Up to index of Isabelle/HOL
theory HOL(* Title: HOL/HOL.thy Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson *) header {* The basis of Higher-Order Logic *} theory HOL imports Pure uses ("Tools/hologic.ML") "~~/src/Tools/IsaPlanner/zipper.ML" "~~/src/Tools/IsaPlanner/isand.ML" "~~/src/Tools/IsaPlanner/rw_tools.ML" "~~/src/Tools/IsaPlanner/rw_inst.ML" "~~/src/Tools/intuitionistic.ML" "~~/src/Tools/project_rule.ML" "~~/src/Provers/hypsubst.ML" "~~/src/Provers/splitter.ML" "~~/src/Provers/classical.ML" "~~/src/Provers/blast.ML" "~~/src/Provers/clasimp.ML" "~~/src/Tools/coherent.ML" "~~/src/Tools/eqsubst.ML" "~~/src/Provers/quantifier1.ML" ("Tools/simpdata.ML") "~~/src/Tools/random_word.ML" "~~/src/Tools/atomize_elim.ML" "~~/src/Tools/induct.ML" ("~~/src/Tools/induct_tacs.ML") "~~/src/Tools/value.ML" "~~/src/Tools/code/code_name.ML" "~~/src/Tools/code/code_funcgr.ML" (*formal dependency*) "~~/src/Tools/code/code_wellsorted.ML" "~~/src/Tools/code/code_thingol.ML" "~~/src/Tools/code/code_printer.ML" "~~/src/Tools/code/code_target.ML" "~~/src/Tools/code/code_ml.ML" "~~/src/Tools/code/code_haskell.ML" "~~/src/Tools/nbe.ML" ("Tools/recfun_codegen.ML") begin setup {* Intuitionistic.method_setup "iprover" *} subsection {* Primitive logic *} subsubsection {* Core syntax *} classes type defaultsort type setup {* ObjectLogic.add_base_sort @{sort type} *} arities "fun" :: (type, type) type itself :: (type) type global typedecl bool judgment Trueprop :: "bool => prop" ("(_)" 5) consts Not :: "bool => bool" ("~ _" [40] 40) True :: bool False :: bool The :: "('a => bool) => 'a" All :: "('a => bool) => bool" (binder "ALL " 10) Ex :: "('a => bool) => bool" (binder "EX " 10) Ex1 :: "('a => bool) => bool" (binder "EX! " 10) Let :: "['a, 'a => 'b] => 'b" "op =" :: "['a, 'a] => bool" (infixl "=" 50) "op &" :: "[bool, bool] => bool" (infixr "&" 35) "op |" :: "[bool, bool] => bool" (infixr "|" 30) "op -->" :: "[bool, bool] => bool" (infixr "-->" 25) local consts If :: "[bool, 'a, 'a] => 'a" ("(if (_)/ then (_)/ else (_))" 10) subsubsection {* Additional concrete syntax *} notation (output) "op =" (infix "=" 50) abbreviation not_equal :: "['a, 'a] => bool" (infixl "~=" 50) where "x ~= y == ~ (x = y)" notation (output) not_equal (infix "~=" 50) notation (xsymbols) Not ("¬ _" [40] 40) and "op &" (infixr "∧" 35) and "op |" (infixr "∨" 30) and "op -->" (infixr "-->" 25) and not_equal (infix "≠" 50) notation (HTML output) Not ("¬ _" [40] 40) and "op &" (infixr "∧" 35) and "op |" (infixr "∨" 30) and not_equal (infix "≠" 50) abbreviation (iff) iff :: "[bool, bool] => bool" (infixr "<->" 25) where "A <-> B == A = B" notation (xsymbols) iff (infixr "<->" 25) nonterminals letbinds letbind case_syn cases_syn syntax "_The" :: "[pttrn, bool] => 'a" ("(3THE _./ _)" [0, 10] 10) "_bind" :: "[pttrn, 'a] => letbind" ("(2_ =/ _)" 10) "" :: "letbind => letbinds" ("_") "_binds" :: "[letbind, letbinds] => letbinds" ("_;/ _") "_Let" :: "[letbinds, 'a] => 'a" ("(let (_)/ in (_))" 10) "_case_syntax":: "['a, cases_syn] => 'b" ("(case _ of/ _)" 10) "_case1" :: "['a, 'b] => case_syn" ("(2_ =>/ _)" 10) "" :: "case_syn => cases_syn" ("_") "_case2" :: "[case_syn, cases_syn] => cases_syn" ("_/ | _") translations "THE x. P" == "The (%x. P)" "_Let (_binds b bs) e" == "_Let b (_Let bs e)" "let x = a in e" == "Let a (%x. e)" print_translation {* (* To avoid eta-contraction of body: *) [("The", fn [Abs abs] => let val (x,t) = atomic_abs_tr' abs in Syntax.const "_The" $ x $ t end)] *} syntax (xsymbols) "_case1" :: "['a, 'b] => case_syn" ("(2_ =>/ _)" 10) notation (xsymbols) All (binder "∀" 10) and Ex (binder "∃" 10) and Ex1 (binder "∃!" 10) notation (HTML output) All (binder "∀" 10) and Ex (binder "∃" 10) and Ex1 (binder "∃!" 10) notation (HOL) All (binder "! " 10) and Ex (binder "? " 10) and Ex1 (binder "?! " 10) subsubsection {* Axioms and basic definitions *} axioms refl: "t = (t::'a)" subst: "s = t ==> P s ==> P t" ext: "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)" -- {*Extensionality is built into the meta-logic, and this rule expresses a related property. It is an eta-expanded version of the traditional rule, and similar to the ABS rule of HOL*} the_eq_trivial: "(THE x. x = a) = (a::'a)" impI: "(P ==> Q) ==> P-->Q" mp: "[| P-->Q; P |] ==> Q" defs True_def: "True == ((%x::bool. x) = (%x. x))" All_def: "All(P) == (P = (%x. True))" Ex_def: "Ex(P) == !Q. (!x. P x --> Q) --> Q" False_def: "False == (!P. P)" not_def: "~ P == P-->False" and_def: "P & Q == !R. (P-->Q-->R) --> R" or_def: "P | Q == !R. (P-->R) --> (Q-->R) --> R" Ex1_def: "Ex1(P) == ? x. P(x) & (! y. P(y) --> y=x)" axioms iff: "(P-->Q) --> (Q-->P) --> (P=Q)" True_or_False: "(P=True) | (P=False)" defs Let_def: "Let s f == f(s)" if_def: "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)" finalconsts "op =" "op -->" The axiomatization undefined :: 'a abbreviation (input) "arbitrary ≡ undefined" subsubsection {* Generic classes and algebraic operations *} class default = fixes default :: 'a class zero = fixes zero :: 'a ("0") class one = fixes one :: 'a ("1") hide (open) const zero one class plus = fixes plus :: "'a => 'a => 'a" (infixl "+" 65) class minus = fixes minus :: "'a => 'a => 'a" (infixl "-" 65) class uminus = fixes uminus :: "'a => 'a" ("- _" [81] 80) class times = fixes times :: "'a => 'a => 'a" (infixl "*" 70) class inverse = fixes inverse :: "'a => 'a" and divide :: "'a => 'a => 'a" (infixl "'/" 70) class abs = fixes abs :: "'a => 'a" begin notation (xsymbols) abs ("¦_¦") notation (HTML output) abs ("¦_¦") end class sgn = fixes sgn :: "'a => 'a" class ord = fixes less_eq :: "'a => 'a => bool" and less :: "'a => 'a => bool" begin notation less_eq ("op <=") and less_eq ("(_/ <= _)" [51, 51] 50) and less ("op <") and less ("(_/ < _)" [51, 51] 50) notation (xsymbols) less_eq ("op ≤") and less_eq ("(_/ ≤ _)" [51, 51] 50) notation (HTML output) less_eq ("op ≤") and less_eq ("(_/ ≤ _)" [51, 51] 50) abbreviation (input) greater_eq (infix ">=" 50) where "x >= y ≡ y <= x" notation (input) greater_eq (infix "≥" 50) abbreviation (input) greater (infix ">" 50) where "x > y ≡ y < x" end syntax "_index1" :: index ("1") translations (index) "1" => (index) "\<struct>" typed_print_translation {* let fun tr' c = (c, fn show_sorts => fn T => fn ts => if (not o null) ts orelse T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T); in map tr' [@{const_syntax HOL.one}, @{const_syntax HOL.zero}] end; *} -- {* show types that are presumably too general *} subsection {* Fundamental rules *} subsubsection {* Equality *} lemma sym: "s = t ==> t = s" by (erule subst) (rule refl) lemma ssubst: "t = s ==> P s ==> P t" by (drule sym) (erule subst) lemma trans: "[| r=s; s=t |] ==> r=t" by (erule subst) lemma meta_eq_to_obj_eq: assumes meq: "A == B" shows "A = B" by (unfold meq) (rule refl) text {* Useful with @{text erule} for proving equalities from known equalities. *} (* a = b | | c = d *) lemma box_equals: "[| a=b; a=c; b=d |] ==> c=d" apply (rule trans) apply (rule trans) apply (rule sym) apply assumption+ done text {* For calculational reasoning: *} lemma forw_subst: "a = b ==> P b ==> P a" by (rule ssubst) lemma back_subst: "P a ==> a = b ==> P b" by (rule subst) subsubsection {*Congruence rules for application*} (*similar to AP_THM in Gordon's HOL*) lemma fun_cong: "(f::'a=>'b) = g ==> f(x)=g(x)" apply (erule subst) apply (rule refl) done (*similar to AP_TERM in Gordon's HOL and FOL's subst_context*) lemma arg_cong: "x=y ==> f(x)=f(y)" apply (erule subst) apply (rule refl) done lemma arg_cong2: "[| a = b; c = d |] ==> f a c = f b d" apply (erule ssubst)+ apply (rule refl) done lemma cong: "[| f = g; (x::'a) = y |] ==> f(x) = g(y)" apply (erule subst)+ apply (rule refl) done subsubsection {*Equality of booleans -- iff*} lemma iffI: assumes "P ==> Q" and "Q ==> P" shows "P=Q" by (iprover intro: iff [THEN mp, THEN mp] impI assms) lemma iffD2: "[| P=Q; Q |] ==> P" by (erule ssubst) lemma rev_iffD2: "[| Q; P=Q |] ==> P" by (erule iffD2) lemma iffD1: "Q = P ==> Q ==> P" by (drule sym) (rule iffD2) lemma rev_iffD1: "Q ==> Q = P ==> P" by (drule sym) (rule rev_iffD2) lemma iffE: assumes major: "P=Q" and minor: "[| P --> Q; Q --> P |] ==> R" shows R by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1]) subsubsection {*True*} lemma TrueI: "True" unfolding True_def by (rule refl) lemma eqTrueI: "P ==> P = True" by (iprover intro: iffI TrueI) lemma eqTrueE: "P = True ==> P" by (erule iffD2) (rule TrueI) subsubsection {*Universal quantifier*} lemma allI: assumes "!!x::'a. P(x)" shows "ALL x. P(x)" unfolding All_def by (iprover intro: ext eqTrueI assms) lemma spec: "ALL x::'a. P(x) ==> P(x)" apply (unfold All_def) apply (rule eqTrueE) apply (erule fun_cong) done lemma allE: assumes major: "ALL x. P(x)" and minor: "P(x) ==> R" shows R by (iprover intro: minor major [THEN spec]) lemma all_dupE: assumes major: "ALL x. P(x)" and minor: "[| P(x); ALL x. P(x) |] ==> R" shows R by (iprover intro: minor major major [THEN spec]) subsubsection {* False *} text {* Depends upon @{text spec}; it is impossible to do propositional logic before quantifiers! *} lemma FalseE: "False ==> P" apply (unfold False_def) apply (erule spec) done lemma False_neq_True: "False = True ==> P" by (erule eqTrueE [THEN FalseE]) subsubsection {* Negation *} lemma notI: assumes "P ==> False" shows "~P" apply (unfold not_def) apply (iprover intro: impI assms) done lemma False_not_True: "False ~= True" apply (rule notI) apply (erule False_neq_True) done lemma True_not_False: "True ~= False" apply (rule notI) apply (drule sym) apply (erule False_neq_True) done lemma notE: "[| ~P; P |] ==> R" apply (unfold not_def) apply (erule mp [THEN FalseE]) apply assumption done lemma notI2: "(P ==> ¬ Pa) ==> (P ==> Pa) ==> ¬ P" by (erule notE [THEN notI]) (erule meta_mp) subsubsection {*Implication*} lemma impE: assumes "P-->Q" "P" "Q ==> R" shows "R" by (iprover intro: assms mp) (* Reduces Q to P-->Q, allowing substitution in P. *) lemma rev_mp: "[| P; P --> Q |] ==> Q" by (iprover intro: mp) lemma contrapos_nn: assumes major: "~Q" and minor: "P==>Q" shows "~P" by (iprover intro: notI minor major [THEN notE]) (*not used at all, but we already have the other 3 combinations *) lemma contrapos_pn: assumes major: "Q" and minor: "P ==> ~Q" shows "~P" by (iprover intro: notI minor major notE) lemma not_sym: "t ~= s ==> s ~= t" by (erule contrapos_nn) (erule sym) lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y" by (erule subst, erule ssubst, assumption) (*still used in HOLCF*) lemma rev_contrapos: assumes pq: "P ==> Q" and nq: "~Q" shows "~P" apply (rule nq [THEN contrapos_nn]) apply (erule pq) done subsubsection {*Existential quantifier*} lemma exI: "P x ==> EX x::'a. P x" apply (unfold Ex_def) apply (iprover intro: allI allE impI mp) done lemma exE: assumes major: "EX x::'a. P(x)" and minor: "!!x. P(x) ==> Q" shows "Q" apply (rule major [unfolded Ex_def, THEN