Up to index of Isabelle/HOL
theory Presburger(* Title: HOL/Presburger.thy Author: Amine Chaieb, TU Muenchen *) header {* Decision Procedure for Presburger Arithmetic *} theory Presburger imports Groebner_Basis SetInterval uses "Tools/Qelim/qelim.ML" "Tools/Qelim/cooper_data.ML" "Tools/Qelim/generated_cooper.ML" ("Tools/Qelim/cooper.ML") ("Tools/Qelim/presburger.ML") begin setup CooperData.setup subsection{* The @{text "-∞"} and @{text "+∞"} Properties *} lemma minf: "[|∃(z ::'a::linorder).∀x<z. P x = P' x; ∃z.∀x<z. Q x = Q' x|] ==> ∃z.∀x<z. (P x ∧ Q x) = (P' x ∧ Q' x)" "[|∃(z ::'a::linorder).∀x<z. P x = P' x; ∃z.∀x<z. Q x = Q' x|] ==> ∃z.∀x<z. (P x ∨ Q x) = (P' x ∨ Q' x)" "∃(z ::'a::{linorder}).∀x<z.(x = t) = False" "∃(z ::'a::{linorder}).∀x<z.(x ≠ t) = True" "∃(z ::'a::{linorder}).∀x<z.(x < t) = True" "∃(z ::'a::{linorder}).∀x<z.(x ≤ t) = True" "∃(z ::'a::{linorder}).∀x<z.(x > t) = False" "∃(z ::'a::{linorder}).∀x<z.(x ≥ t) = False" "∃z.∀(x::'a::{linorder,plus,Ring_and_Field.dvd})<z. (d dvd x + s) = (d dvd x + s)" "∃z.∀(x::'a::{linorder,plus,Ring_and_Field.dvd})<z. (¬ d dvd x + s) = (¬ d dvd x + s)" "∃z.∀x<z. F = F" by ((erule exE, erule exE,rule_tac x="min z za" in exI,simp)+, (rule_tac x="t" in exI,fastsimp)+) simp_all lemma pinf: "[|∃(z ::'a::linorder).∀x>z. P x = P' x; ∃z.∀x>z. Q x = Q' x|] ==> ∃z.∀x>z. (P x ∧ Q x) = (P' x ∧ Q' x)" "[|∃(z ::'a::linorder).∀x>z. P x = P' x; ∃z.∀x>z. Q x = Q' x|] ==> ∃z.∀x>z. (P x ∨ Q x) = (P' x ∨ Q' x)" "∃(z ::'a::{linorder}).∀x>z.(x = t) = False" "∃(z ::'a::{linorder}).∀x>z.(x ≠ t) = True" "∃(z ::'a::{linorder}).∀x>z.(x < t) = False" "∃(z ::'a::{linorder}).∀x>z.(x ≤ t) = False" "∃(z ::'a::{linorder}).∀x>z.(x > t) = True" "∃(z ::'a::{linorder}).∀x>z.(x ≥ t) = True" "∃z.∀(x::'a::{linorder,plus,Ring_and_Field.dvd})>z. (d dvd x + s) = (d dvd x + s)" "∃z.∀(x::'a::{linorder,plus,Ring_and_Field.dvd})>z. (¬ d dvd x + s) = (¬ d dvd x + s)" "∃z.∀x>z. F = F" by ((erule exE, erule exE,rule_tac x="max z za" in exI,simp)+,(rule_tac x="t" in exI,fastsimp)+) simp_all lemma inf_period: "[|∀x k. P x = P (x - k*D); ∀x k. Q x = Q (x - k*D)|] ==> ∀x k. (P x ∧ Q x) = (P (x - k*D) ∧ Q (x - k*D))" "[|∀x k. P x = P (x - k*D); ∀x k. Q x = Q (x - k*D)|] ==> ∀x k. (P x ∨ Q x) = (P (x - k*D) ∨ Q (x - k*D))" "(d::'a::{comm_ring,Ring_and_Field.dvd}) dvd D ==> ∀x k. (d dvd x + t) = (d dvd (x - k*D) + t)" "(d::'a::{comm_ring,Ring_and_Field.dvd}) dvd D ==> ∀x k. (¬d dvd x + t) = (¬d dvd (x - k*D) + t)" "∀x k. F = F" apply (auto elim!: dvdE simp add: algebra_simps) unfolding mult_assoc [symmetric] left_distrib [symmetric] left_diff_distrib [symmetric] unfolding dvd_def mult_commute [of d] by auto subsection{* The A and B sets *} lemma bset: "[|∀x.(∀j ∈ {1 .. D}. ∀b∈B. x ≠ b + j)--> P x --> P(x - D) ; ∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> Q x --> Q(x - D)|] ==> ∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j) --> (P x ∧ Q x) --> (P(x - D) ∧ Q (x - D))" "[|∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> P x --> P(x - D) ; ∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> Q x --> Q(x - D)|] ==> ∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (P x ∨ Q x) --> (P(x - D) ∨ Q (x - D))" "[|D>0; t - 1∈ B|] ==> (∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (x = t) --> (x - D = t))" "[|D>0 ; t ∈ B|] ==>(∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (x ≠ t) --> (x - D ≠ t))" "D>0 ==> (∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (x < t) --> (x - D < t))" "D>0 ==> (∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (x ≤ t) --> (x - D ≤ t))" "[|D>0 ; t ∈ B|] ==>(∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (x > t) --> (x - D > t))" "[|D>0 ; t - 1 ∈ B|] ==>(∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (x ≥ t) --> (x - D ≥ t))" "d dvd D ==>(∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (d dvd x+t) --> (d dvd (x - D) + t))" "d dvd D ==>(∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (¬d dvd x+t) --> (¬ d dvd (x - D) + t))" "∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j) --> F --> F" proof (blast, blast) assume dp: "D > 0" and tB: "t - 1∈ B" show "(∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (x = t) --> (x - D = t))" apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t - 1"]) apply algebra using dp tB by simp_all next assume dp: "D > 0" and tB: "t ∈ B" show "(∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (x ≠ t) --> (x - D ≠ t))" apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"]) apply algebra using dp tB by simp_all next assume dp: "D > 0" thus "(∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (x < t) --> (x - D < t))" by arith next assume dp: "D > 0" thus "∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (x ≤ t) --> (x - D ≤ t)" by arith next assume dp: "D > 0" and tB:"t ∈ B" {fix x assume nob: "∀j∈{1 .. D}. ∀b∈B. x ≠ b + j" and g: "x > t" and ng: "¬ (x - D) > t" hence "x -t ≤ D" and "1 ≤ x - t" by simp+ hence "∃j ∈ {1 .. D}. x - t = j" by auto hence "∃j ∈ {1 .. D}. x = t + j" by (simp add: algebra_simps) with nob tB have "False" by simp} thus "∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (x > t) --> (x - D > t)" by blast next assume dp: "D > 0" and tB:"t - 1∈ B" {fix x assume nob: "∀j∈{1 .. D}. ∀b∈B. x ≠ b + j" and g: "x ≥ t" and ng: "¬ (x - D) ≥ t" hence "x - (t - 1) ≤ D" and "1 ≤ x - (t - 1)" by simp+ hence "∃j ∈ {1 .. D}. x - (t - 1) = j" by auto hence "∃j ∈ {1 .. D}. x = (t - 1) + j" by (simp add: algebra_simps) with nob tB have "False" by simp} thus "∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (x ≥ t) --> (x - D ≥ t)" by blast next assume d: "d dvd D" {fix x assume H: "d dvd x + t" with d have "d dvd (x - D) + t" by algebra} thus "∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (d dvd x+t) --> (d dvd (x - D) + t)" by simp next assume d: "d dvd D" {fix x assume H: "¬(d dvd x + t)" with d have "¬ d dvd (x - D) + t" by (clarsimp simp add: dvd_def,erule_tac x= "ka + k" in allE,simp add: algebra_simps)} thus "∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)--> (¬d dvd x+t) --> (¬d dvd (x - D) + t)" by auto qed blast lemma aset: "[|∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> P x --> P(x + D) ; ∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> Q x --> Q(x + D)|] ==> ∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j) --> (P x ∧ Q x) --> (P(x + D) ∧ Q (x + D))" "[|∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> P x --> P(x + D) ; ∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> Q x --> Q(x + D)|] ==> ∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (P x ∨ Q x) --> (P(x + D) ∨ Q (x + D))" "[|D>0; t + 1∈ A|] ==> (∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (x = t) --> (x + D = t))" "[|D>0 ; t ∈ A|] ==>(∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (x ≠ t) --> (x + D ≠ t))" "[|D>0; t∈ A|] ==>(∀(x::int). (∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (x < t) --> (x + D < t))" "[|D>0; t + 1 ∈ A|] ==> (∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (x ≤ t) --> (x + D ≤ t))" "D>0 ==>(∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (x > t) --> (x + D > t))" "D>0 ==>(∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (x ≥ t) --> (x + D ≥ t))" "d dvd D ==>(∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (d dvd x+t) --> (d dvd (x + D) + t))" "d dvd D ==>(∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (¬d dvd x+t) --> (¬ d dvd (x + D) + t))" "∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j) --> F --> F" proof (blast, blast) assume dp: "D > 0" and tA: "t + 1 ∈ A" show "(∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (x = t) --> (x + D = t))" apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t + 1"]) using dp tA by simp_all next assume dp: "D > 0" and tA: "t ∈ A" show "(∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (x ≠ t) --> (x + D ≠ t))" apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"]) using dp tA by simp_all next assume dp: "D > 0" thus "(∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (x > t) --> (x + D > t))" by arith next assume dp: "D > 0" thus "∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (x ≥ t) --> (x + D ≥ t)" by arith next assume dp: "D > 0" and tA:"t ∈ A" {fix x assume nob: "∀j∈{1 .. D}. ∀b∈A. x ≠ b - j" and g: "x < t" and ng: "¬ (x + D) < t" hence "t - x ≤ D" and "1 ≤ t - x" by simp+ hence "∃j ∈ {1 .. D}. t - x = j" by auto hence "∃j ∈ {1 .. D}. x = t - j" by (auto simp add: algebra_simps) with nob tA have "False" by simp} thus "∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (x < t) --> (x + D < t)" by blast next assume dp: "D > 0" and tA:"t + 1∈ A" {fix x assume nob: "∀j∈{1 .. D}. ∀b∈A. x ≠ b - j" and g: "x ≤ t" and ng: "¬ (x + D) ≤ t" hence "(t + 1) - x ≤ D" and "1 ≤ (t + 1) - x" by (simp_all add: algebra_simps) hence "∃j ∈ {1 .. D}. (t + 1) - x = j" by auto hence "∃j ∈ {1 .. D}. x = (t + 1) - j" by (auto simp add: algebra_simps) with nob tA have "False" by simp} thus "∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (x ≤ t) --> (x + D ≤ t)" by blast next assume d: "d dvd D" {fix x assume H: "d dvd x + t" with d have "d dvd (x + D) + t" by (clarsimp simp add: dvd_def,rule_tac x= "ka + k" in exI,simp add: algebra_simps)} thus "∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (d dvd x+t) --> (d dvd (x + D) + t)" by simp next assume d: "d dvd D" {fix x assume H: "¬(d dvd x + t)" with d have "¬d dvd (x + D) + t" by (clarsimp simp add: dvd_def,erule_tac x= "ka - k" in allE,simp add: algebra_simps)} thus "∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)--> (¬d dvd x+t) --> (¬d dvd (x + D) + t)" by auto qed blast subsection{* Cooper's Theorem @{text "-∞"} and @{text "+∞"} Version *} subsubsection{* First some trivial facts about periodic sets or predicates *} lemma periodic_finite_ex: assumes dpos: "(0::int) < d" and modd: "ALL x k. P x = P(x - k*d)" shows "(EX x. P x) = (EX j : {1..d}. P j)" (is "?LHS = ?RHS") proof assume ?LHS then obtain