Up to index of Isabelle/HOL
theory Recdef(* Title: HOL/Recdef.thy Author: Konrad Slind and Markus Wenzel, TU Muenchen *) header {* TFL: recursive function definitions *} theory Recdef imports FunDef Plain uses ("Tools/TFL/casesplit.ML") ("Tools/TFL/utils.ML") ("Tools/TFL/usyntax.ML") ("Tools/TFL/dcterm.ML") ("Tools/TFL/thms.ML") ("Tools/TFL/rules.ML") ("Tools/TFL/thry.ML") ("Tools/TFL/tfl.ML") ("Tools/TFL/post.ML") ("Tools/recdef_package.ML") begin text{** This form avoids giant explosions in proofs. NOTE USE OF ==*} lemma def_wfrec: "[| f==wfrec r H; wf(r) |] ==> f(a) = H (cut f r a) a" apply auto apply (blast intro: wfrec) done lemma tfl_wf_induct: "ALL R. wf R --> (ALL P. (ALL x. (ALL y. (y,x):R --> P y) --> P x) --> (ALL x. P x))" apply clarify apply (rule_tac r = R and P = P and a = x in wf_induct, assumption, blast) done lemma tfl_cut_apply: "ALL f R. (x,a):R --> (cut f R a)(x) = f(x)" apply clarify apply (rule cut_apply, assumption) done lemma tfl_wfrec: "ALL M R f. (f=wfrec R M) --> wf R --> (ALL x. f x = M (cut f R x) x)" apply clarify apply (erule wfrec) done lemma tfl_eq_True: "(x = True) --> x" by blast lemma tfl_rev_eq_mp: "(x = y) --> y --> x"; by blast lemma tfl_simp_thm: "(x --> y) --> (x = x') --> (x' --> y)" by blast lemma tfl_P_imp_P_iff_True: "P ==> P = True" by blast lemma tfl_imp_trans: "(A --> B) ==> (B --> C) ==> (A --> C)" by blast lemma tfl_disj_assoc: "(a ∨ b) ∨ c == a ∨ (b ∨ c)" by simp lemma tfl_disjE: "P ∨ Q ==> P --> R ==> Q --> R ==> R" by blast lemma tfl_exE: "∃x. P x ==> ∀x. P x --> Q ==> Q" by blast use "Tools/TFL/casesplit.ML" use "Tools/TFL/utils.ML" use "Tools/TFL/usyntax.ML" use "Tools/TFL/dcterm.ML" use "Tools/TFL/thms.ML" use "Tools/TFL/rules.ML" use "Tools/TFL/thry.ML" use "Tools/TFL/tfl.ML" use "Tools/TFL/post.ML" use "Tools/recdef_package.ML" setup RecdefPackage.setup lemmas [recdef_simp] = inv_image_def measure_def lex_prod_def same_fst_def less_Suc_eq [THEN iffD2] lemmas [recdef_cong] = if_cong let_cong image_cong INT_cong UN_cong bex_cong ball_cong imp_cong lemmas [recdef_wf] = wf_trancl wf_less_than wf_lex_prod wf_inv_image wf_measure wf_pred_nat wf_same_fst wf_empty end