: "b : (\<Inter>x∈A. B(x)) <-> (∀x∈A. b ∈ B(x)) & A≠0"
by (force simp add: Inter_def)

lemma INT_I: "[| !!x. x: A ==> b: B(x); A≠0 |] ==> b: (\<Inter>x∈A. B(x))"
by blast

lemma INT_E: "[| b : (\<Inter>x∈A. B(x)); a: A |] ==> b ∈ B(a)"
by blast

lemma INT_cong:
"[| A=B; !!x. x∈B ==> C(x)=D(x) |] ==> (\<Inter>x∈A. C(x)) = (\<Inter>x∈B. D(x))"

by simp

(*No "Addcongs [INT_cong]" because \<Inter>is a combination of constants*)


subsection{*Rules for Powersets*}

lemma PowI: "A <= B ==> A ∈ Pow(B)"
by (erule Pow_iff [THEN iffD2])

lemma PowD: "A ∈ Pow(B) ==> A<=B"
by (erule Pow_iff [THEN iffD1])

declare Pow_iff [iff]

lemmas Pow_bottom = empty_subsetI [THEN PowI] (* 0 ∈ Pow(B) *)
lemmas Pow_top = subset_refl [THEN PowI] (* A ∈ Pow(A) *)


subsection{*Cantor's Theorem: There is no surjection from a set to its powerset.*}

(*The search is undirected. Allowing redundant introduction rules may
make it diverge. Variable b represents ANY map, such as
(lam x∈A.b(x)): A->Pow(A). *)

lemma cantor: "∃S ∈ Pow(A). ∀x∈A. b(x) ~= S"
by (best elim!: equalityCE del: ReplaceI RepFun_eqI)

(*Functions for ML scripts*)
ML
{*
(*Converts A<=B to x∈A ==> x∈B*)
fun impOfSubs th = th RSN (2, @{thm rev_subsetD});

(*Takes assumptions ∀x∈A.P(x) and a∈A; creates assumption P(a)*)
val ball_tac = dtac @{thm bspec} THEN' assume_tac
*}


end