x where P: "P x" .. have "x mod d = x - (x div d)*d" by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq) hence Pmod: "P x = P(x mod d)" using modd by simp show ?RHS proof (cases) assume "x mod d = 0" hence "P 0" using P Pmod by simp moreover have "P 0 = P(0 - (-1)*d)" using modd by blast ultimately have "P d" by simp moreover have "d : {1..d}" using dpos by(simp add:atLeastAtMost_iff) ultimately show ?RHS .. next assume not0: "x mod d ≠ 0" have "P(x mod d)" using dpos P Pmod by(simp add:pos_mod_sign pos_mod_bound) moreover have "x mod d : {1..d}" proof - from dpos have "0 ≤ x mod d" by(rule pos_mod_sign) moreover from dpos have "x mod d < d" by(rule pos_mod_bound) ultimately show ?thesis using not0 by(simp add:atLeastAtMost_iff) qed ultimately show ?RHS .. qed qed auto subsubsection{* The @{text "-∞"} Version*} lemma decr_lemma: "0 < (d::int) ==> x - (abs(x-z)+1) * d < z" by(induct rule: int_gr_induct,simp_all add:int_distrib) lemma incr_lemma: "0 < (d::int) ==> z < x + (abs(x-z)+1) * d" by(induct rule: int_gr_induct, simp_all add:int_distrib) theorem int_induct[case_names base step1 step2]: assumes base: "P(k::int)" and step1: "!!i. [|k ≤ i; P i|] ==> P(i+1)" and step2: "!!i. [|k ≥ i; P i|] ==> P(i - 1)" shows "P i" proof - have "i ≤ k ∨ i≥ k" by arith thus ?thesis using prems int_ge_induct[where P="P" and k="k" and i="i"] int_le_induct[where P="P" and k="k" and i="i"] by blast qed lemma decr_mult_lemma: assumes dpos: "(0::int) < d" and minus: "∀x. P x --> P(x - d)" and knneg: "0 <= k" shows "ALL x. P x --> P(x - k*d)" using knneg proof (induct rule:int_ge_induct) case base thus ?case by simp next case (step i) {fix x have "P x --> P (x - i * d)" using step.hyps by blast also have "… --> P(x - (i + 1) * d)" using minus[THEN spec, of "x - i * d"] by (simp add:int_distrib OrderedGroup.diff_diff_eq[symmetric]) ultimately have "P x --> P(x - (i + 1) * d)" by blast} thus ?case .. qed lemma minusinfinity: assumes dpos: "0 < d" and P1eqP1: "ALL x k. P1 x = P1(x - k*d)" and ePeqP1: "EX z::int. ALL x. x < z --> (P x = P1 x)" shows "(EX x. P1 x) --> (EX x. P x)" proof assume eP1: "EX x. P1 x" then obtain x where P1: "P1 x" .. from ePeqP1 obtain z where P1eqP: "ALL x. x < z --> (P x = P1 x)" .. let ?w = "x - (abs(x-z)+1) * d" from dpos have w: "?w < z" by(rule decr_lemma) have "P1 x = P1 ?w" using P1eqP1 by blast also have "… = P(?w)" using w P1eqP by blast finally have "P ?w" using P1 by blast thus "EX x. P x" .. qed lemma cpmi: assumes dp: "0 < D" and p1:"∃z. ∀ x< z. P x = P' x" and nb:"∀x.(∀ j∈ {1..D}. ∀(b::int) ∈ B. x ≠ b+j) --> P (x) --> P (x - D)" and pd: "∀ x k. P' x = P' (x-k*D)" shows "(∃x. P x) = ((∃ j∈ {1..D} . P' j) | (∃ j ∈ {1..D}.∃ b∈ B. P (b+j)))" (is "?L = (?R1 ∨ ?R2)") proof- {assume "?R2" hence "?L" by blast} moreover {assume H:"?R1" hence "?L" using minusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp} moreover { fix x assume P: "P x" and H: "¬ ?R2" {fix y assume "¬ (∃j∈{1..D}. ∃b∈B. P (b + j))" and P: "P y" hence "~(EX (j::int) : {1..D}. EX (b::int) : B. y = b+j)" by auto with nb P have "P (y - D)" by auto } hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D)" by blast with H P have th: " ∀x. P x --> P (x - D)" by auto from p1 obtain z where z: "ALL x. x < z --> (P x = P' x)" by blast let ?y = "x - (¦x - z¦ + 1)*D" have zp: "0 <= (¦x - z¦ + 1)" by arith from dp have yz: "?y < z" using decr_lemma[OF dp] by simp from z[rule_format, OF yz] decr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto with periodic_finite_ex[OF dp pd] have "?R1" by blast} ultimately show ?thesis by blast qed subsubsection {* The @{text "+∞"} Version*} lemma plusinfinity: assumes dpos: "(0::int) < d" and P1eqP1: "∀x k. P' x = P'(x - k*d)" and ePeqP1: "∃ z. ∀ x>z. P x = P' x" shows "(∃ x. P' x) --> (∃ x. P x)" proof assume eP1: "EX x. P' x" then obtain x where P1: "P' x" .. from ePeqP1 obtain z where P1eqP: "∀x>z. P x = P' x" .. let ?w' = "x + (abs(x-z)+1) * d" let ?w = "x - (-(abs(x-z) + 1))*d" have ww'[simp]: "?w = ?w'" by (simp add: algebra_simps) from dpos have w: "?w > z" by(simp only: ww' incr_lemma) hence "P' x = P' ?w" using P1eqP1 by blast also have "… = P(?w)" using w P1eqP by blast finally have "P ?w" using P1 by blast thus "EX x. P x" .. qed lemma incr_mult_lemma: assumes dpos: "(0::int) < d" and plus: "ALL x::int. P x --> P(x + d)" and knneg: "0 <= k" shows "ALL x. P x --> P(x + k*d)" using knneg proof (induct rule:int_ge_induct) case base thus ?case by simp next case (step i) {fix x have "P x --> P (x + i * d)" using step.hyps by blast also have "… --> P(x + (i + 1) * d)" using plus[THEN spec, of "x + i * d"] by (simp add:int_distrib zadd_ac) ultimately have "P x --> P(x + (i + 1) * d)" by blast} thus ?case .. qed lemma cppi: assumes dp: "0 < D" and p1:"∃z. ∀ x> z. P x = P' x" and nb:"∀x.(∀ j∈ {1..D}. ∀(b::int) ∈ A. x ≠ b - j) --> P (x) --> P (x + D)" and pd: "∀ x k. P' x= P' (x-k*D)" shows "(∃x. P x) = ((∃ j∈ {1..D} . P' j) | (∃ j ∈ {1..D}.∃ b∈ A. P (b - j)))" (is "?L = (?R1 ∨ ?R2)") proof- {assume "?R2" hence "?L" by blast} moreover {assume H:"?R1" hence "?L" using plusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp} moreover { fix x assume P: "P x" and H: "¬ ?R2" {fix y assume "¬ (∃j∈{1..D}. ∃b∈A. P (b - j))" and P: "P y" hence "~(EX (j::int) : {1..D}. EX (b::int) : A. y = b - j)" by auto with nb P have "P (y + D)" by auto } hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : A. P(b-j)) --> P (x) --> P (x + D)" by blast with H P have th: " ∀x. P x --> P (x + D)" by auto from p1 obtain z where z: "ALL x. x > z --> (P x = P' x)" by blast let ?y = "x + (¦x - z¦ + 1)*D" have zp: "0 <= (¦x - z¦ + 1)" by arith from dp have yz: "?y > z" using incr_lemma[OF dp] by simp from z[rule_format, OF yz] incr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto with periodic_finite_ex[OF dp pd] have "?R1" by blast} ultimately show ?thesis by blast qed lemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})" apply(simp add:atLeastAtMost_def atLeast_def atMost_def) apply(fastsimp) done theorem unity_coeff_ex: "(∃(x::'a::{semiring_0,Ring_and_Field.dvd}). P (l * x)) ≡ (∃x. l dvd (x + 0) ∧ P x)" apply (rule eq_reflection [symmetric]) apply (rule iffI) defer apply (erule exE) apply (rule_tac x = "l * x" in exI) apply (simp add: dvd_def) apply (rule_tac x = x in exI, simp) apply (erule exE) apply (erule conjE) apply simp apply (erule dvdE) apply (rule_tac x = k in exI) apply simp done lemma zdvd_mono: assumes not0: "(k::int) ≠ 0" shows "((m::int) dvd t) ≡ (k*m dvd k*t)" using not0 by (simp add: dvd_def) lemma uminus_dvd_conv: "(d dvd (t::int)) ≡ (-d dvd t)" "(d dvd (t::int)) ≡ (d dvd -t)" by simp_all text {* \bigskip Theorems for transforming predicates on nat to predicates on @{text int}*} lemma all_nat: "(∀x::nat. P x) = (∀x::int. 0 <= x --> P (nat x))" by (simp split add: split_nat) lemma ex_nat: "(∃x::nat. P x) = (∃x::int. 0 <= x ∧ P (nat x))" apply (auto split add: split_nat) apply (rule_tac x="int x" in exI, simp) apply (rule_tac x = "nat x" in exI,erule_tac x = "nat x" in allE, simp) done lemma zdiff_int_split: "P (int (x - y)) = ((y ≤ x --> P (int x - int y)) ∧ (x < y --> P 0))" by (case_tac "y ≤ x", simp_all add: zdiff_int) lemma number_of1: "(0::int) <= number_of n ==> (0::int) <= number_of (Int.Bit0 n) ∧ (0::int) <= number_of (Int.Bit1 n)" by simp lemma number_of2: "(0::int) <= Numeral0" by simp lemma Suc_plus1: "Suc n = n + 1" by simp text {* \medskip Specific instances of congruence rules, to prevent simplifier from looping. *} theorem imp_le_cong: "(0 <= x ==> P = P') ==> (0 <= (x::int) --> P) = (0 <= x --> P')" by simp theorem conj_le_cong: "(0 <= x ==> P = P') ==> (0 <= (x::int) ∧ P) = (0 <= x ∧ P')" by (simp cong: conj_cong) lemma int_eq_number_of_eq: "(((number_of v)::int) = (number_of w)) = iszero ((number_of (v + (uminus w)))::int)" by (rule eq_number_of_eq) declare dvd_eq_mod_eq_0[symmetric, presburger] declare mod_1[presburger] declare mod_0[presburger] declare mod_by_1[presburger] declare zmod_zero[presburger] declare zmod_self[presburger] declare mod_self[presburger] declare mod_by_0[presburger] declare mod_div_trivial[presburger] declare div_mod_equality2[presburger] declare div_mod_equality[presburger] declare mod_div_equality2[presburger] declare mod_div_equality[presburger] declare mod_mult_self1[presburger] declare mod_mult_self2[presburger] declare zdiv_zmod_equality2[presburger] declare zdiv_zmod_equality[presburger] declare mod2_Suc_Suc[presburger] lemma [presburger]: "(a::int) div 0 = 0" and [presburger]: "a mod 0 = a" by simp_all use "Tools/Qelim/cooper.ML" oracle linzqe_oracle = Coopereif.cooper_oracle use "Tools/Qelim/presburger.ML" setup {* Arith_Data.add_tactic "Presburger arithmetic" (K (Presburger.cooper_tac true [] [])) *} method_setup presburger = {* let fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K () fun simple_keyword k = Scan.lift (Args.$$$ k) >> K () val addN = "add" val delN = "del" val elimN = "elim" val any_keyword = keyword addN || keyword delN || simple_keyword elimN val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; in Scan.optional (simple_keyword elimN >> K false) true -- Scan.optional (keyword addN |-- thms) [] -- Scan.optional (keyword delN |-- thms) [] >> (fn ((elim, add_ths), del_ths) => fn ctxt => SIMPLE_METHOD' (Presburger.cooper_tac elim add_ths del_ths ctxt)) end *} "Cooper's algorithm for Presburger arithmetic" lemma [presburger, algebra]: "m mod 2 = (1::nat) <-> ¬ 2 dvd m " by presburger lemma [presburger, algebra]: "m mod 2 = Suc 0 <-> ¬ 2 dvd m " by presburger lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = (1::nat) <-> ¬ 2 dvd m " by presburger lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = Suc 0 <-> ¬ 2 dvd m " by presburger lemma [presburger, algebra]: "m mod 2 = (1::int) <-> ¬ 2 dvd m " by presburger lemma zdvd_period: fixes a d :: int assumes advdd: "a dvd d" shows "a dvd (x + t) <-> a dvd ((x + c * d) + t)" using advdd apply - apply (rule iffI) by algebra+ end