Up to index of Isabelle/HOL
theory ATP(* Title: HOL/ATP.thy
Author: Fabian Immler, TU Muenchen
Author: Jasmin Blanchette, TU Muenchen
*)
header {* Automatic Theorem Provers (ATPs) *}
theory ATP
imports Meson
uses "Tools/lambda_lifting.ML"
"Tools/monomorph.ML"
"Tools/ATP/atp_util.ML"
"Tools/ATP/atp_problem.ML"
"Tools/ATP/atp_proof.ML"
"Tools/ATP/atp_systems.ML"
("Tools/ATP/atp_translate.ML")
("Tools/ATP/atp_reconstruct.ML")
begin
subsection {* Higher-order reasoning helpers *}
definition fFalse :: bool where [no_atp]:
"fFalse <-> False"
definition fTrue :: bool where [no_atp]:
"fTrue <-> True"
definition fNot :: "bool => bool" where [no_atp]:
"fNot P <-> ¬ P"
definition fconj :: "bool => bool => bool" where [no_atp]:
"fconj P Q <-> P ∧ Q"
definition fdisj :: "bool => bool => bool" where [no_atp]:
"fdisj P Q <-> P ∨ Q"
definition fimplies :: "bool => bool => bool" where [no_atp]:
"fimplies P Q <-> (P --> Q)"
definition fequal :: "'a => 'a => bool" where [no_atp]:
"fequal x y <-> (x = y)"
definition fAll :: "('a => bool) => bool" where [no_atp]:
"fAll P <-> All P"
definition fEx :: "('a => bool) => bool" where [no_atp]:
"fEx P <-> Ex P"
subsection {* Setup *}
use "Tools/ATP/atp_translate.ML"
use "Tools/ATP/atp_reconstruct.ML"
setup ATP_Systems.setup
end