spec, THEN mp]) apply (iprover intro: impI [THEN allI] minor) done subsubsection {*Conjunction*} lemma conjI: "[| P; Q |] ==> P&Q" apply (unfold and_def) apply (iprover intro: impI [THEN allI] mp) done lemma conjunct1: "[| P & Q |] ==> P" apply (unfold and_def) apply (iprover intro: impI dest: spec mp) done lemma conjunct2: "[| P & Q |] ==> Q" apply (unfold and_def) apply (iprover intro: impI dest: spec mp) done lemma conjE: assumes major: "P&Q" and minor: "[| P; Q |] ==> R" shows "R" apply (rule minor) apply (rule major [THEN conjunct1]) apply (rule major [THEN conjunct2]) done lemma context_conjI: assumes "P" "P ==> Q" shows "P & Q" by (iprover intro: conjI assms) subsubsection {*Disjunction*} lemma disjI1: "P ==> P|Q" apply (unfold or_def) apply (iprover intro: allI impI mp) done lemma disjI2: "Q ==> P|Q" apply (unfold or_def) apply (iprover intro: allI impI mp) done lemma disjE: assumes major: "P|Q" and minorP: "P ==> R" and minorQ: "Q ==> R" shows "R" by (iprover intro: minorP minorQ impI major [unfolded or_def, THEN spec, THEN mp, THEN mp]) subsubsection {*Classical logic*} lemma classical: assumes prem: "~P ==> P" shows "P" apply (rule True_or_False [THEN disjE, THEN eqTrueE]) apply assumption apply (rule notI [THEN prem, THEN eqTrueI]) apply (erule subst) apply assumption done lemmas ccontr = FalseE [THEN classical, standard] (*notE with premises exchanged; it discharges ~R so that it can be used to make elimination rules*) lemma rev_notE: assumes premp: "P" and premnot: "~R ==> ~P" shows "R" apply (rule ccontr) apply (erule notE [OF premnot premp]) done (*Double negation law*) lemma notnotD: "~~P ==> P" apply (rule classical) apply (erule notE) apply assumption done lemma contrapos_pp: assumes p1: "Q" and p2: "~P ==> ~Q" shows "P" by (iprover intro: classical p1 p2 notE) subsubsection {*Unique existence*} lemma ex1I: assumes "P a" "!!x. P(x) ==> x=a" shows "EX! x. P(x)" by (unfold Ex1_def, iprover intro: assms exI conjI allI impI) text{*Sometimes easier to use: the premises have no shared variables. Safe!*} lemma ex_ex1I: assumes ex_prem: "EX x. P(x)" and eq: "!!x y. [| P(x); P(y) |] ==> x=y" shows "EX! x. P(x)" by (iprover intro: ex_prem [THEN exE] ex1I eq) lemma ex1E: assumes major: "EX! x. P(x)" and minor: "!!x. [| P(x); ALL y. P(y) --> y=x |] ==> R" shows "R" apply (rule major [unfolded Ex1_def, THEN exE]) apply (erule conjE) apply (iprover intro: minor) done lemma ex1_implies_ex: "EX! x. P x ==> EX x. P x" apply (erule ex1E) apply (rule exI) apply assumption done subsubsection {*THE: definite description operator*} lemma the_equality: assumes prema: "P a" and premx: "!!x. P x ==> x=a" shows "(THE x. P x) = a" apply (rule trans [OF _ the_eq_trivial]) apply (rule_tac f = "The" in arg_cong) apply (rule ext) apply (rule iffI) apply (erule premx) apply (erule ssubst, rule prema) done lemma theI: assumes "P a" and "!!x. P x ==> x=a" shows "P (THE x. P x)" by (iprover intro: assms the_equality [THEN ssubst]) lemma theI': "EX! x. P x ==> P (THE x. P x)" apply (erule ex1E) apply (erule theI) apply (erule allE) apply (erule mp) apply assumption done (*Easier to apply than theI: only one occurrence of P*) lemma theI2: assumes "P a" "!!x. P x ==> x=a" "!!x. P x ==> Q x" shows "Q (THE x. P x)" by (iprover intro: assms theI) lemma the1I2: assumes "EX! x. P x" "!!x. P x ==> Q x" shows "Q (THE x. P x)" by(iprover intro:assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)] elim:allE impE) lemma the1_equality [elim?]: "[| EX!x. P x; P a |] ==> (THE x. P x) = a" apply (rule the_equality) apply assumption apply (erule ex1E) apply (erule all_dupE) apply (drule mp) apply assumption apply (erule ssubst) apply (erule allE) apply (erule mp) apply assumption done lemma the_sym_eq_trivial: "(THE y. x=y) = x" apply (rule the_equality) apply (rule refl) apply (erule sym) done subsubsection {*Classical intro rules for disjunction and existential quantifiers*} lemma disjCI: assumes "~Q ==> P" shows "P|Q" apply (rule classical) apply (iprover intro: assms disjI1 disjI2 notI elim: notE) done lemma excluded_middle: "~P | P" by (iprover intro: disjCI) text {* case distinction as a natural deduction rule. Note that @{term "~P"} is the second case, not the first *} lemma case_split [case_names True False]: assumes prem1: "P ==> Q" and prem2: "~P ==> Q" shows "Q" apply (rule excluded_middle [THEN disjE]) apply (erule prem2) apply (erule prem1) done (*Classical implies (-->) elimination. *) lemma impCE: assumes major: "P-->Q" and minor: "~P ==> R" "Q ==> R" shows "R" apply (rule excluded_middle [of P, THEN disjE]) apply (iprover intro: minor major [THEN mp])+ done (*This version of --> elimination works on Q before P. It works best for those cases in which P holds "almost everywhere". Can't install as default: would break old proofs.