Theory pair

Up to index of Isabelle/ZF

theory pair
imports upair
uses simpdata.ML
(*  Title:      ZF/pair.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
*)


header{*Ordered Pairs*}

theory pair imports upair
uses "simpdata.ML"
begin


setup {*
Simplifier.map_simpset_global (fn ss =>
ss setmksimps (K (map mk_eq o ZF_atomize o gen_all))
addcongs [@{thm if_weak_cong}])
*}


ML {* val ZF_ss = @{simpset} *}

simproc_setup defined_Bex ("EX x:A. P(x) & Q(x)") = {*
let
val unfold_bex_tac = unfold_tac @{thms Bex_def};
fun prove_bex_tac ss = unfold_bex_tac ss THEN Quantifier1.prove_one_point_ex_tac;
in fn _ => fn ss => Quantifier1.rearrange_bex (prove_bex_tac ss) ss end
*}


simproc_setup defined_Ball ("ALL x:A. P(x) --> Q(x)") = {*
let
val unfold_ball_tac = unfold_tac @{thms Ball_def};
fun prove_ball_tac ss = unfold_ball_tac ss THEN Quantifier1.prove_one_point_all_tac;
in fn _ => fn ss => Quantifier1.rearrange_ball (prove_ball_tac ss) ss end
*}



(** Lemmas for showing that <a,b> uniquely determines a and b **)

lemma singleton_eq_iff [iff]: "{a} = {b} <-> a=b"
by (rule extension [THEN iff_trans], blast)

lemma doubleton_eq_iff: "{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)"
by (rule extension [THEN iff_trans], blast)

lemma Pair_iff [simp]: "<a,b> = <c,d> <-> a=c & b=d"
by (simp add: Pair_def doubleton_eq_iff, blast)

lemmas Pair_inject = Pair_iff [THEN iffD1, THEN conjE, standard, elim!]

lemmas Pair_inject1 = Pair_iff [THEN iffD1, THEN conjunct1, standard]
lemmas Pair_inject2 = Pair_iff [THEN iffD1, THEN conjunct2, standard]

lemma Pair_not_0: "<a,b> ~= 0"
apply (unfold Pair_def)
apply (blast elim: equalityE)
done

lemmas Pair_neq_0 = Pair_not_0 [THEN notE, standard, elim!]

declare sym [THEN Pair_neq_0, elim!]

lemma Pair_neq_fst: "<a,b>=a ==> P"
apply (unfold Pair_def)
apply (rule consI1 [THEN mem_asym, THEN FalseE])
apply (erule subst)
apply (rule consI1)
done

lemma Pair_neq_snd: "<a,b>=b ==> P"
apply (unfold Pair_def)
apply (rule consI1 [THEN consI2, THEN mem_asym, THEN FalseE])
apply (erule subst)
apply (rule consI1 [THEN consI2])
done


subsection{*Sigma: Disjoint Union of a Family of Sets*}

text{*Generalizes Cartesian product*}

lemma Sigma_iff [simp]: "<a,b>: Sigma(A,B) <-> a:A & b:B(a)"
by (simp add: Sigma_def)

lemma SigmaI [TC,intro!]: "[| a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)"
by simp

lemmas SigmaD1 = Sigma_iff [THEN iffD1, THEN conjunct1, standard]
lemmas SigmaD2 = Sigma_iff [THEN iffD1, THEN conjunct2, standard]

(*The general elimination rule*)
lemma SigmaE [elim!]:
"[| c: Sigma(A,B);
!!x y.[| x:A; y:B(x); c=<x,y> |] ==> P
|] ==> P"

by (unfold Sigma_def, blast)

lemma SigmaE2 [elim!]:
"[| <a,b> : Sigma(A,B);
[| a:A; b:B(a) |] ==> P
|] ==> P"

by (unfold Sigma_def, blast)

lemma Sigma_cong:
"[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==>
Sigma(A,B) = Sigma(A',B')"

by (simp add: Sigma_def)

(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause
flex-flex pairs and the "Check your prover" error. Most
Sigmas and Pis are abbreviated as * or -> *)


lemma Sigma_empty1 [simp]: "Sigma(0,B) = 0"
by blast

lemma Sigma_empty2 [simp]: "A*0 = 0"
by blast

lemma Sigma_empty_iff: "A*B=0 <-> A=0 | B=0"
by blast


subsection{*Projections @{term fst} and @{term snd}*}

lemma fst_conv [simp]: "fst(<a,b>) = a"
by (simp add: fst_def)

lemma snd_conv [simp]: "snd(<a,b>) = b"
by (simp add: snd_def)

lemma fst_type [TC]: "p:Sigma(A,B) ==> fst(p) : A"
by auto

lemma snd_type [TC]: "p:Sigma(A,B) ==> snd(p) : B(fst(p))"
by auto

lemma Pair_fst_snd_eq: "a: Sigma(A,B) ==> <fst(a),snd(a)> = a"
by auto


subsection{*The Eliminator, @{term split}*}

(*A META-equality, so that it applies to higher types as well...*)
lemma split [simp]: "split(%x y. c(x,y), <a,b>) == c(a,b)"
by (simp add: split_def)

lemma split_type [TC]:
"[| p:Sigma(A,B);
!!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x,y>)
|] ==> split(%x y. c(x,y), p) : C(p)"

apply (erule SigmaE, auto)
done

lemma expand_split:
"u: A*B ==>
R(split(c,u)) <-> (ALL x:A. ALL y:B. u = <x,y> --> R(c(x,y)))"

apply (simp add: split_def)
apply auto
done


subsection{*A version of @{term split} for Formulae: Result Type @{typ o}*}

lemma splitI: "R(a,b) ==> split(R, <a,b>)"
by (simp add: split_def)

lemma splitE:
"[| split(R,z); z:Sigma(A,B);
!!x y. [| z = <x,y>; R(x,y) |] ==> P
|] ==> P"

apply (simp add: split_def)
apply (erule SigmaE, force)
done

lemma splitD: "split(R,<a,b>) ==> R(a,b)"
by (simp add: split_def)

text {*
\bigskip Complex rules for Sigma.
*}


lemma split_paired_Bex_Sigma [simp]:
"(∃z ∈ Sigma(A,B). P(z)) <-> (∃x ∈ A. ∃y ∈ B(x). P(<x,y>))"

by blast

lemma split_paired_Ball_Sigma [simp]:
"(∀z ∈ Sigma(A,B). P(z)) <-> (∀x ∈ A. ∀y ∈ B(x). P(<x,y>))"

by blast

end