File ind_cases.ML

(*  Title:      ZF/Tools/ind_cases.ML
Author: Markus Wenzel, LMU Muenchen

Generic inductive cases facility for (co)inductive definitions.
*)

signature IND_CASES =
sig
val declare: string -> (Proof.context -> conv) -> theory -> theory
val inductive_cases: (Attrib.binding * string list) list -> theory -> theory
val setup: theory -> theory
end;

structure IndCases: IND_CASES =
struct


(* theory data *)

structure IndCasesData = Theory_Data
(
type T = (Proof.context -> conv) Symtab.table;
val empty = Symtab.empty;
val extend = I;
fun merge data = Symtab.merge (K true) data;
);


fun declare name f = IndCasesData.map (Symtab.update (name, f));

fun smart_cases ctxt s =
let
val thy = Proof_Context.theory_of ctxt;
fun err msg = cat_error msg ("Malformed set membership statement: " ^ s);
val A = Syntax.read_prop ctxt s handle ERROR msg => err msg;
val c = #1 (Term.dest_Const (Term.head_of (#2 (Ind_Syntax.dest_mem (FOLogic.dest_Trueprop
(Logic.strip_imp_concl A)))))) handle TERM _ => err "";
in
(case Symtab.lookup (IndCasesData.get thy) c of
NONE => error ("Unknown inductive cases rule for set " ^ quote c)
| SOME f => f ctxt (Thm.cterm_of thy A))
end;


(* inductive_cases command *)

fun inductive_cases args thy =
let
val ctxt = Proof_Context.init_global thy;
val facts = args |> map (fn ((name, srcs), props) =>
((name, map (Attrib.attribute thy) srcs),
map (Thm.no_attributes o single o smart_cases ctxt) props));
in thy |> Global_Theory.note_thmss "" facts |> snd end;


(* ind_cases method *)

val setup =
Method.setup @{binding "ind_cases"}
(Scan.lift (Scan.repeat1 Args.name_source) >>
(fn props => fn ctxt => Method.erule 0 (map (smart_cases ctxt) props)))
"dynamic case analysis on sets";


(* outer syntax *)

val _ =
Outer_Syntax.command "inductive_cases"
"create simplified instances of elimination rules (improper)" Keyword.thy_script
(Parse.and_list1 (Parse_Spec.opt_thm_name ":" -- Scan.repeat1 Parse.prop)
>> (Toplevel.theory o inductive_cases));

end;