*) lemma impCE': assumes major: "P-->Q" and minor: "Q ==> R" "~P ==> R" shows "R" apply (rule excluded_middle [of P, THEN disjE]) apply (iprover intro: minor major [THEN mp])+ done (*Classical <-> elimination. *) lemma iffCE: assumes major: "P=Q" and minor: "[| P; Q |] ==> R" "[| ~P; ~Q |] ==> R" shows "R" apply (rule major [THEN iffE]) apply (iprover intro: minor elim: impCE notE) done lemma exCI: assumes "ALL x. ~P(x) ==> P(a)" shows "EX x. P(x)" apply (rule ccontr) apply (iprover intro: assms exI allI notI notE [of "∃x. P x"]) done subsubsection {* Intuitionistic Reasoning *} lemma impE': assumes 1: "P --> Q" and 2: "Q ==> R" and 3: "P --> Q ==> P" shows R proof - from 3 and 1 have P . with 1 have Q by (rule impE) with 2 show R . qed lemma allE': assumes 1: "ALL x. P x" and 2: "P x ==> ALL x. P x ==> Q" shows Q proof - from 1 have "P x" by (rule spec) from this and 1 show Q by (rule 2) qed lemma notE': assumes 1: "~ P" and 2: "~ P ==> P" shows R proof - from 2 and 1 have P . with 1 show R by (rule notE) qed lemma TrueE: "True ==> P ==> P" . lemma notFalseE: "~ False ==> P ==> P" . lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE and [Pure.intro!] = iffI conjI impI TrueI notI allI refl and [Pure.elim 2] = allE notE' impE' and [Pure.intro] = exI disjI2 disjI1 lemmas [trans] = trans and [sym] = sym not_sym and [Pure.elim?] = iffD1 iffD2 impE use "Tools/hologic.ML" subsubsection {* Atomizing meta-level connectives *} axiomatization where eq_reflection: "x = y ==> x ≡ y" (*admissible axiom*) lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)" proof assume "!!x. P x" then show "ALL x. P x" .. next assume "ALL x. P x" then show "!!x. P x" by (rule allE) qed lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)" proof assume r: "A ==> B" show "A --> B" by (rule impI) (rule r) next assume "A --> B" and A then show B by (rule mp) qed lemma atomize_not: "(A ==> False) == Trueprop (~A)" proof assume r: "A ==> False" show "~A" by (rule notI) (rule r) next assume "~A" and A then show False by (rule notE) qed lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)" proof assume "x == y" show "x = y" by (unfold `x == y`) (rule refl) next assume "x = y" then show "x == y" by (rule eq_reflection) qed lemma atomize_conj [atomize]: "(A &&& B) == Trueprop (A & B)" proof assume conj: "A &&& B" show "A & B" proof (rule conjI) from conj show A by (rule conjunctionD1) from conj show B by (rule conjunctionD2) qed next assume conj: "A & B" show "A &&& B" proof - from conj show A .. from conj show B .. qed qed lemmas [symmetric, rulify] = atomize_all atomize_imp and [symmetric, defn] = atomize_all atomize_imp atomize_eq subsubsection {* Atomizing elimination rules *} setup AtomizeElim.setup lemma atomize_exL[atomize_elim]: "(!!x. P x ==> Q) == ((EX x. P x) ==> Q)" by rule iprover+ lemma atomize_conjL[atomize_elim]: "(A ==> B ==> C) == (A & B ==> C)" by rule iprover+ lemma atomize_disjL[atomize_elim]: "((A ==> C) ==> (B ==> C) ==> C) == ((A | B ==> C) ==> C)" by rule iprover+ lemma atomize_elimL[atomize_elim]: "(!!B. (A ==> B) ==> B) == Trueprop A" .. subsection {* Package setup *} subsubsection {* Classical Reasoner setup *} lemma imp_elim: "P --> Q ==> (~ R ==> P) ==> (Q ==> R) ==> R" by (rule classical) iprover lemma swap: "~ P ==> (~ R ==> P) ==> R" by (rule classical) iprover lemma thin_refl: "!!X. [| x=x; PROP W |] ==> PROP W" . ML {* structure Hypsubst = HypsubstFun( struct structure Simplifier = Simplifier val dest_eq = HOLogic.dest_eq val dest_Trueprop = HOLogic.dest_Trueprop val dest_imp = HOLogic.dest_imp val eq_reflection = @{thm eq_reflection} val rev_eq_reflection = @{thm meta_eq_to_obj_eq} val imp_intr = @{thm impI} val rev_mp = @{thm rev_mp} val subst = @{thm subst} val sym = @{thm sym} val thin_refl = @{thm thin_refl}; val prop_subst = @{lemma "PROP P t ==> PROP prop (x = t ==> PROP P x)" by (unfold prop_def) (drule eq_reflection, unfold)} end); open Hypsubst; structure Classical = ClassicalFun( struct val imp_elim = @{thm imp_elim} val not_elim = @{thm notE} val swap = @{thm swap} val classical = @{thm classical} val sizef = Drule.size_of_thm val hyp_subst_tacs = [Hypsubst.hyp_subst_tac] end); structure BasicClassical: BASIC_CLASSICAL = Classical; open BasicClassical; ML_Antiquote.value "claset" (Scan.succeed "Classical.local_claset_of (ML_Context.the_local_context ())"); structure ResAtpset = NamedThmsFun(val name = "atp" val description = "ATP rules"); structure ResBlacklist = NamedThmsFun(val name = "noatp" val description = "theorems blacklisted for ATP"); *} text {*ResBlacklist holds theorems blacklisted to sledgehammer. These theorems typically produce clauses that are prolific (match too many equality or membership literals) and relate to seldom-used facts. Some duplicate other rules.*} setup {* let (*prevent substitution on bool*) fun hyp_subst_tac' i thm = if i <= Thm.nprems_of thm andalso Term.exists_Const (fn ("op =", Type (_, [T, _])) => T <> Type ("bool", []) | _ => false) (nth (Thm.prems_of thm) (i - 1)) then Hypsubst.hyp_subst_tac i thm else no_tac thm; in Hypsubst.hypsubst_setup #> ContextRules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac) #> Classical.setup #> ResAtpset.setup #> ResBlacklist.setup end *} declare iffI [intro!] and notI [intro!] and impI [intro!] and disjCI [intro!] and conjI [intro!] and TrueI [intro!] and refl [intro!] declare iffCE [elim!] and FalseE [elim!] and impCE [elim!] and disjE [elim!] and conjE [elim!] and conjE [elim!] declare ex_ex1I [intro!] and allI [intro!] and the_equality [intro] and exI [intro] declare exE [elim!] allE [elim] ML {* val HOL_cs = @{claset} *} lemma contrapos_np: "~ Q ==> (~ P ==> Q) ==> P" apply (erule swap) apply (erule (1) meta_mp) done declare ex_ex1I [rule del, intro! 2] and ex1I [intro] lemmas [intro?] = ext and [elim?] = ex1_implies_ex (*Better then ex1E for classical reasoner: needs no quantifier duplication!*) lemma alt_ex1E [elim!]: assumes major: "∃!x. P x" and prem: "!!x. [| P x; ∀y y'. P y ∧ P y' --> y = y' |] ==> R" shows R apply (rule ex1E [OF major]) apply (rule prem) apply (tactic {* ares_tac @{thms allI} 1 *})+ apply (tactic {* etac (Classical.dup_elim @{thm allE}) 1 *}) apply iprover done ML {* structure Blast = BlastFun ( type claset = Classical.claset val equality_name = @{const_name "op ="} val not_name = @{const_name Not} val notE = @{thm notE} val ccontr = @{thm ccontr} val contr_tac = Classical.contr_tac val dup_intr = Classical.dup_intr val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac val rep_cs = Classical.rep_cs val cla_modifiers = Classical.cla_modifiers val cla_meth' = Classical.cla_meth' ); val blast_tac = Blast.blast_tac; *} setup Blast.setup subsubsection {* Simplifier *} lemma eta_contract_eq: "(%s. f s) = f" .. lemma simp_thms: shows not_not: "(~ ~ P) = P" and Not_eq_iff: "((~P) = (~Q)) = (P = Q)" and "(P ~= Q) = (P = (~Q))" "(P | ~P) = True" "(~P | P) = True" "(x = x) = True" and not_True_eq_False: "(¬ True) = False" and not_False_eq_True: "(¬ False) = True" and "(~P) ~= P" "P ~= (~P)" "(True=P) = P" and eq_True: "(P = True) = P" and "(False=P) = (~P)" and eq_False: "(P = False) = (¬ P)" and "(True --> P) = P" "(False --> P) = True" "(P --> True) = True" "(P --> P) = True" "(P --> False) = (~P)" "(P --> ~P) = (~P)" "(P & True) = P" "(True & P) = P" "(P & False) = False" "(False & P) = False" "(P & P) = P" "(P & (P & Q)) = (P & Q)" "(P & ~P) = False" "(~P & P) = False" "(P | True) = True" "(True | P) = True" "(P | False) = P" "(False | P) = P" "(P | P) = P" "(P | (P | Q)) = (P | Q)" and "(ALL x. P) = P" "(EX x. P) = P" "EX x. x=t" "EX x. t=x" -- {* needed for the one-point-rule quantifier simplification procs *} -- {* essential for termination!! *} and "!!P. (EX x. x=t & P(x)) = P(t)" "!!P. (EX x. t=x & P(x)) = P(t)" "!!P. (ALL x. x=t --> P(x)) = P(t)" "!!P. (ALL x. t=x --> P(x)) = P(t)" by (blast, blast, blast, blast, blast, iprover+) lemma disj_absorb: "(A | A) = A" by blast lemma disj_left_absorb: "(A | (A | B)) = (A | B)" by blast lemma conj_absorb: "(A & A) = A" by blast lemma conj_left_absorb: "(A & (A & B)) = (A & B)" by blast lemma eq_ac: shows eq_commute: "(a=b) = (b=a)" and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))" and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (iprover, blast+) lemma neq_commute: "(a~=b) = (b~=a)" by iprover lemma conj_comms: shows conj_commute: "(P&Q) = (Q&P)" and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by iprover+ lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by iprover lemmas conj_ac = conj_commute conj_left_commute conj_assoc lemma disj_comms: shows disj_commute: "(P|Q) = (Q|P)" and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by iprover+ lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by iprover lemmas disj_ac = disj_commute disj_left_commute disj_assoc lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by iprover lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by iprover lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by iprover lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by iprover lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by iprover lemma imp_conjL: "((P&Q) -->R) = (P --> (Q --> R))" by iprover lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by iprover text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *} lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))" by iprover lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by iprover lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast lemma not_iff: "(P~=Q) = (P = (~Q))" by blast lemma disj_not1: "(~P | Q) = (P --> Q)" by blast lemma disj_not2: "(P | ~Q) = (Q --> P)" -- {* changes orientation :-( *} by blast lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by iprover lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q" -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *} -- {* cases boil down to the same thing. *} by blast lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by iprover lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by iprover lemma all_not_ex: "(ALL x. P x) = (~ (EX x. ~ P x ))" by blast declare All_def [noatp] lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by iprover lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by iprover text {* \medskip The @{text "&"} congruence rule: not included by default! May slow rewrite proofs down by as much as 50\% *} lemma conj_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))" by iprover lemma rev_conj_cong: "(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))" by iprover text {* The @{text "|"} congruence rule: not included by default! *} lemma disj_cong: "(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))" by blast text {* \medskip if-then-else rules *} lemma if_True: "(if True then x else y) = x" by (unfold if_def) blast lemma if_False: "(if False then x else y) = y" by (unfold if_def) blast lemma if_P: "P ==> (if P then x else y) = x" by (unfold if_def) blast lemma if_not_P: "~P ==> (if P then x else y) = y" by (unfold if_def) blast lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))" apply (rule case_split [of Q]) apply (simplesubst if_P) prefer 3 apply (simplesubst if_not_P, blast+) done lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))" by (simplesubst split_if, blast) lemmas if_splits [noatp] = split_if split_if_asm lemma if_cancel: "(if c then x else x) = x" by (simplesubst split_if, blast) lemma if_eq_cancel: "(if x = y then y else x) = x" by (simplesubst split_if, blast) lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))" -- {* This form is useful for expanding @{text "if"}s on the RIGHT of the @{text "==>"} symbol. *} by (rule split_if) lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))" -- {* And this form is useful for expanding @{text "if"}s on the LEFT. *} apply (simplesubst split_if, blast) done lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) iprover lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) iprover text {* \medskip let rules for simproc *} lemma Let_folded: "f x ≡ g x ==> Let x f ≡ Let x g" by (unfold Let_def) lemma Let_unfold: "f x ≡ g ==> Let x f ≡ g" by (unfold Let_def) text {* The following copy of the implication operator is useful for fine-tuning congruence rules. It instructs the simplifier to simplify its premise. *} constdefs simp_implies :: "[prop, prop] => prop" (infixr "=simp=>" 1) [code del]: "simp_implies ≡ op ==>" lemma simp_impliesI: assumes PQ: "(PROP P ==> PROP Q)" shows "PROP P =simp=> PROP Q" apply (unfold simp_implies_def) apply (rule PQ) apply assumption done lemma simp_impliesE: assumes PQ: "PROP P =simp=> PROP Q" and P: "PROP P" and QR: "PROP Q ==> PROP R" shows "PROP R" apply (rule QR) apply (rule PQ [unfolded simp_implies_def]) apply (rule P) done lemma simp_implies_cong: assumes PP' :"PROP P == PROP P'" and P'QQ': "PROP P' ==> (PROP Q == PROP Q')" shows "(PROP P =simp=> PROP Q) == (PROP P' =simp=> PROP Q')" proof (unfold simp_implies_def, rule equal_intr_rule) assume PQ: "PROP P ==> PROP Q" and P': "PROP P'" from PP' [symmetric] and P' have "PROP P" by (rule equal_elim_rule1) then have "PROP Q" by (rule PQ) with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1) next assume P'Q': "PROP P' ==> PROP Q'" and P: "PROP P" from PP' and P have P': "PROP P'" by (rule equal_elim_rule1) then have "PROP Q'" by (rule P'Q') with P'QQ' [OF P', symmetric] show "PROP Q" by (rule equal_elim_rule1) qed lemma uncurry: assumes "P --> Q --> R" shows "P ∧ Q --> R" using assms by blast lemma iff_allI: assumes "!!x. P x = Q x" shows "(∀x. P x) = (∀x. Q x)" using assms by blast lemma iff_exI: assumes "!!x. P x = Q x" shows "(∃x. P x) = (∃x. Q x)" using assms by blast lemma all_comm: "(∀x y. P x y) = (∀y x. P x y)" by blast lemma ex_comm: "(∃x y. P x y) = (∃y x. P x y)" by blast use "Tools/simpdata.ML" ML {* open Simpdata *} setup {* Simplifier.method_setup Splitter.split_modifiers #> Simplifier.map_simpset (K Simpdata.simpset_simprocs) #> Splitter.setup #> clasimp_setup #> EqSubst.setup *} text {* Simproc for proving @{text "(y = x) == False"} from premise @{text "~(x = y)"}: *} simproc_setup neq ("x = y") = {* fn _ => let val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI}; fun is_neq eq lhs rhs thm = (case Thm.prop_of thm of _ $ (Not $ (eq' $ l' $ r')) => Not = HOLogic.Not andalso eq' = eq andalso r' aconv lhs andalso l' aconv rhs | _ => false); fun proc ss ct = (case Thm.term_of ct of eq $ lhs $ rhs => (case find_first (is_neq eq lhs rhs) (Simplifier.prems_of_ss ss) of SOME thm => SOME (thm RS neq_to_EQ_False) | NONE => NONE) | _ => NONE); in proc end; *} simproc_setup let_simp ("Let x f") = {* let val (f_Let_unfold, x_Let_unfold) = let val [(_ $ (f $ x) $ _)] = prems_of @{thm Let_unfold} in (cterm_of @{theory} f, cterm_of @{theory} x) end val (f_Let_folded, x_Let_folded) = let val [(_ $ (f $ x) $ _)] = prems_of @{thm Let_folded} in (cterm_of @{theory} f, cterm_of @{theory} x) end; val g_Let_folded = let val [(_ $ _ $ (g $ _))] = prems_of @{thm Let_folded} in cterm_of @{theory} g end; fun count_loose (Bound i) k = if i >= k then 1 else 0 | count_loose (s $ t) k = count_loose s k + count_loose t k | count_loose (Abs (_, _, t)) k = count_loose t (k + 1) | count_loose _ _ = 0; fun is_trivial_let (Const (@{const_name Let}, _) $ x $ t) = case t of Abs (_, _, t') => count_loose t' 0 <= 1 | _ => true; in fn _ => fn ss => fn ct => if is_trivial_let (Thm.term_of ct) then SOME @{thm Let_def} (*no or one ocurrenc of bound variable*) else let (*Norbert Schirmer's case*) val ctxt = Simplifier.the_context ss; val thy = ProofContext.theory_of ctxt; val t = Thm.term_of ct; val ([t'], ctxt') = Variable.import_terms false [t] ctxt; in Option.map (hd o Variable.export ctxt' ctxt o single) (case t' of Const (@{const_name Let},_) $ x $ f => (* x and f are already in normal form *) if is_Free x orelse is_Bound x orelse is_Const x then SOME @{thm Let_def} else let val n = case f of (Abs (x, _, _)) => x | _ => "x"; val cx = cterm_of thy x; val {T = xT, ...} = rep_cterm cx; val cf = cterm_of thy f; val fx_g = Simplifier.rewrite ss (Thm.capply cf cx); val (_ $ _ $ g) = prop_of fx_g; val g' = abstract_over (x,g); in (if (g aconv g') then let val rl = cterm_instantiate [(f_Let_unfold, cf), (x_Let_unfold, cx)] @{thm Let_unfold}; in SOME (rl OF [fx_g]) end else if Term.betapply (f, x) aconv g then NONE (*avoid identity conversion*) else let val abs_g'= Abs (n,xT,g'); val g'x = abs_g'$x; val g_g'x = symmetric (beta_conversion false (cterm_of thy g'x)); val rl = cterm_instantiate [(f_Let_folded, cterm_of thy f), (x_Let_folded, cx), (g_Let_folded, cterm_of thy abs_g')] @{thm Let_folded}; in SOME (rl OF [transitive fx_g g_g'x]) end) end | _ => NONE) end end *} lemma True_implies_equals: "(True ==> PROP P) ≡ PROP P" proof assume "True ==> PROP P" from this [OF TrueI] show "PROP P" . next assume "PROP P" then show "PROP P" . qed lemma ex_simps: "!!P Q. (EX x. P x & Q) = ((EX x. P x) & Q)" "!!P Q. (EX x. P & Q x) = (P & (EX x. Q x))" "!!P Q. (EX x. P x | Q) = ((EX x. P x) | Q)" "!!P Q. (EX x. P | Q x) = (P | (EX x. Q x))" "!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)" "!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))" -- {* Miniscoping: pushing in existential quantifiers. *} by (iprover | blast)+ lemma all_simps: "!!P Q. (ALL x. P x & Q) = ((ALL x. P x) & Q)" "!!P Q. (ALL x. P & Q x) = (P & (ALL x. Q x))" "!!P Q. (ALL x. P x | Q) = ((ALL x. P x) | Q)" "!!P Q. (ALL x. P | Q x) = (P | (ALL x. Q x))" "!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)" "!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))" -- {* Miniscoping: pushing in universal quantifiers. *} by (iprover | blast)+ lemmas [simp] = triv_forall_equality (*prunes params*) True_implies_equals (*prune asms `True'*) if_True if_False if_cancel if_eq_cancel imp_disjL (*In general it seems wrong to add distributive laws by default: they might cause exponential blow-up. But imp_disjL has been in for a while and cannot be removed without affecting existing proofs. Moreover, rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the grounds that it allows simplification of R in the two cases.*) conj_assoc disj_assoc de_Morgan_conj de_Morgan_disj imp_disj1 imp_disj2 not_imp disj_not1 not_all not_ex cases_simp the_eq_trivial the_sym_eq_trivial ex_simps all_simps simp_thms lemmas [cong] = imp_cong simp_implies_cong lemmas [split] = split_if ML {* val HOL_ss = @{simpset} *} text {* Simplifies x assuming c and y assuming ~c *} lemma if_cong: assumes "b = c" and "c ==> x = u" and "¬ c ==> y = v" shows "(if b then x else y) = (if c then u else v)" unfolding if_def using assms by simp text {* Prevents simplification of x and y: faster and allows the execution of functional programs. *} lemma if_weak_cong [cong]: assumes "b = c" shows "(if b then x else y) = (if c then x else y)" using assms by (rule arg_cong) text {* Prevents simplification of t: much faster *} lemma let_weak_cong: assumes "a = b" shows "(let x = a in t x) = (let x = b in t x)" using assms by (rule arg_cong) text {* To tidy up the result of a simproc. Only the RHS will be simplified. *} lemma eq_cong2: assumes "u = u'" shows "(t ≡ u) ≡ (t ≡ u')" using assms by simp lemma if_distrib: "f (if c then x else y) = (if c then f x else f y)" by simp text {* This lemma restricts the effect of the rewrite rule u=v to the left-hand side of an equality. Used in @{text "{Integ,Real}/simproc.ML"} *} lemma restrict_to_left: assumes "x = y" shows "(x = z) = (y = z)" using assms by simp subsubsection {* Generic cases and induction *} text {* Rule projections: *} ML {* structure ProjectRule = ProjectRuleFun ( val conjunct1 = @{thm conjunct1} val conjunct2 = @{thm conjunct2} val mp = @{thm mp} ) *} constdefs induct_forall where "induct_forall P == ∀x. P x" induct_implies where "induct_implies A B == A --> B" induct_equal where "induct_equal x y == x = y" induct_conj where "induct_conj A B == A ∧ B" lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (λx. P x))" by (unfold atomize_all induct_forall_def) lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)" by (unfold atomize_imp induct_implies_def) lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)" by (unfold atomize_eq induct_equal_def) lemma induct_conj_eq: "(A &&& B) == Trueprop (induct_conj A B)" by (unfold atomize_conj induct_conj_def) lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq lemmas induct_rulify [symmetric, standard] = induct_atomize lemmas induct_rulify_fallback = induct_forall_def induct_implies_def induct_equal_def induct_conj_def lemma induct_forall_conj: "induct_forall (λx. induct_conj (A x) (B x)) = induct_conj (induct_forall A) (induct_forall B)" by (unfold induct_forall_def induct_conj_def) iprover lemma induct_implies_conj: "induct_implies C (induct_conj A B) = induct_conj (induct_implies C A) (induct_implies C B)" by (unfold induct_implies_def induct_conj_def) iprover lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)" proof assume r: "induct_conj A B ==> PROP C" and A B show "PROP C" by (rule r) (simp add: induct_conj_def `A` `B`) next assume r: "A ==> B ==> PROP C" and "induct_conj A B" show "PROP C" by (rule r) (simp_all add: `induct_conj A B` [unfolded induct_conj_def]) qed lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry hide const induct_forall induct_implies induct_equal induct_conj text {* Method setup. *} ML {* structure Induct = InductFun ( val cases_default = @{thm case_split} val atomize = @{thms induct_atomize} val rulify = @{thms induct_rulify} val rulify_fallback = @{thms induct_rulify_fallback} ) *} setup Induct.setup use "~~/src/Tools/induct_tacs.ML" setup InductTacs.setup subsubsection {* Coherent logic *} ML {* structure Coherent = CoherentFun ( val atomize_elimL = @{thm atomize_elimL} val atomize_exL = @{thm atomize_exL} val atomize_conjL = @{thm atomize_conjL} val atomize_disjL = @{thm atomize_disjL} val operator_names = [@{const_name "op |"}, @{const_name "op &"}, @{const_name "Ex"}] ); *} setup Coherent.setup subsection {* Other simple lemmas and lemma duplicates *} lemma Let_0 [simp]: "Let 0 f = f 0" unfolding Let_def .. lemma Let_1 [simp]: "Let 1 f = f 1" unfolding Let_def .. lemma ex1_eq [iff]: "EX! x. x = t" "EX! x. t = x" by blast+ lemma choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))" apply (rule iffI) apply (rule_tac a = "%x. THE y. P x y" in ex1I) apply (fast dest!: theI') apply (fast intro: ext the1_equality [symmetric]) apply (erule ex1E) apply (rule allI) apply (rule ex1I) apply (erule spec) apply (erule_tac x = "%z. if z = x then y else f z" in allE) apply (erule impE) apply (rule allI) apply (case_tac "xa = x") apply (drule_tac [3] x = x in fun_cong, simp_all) done lemma mk_left_commute: fixes f (infix "⊗" 60) assumes a: "!!x y z. (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)" and c: "!!x y. x ⊗ y = y ⊗ x" shows "x ⊗ (y ⊗ z) = y ⊗ (x ⊗ z)" by (rule trans [OF trans [OF c a] arg_cong [OF c, of "f y"]]) lemmas eq_sym_conv = eq_commute lemma nnf_simps: "(¬(P ∧ Q)) = (¬ P ∨ ¬ Q)" "(¬ (P ∨ Q)) = (¬ P ∧ ¬Q)" "(P --> Q) = (¬P ∨ Q)" "(P = Q) = ((P ∧ Q) ∨ (¬P ∧ ¬ Q))" "(¬(P = Q)) = ((P ∧ ¬ Q) ∨ (¬P ∧ Q))" "(¬ ¬(P)) = P" by blast+ subsection {* Basic ML bindings *} ML {* val FalseE = @{thm FalseE} val Let_def = @{thm Let_def} val TrueI = @{thm TrueI} val allE = @{thm allE} val allI = @{thm allI} val all_dupE = @{thm all_dupE} val arg_cong = @{thm arg_cong} val box_equals = @{thm box_equals} val ccontr = @{thm ccontr} val classical = @{thm classical} val conjE = @{thm conjE} val conjI = @{thm conjI} val conjunct1 = @{thm conjunct1} val conjunct2 = @{thm conjunct2} val disjCI = @{thm disjCI} val disjE = @{thm disjE} val disjI1 = @{thm disjI1} val disjI2 = @{thm disjI2} val eq_reflection = @{thm eq_reflection} val ex1E = @{thm ex1E} val ex1I = @{thm ex1I} val ex1_implies_ex = @{thm ex1_implies_ex} val exE = @{thm exE} val exI = @{thm exI} val excluded_middle = @{thm excluded_middle} val ext = @{thm ext} val fun_cong = @{thm fun_cong} val iffD1 = @{thm iffD1} val iffD2 = @{thm iffD2} val iffI = @{thm iffI} val impE = @{thm impE} val impI = @{thm impI} val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq} val mp = @{thm mp} val notE = @{thm notE} val notI = @{thm notI} val not_all = @{thm not_all} val not_ex = @{thm not_ex} val not_iff = @{thm not_iff} val not_not = @{thm not_not} val not_sym = @{thm not_sym} val refl = @{thm refl} val rev_mp = @{thm rev_mp} val spec = @{thm spec} val ssubst = @{thm ssubst} val subst = @{thm subst} val sym = @{thm sym} val trans = @{thm trans} *} subsection {* Code generator basics -- see further theory @{text "Code_Setup"} *} text {* Equality *} class eq = fixes eq :: "'a => 'a => bool" assumes eq_equals: "eq x y <-> x = y" begin lemma eq: "eq = (op =)" by (rule ext eq_equals)+ lemma eq_refl: "eq x x <-> True" unfolding eq by rule+ end text {* Module setup *} use "Tools/recfun_codegen.ML" setup {* Code_ML.setup #> Code_Haskell.setup #> Nbe.setup #> Codegen.setup #> RecfunCodegen.setup *} subsection {* Nitpick hooks *} text {* This will be relocated once Nitpick is moved to HOL. *} ML {* structure Nitpick_Const_Def_Thms = NamedThmsFun ( val name = "nitpick_const_def" val description = "alternative definitions of constants as needed by Nitpick" ) structure Nitpick_Const_Simp_Thms = NamedThmsFun ( val name = "nitpick_const_simp" val description = "equational specification of constants as needed by Nitpick" ) structure Nitpick_Const_Psimp_Thms = NamedThmsFun ( val name = "nitpick_const_psimp" val description = "partial equational specification of constants as needed by Nitpick" ) structure Nitpick_Ind_Intro_Thms = NamedThmsFun ( val name = "nitpick_ind_intro" val description = "introduction rules for (co)inductive predicates as needed by Nitpick" ) *} setup {* Nitpick_Const_Def_Thms.setup #> Nitpick_Const_Simp_Thms.setup #> Nitpick_Const_Psimp_Thms.setup #> Nitpick_Ind_Intro_Thms.setup *} subsection {* Legacy tactics and ML bindings *} ML {* fun strip_tac i = REPEAT (resolve_tac [impI, allI] i); (* combination of (spec RS spec RS ...(j times) ... spec RS mp) *) local fun wrong_prem (Const ("All", _) $ (Abs (_, _, t))) = wrong_prem t | wrong_prem (Bound _) = true | wrong_prem _ = false; val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of); in fun smp i = funpow i (fn m => filter_right ([spec] RL m)) ([mp]); fun smp_tac j = EVERY'[dresolve_tac (smp j), atac]; end; val all_conj_distrib = thm "all_conj_distrib"; val all_simps = thms "all_simps"; val atomize_not = thm "atomize_not"; val case_split = thm "case_split"; val cases_simp = thm "cases_simp"; val choice_eq = thm "choice_eq" val cong = thm "cong" val conj_comms = thms "conj_comms"; val conj_cong = thm "conj_cong"; val de_Morgan_conj = thm "de_Morgan_conj"; val de_Morgan_disj = thm "de_Morgan_disj"; val disj_assoc = thm "disj_assoc"; val disj_comms = thms "disj_comms"; val disj_cong = thm "disj_cong"; val eq_ac = thms "eq_ac"; val eq_cong2 = thm "eq_cong2" val Eq_FalseI = thm "Eq_FalseI"; val Eq_TrueI = thm "Eq_TrueI"; val Ex1_def = thm "Ex1_def" val ex_disj_distrib = thm "ex_disj_distrib"; val ex_simps = thms "ex_simps"; val if_cancel = thm "if_cancel"; val if_eq_cancel = thm "if_eq_cancel"; val if_False = thm "if_False"; val iff_conv_conj_imp = thm "iff_conv_conj_imp"; val iff = thm "iff" val if_splits = thms "if_splits"; val if_True = thm "if_True"; val if_weak_cong = thm "if_weak_cong" val imp_all = thm "imp_all"; val imp_cong = thm "imp_cong"; val imp_conjL = thm "imp_conjL"; val imp_conjR = thm "imp_conjR"; val imp_conv_disj = thm "imp_conv_disj"; val simp_implies_def = thm "simp_implies_def"; val simp_thms = thms "simp_thms"; val split_if = thm "split_if"; val the1_equality = thm "the1_equality" val theI = thm "theI" val theI' = thm "theI'" val True_implies_equals = thm "True_implies_equals"; val nnf_conv = Simplifier.rewrite (HOL_basic_ss addsimps simp_thms @ @{thms "nnf_simps"}) *} end