Theory Quickcheck

Up to index of Isabelle/HOL

theory Quickcheck
imports Random Code_Evaluation Enum
uses Tools/Quickcheck/quickcheck_common.ML (Tools/Quickcheck/random_generators.ML)
(* Author: Florian Haftmann & Lukas Bulwahn, TU Muenchen *)

header {* A simple counterexample generator performing random testing *}

theory Quickcheck
imports Random Code_Evaluation Enum
uses
"Tools/Quickcheck/quickcheck_common.ML"
("Tools/Quickcheck/random_generators.ML")
begin


notation fcomp (infixl "o>" 60)
notation scomp (infixl "o->" 60)


subsection {* The @{text random} class *}

class random = typerep +
fixes random :: "code_numeral => Random.seed => ('a × (unit => term)) × Random.seed"



subsection {* Fundamental and numeric types*}

instantiation bool :: random
begin


definition
"random i = Random.range 2 o->
(λk. Pair (if k = 0 then Code_Evaluation.valtermify False else Code_Evaluation.valtermify True))"


instance ..

end

instantiation itself :: (typerep) random
begin


definition random_itself :: "code_numeral => Random.seed => ('a itself × (unit => term)) × Random.seed" where
"random_itself _ = Pair (Code_Evaluation.valtermify TYPE('a))"


instance ..

end

instantiation char :: random
begin


definition
"random _ = Random.select chars o-> (λc. Pair (c, λu. Code_Evaluation.term_of c))"


instance ..

end

instantiation String.literal :: random
begin


definition
"random _ = Pair (STR '''', λu. Code_Evaluation.term_of (STR ''''))"


instance ..

end

instantiation nat :: random
begin


definition random_nat :: "code_numeral => Random.seed => (nat × (unit => Code_Evaluation.term)) × Random.seed" where
"random_nat i = Random.range (i + 1) o-> (λk. Pair (
let n = Code_Numeral.nat_of k
in (n, λ_. Code_Evaluation.term_of n)))"


instance ..

end

instantiation int :: random
begin


definition
"random i = Random.range (2 * i + 1) o-> (λk. Pair (
let j = (if k ≥ i then Code_Numeral.int_of (k - i) else - Code_Numeral.int_of (i - k))
in (j, λ_. Code_Evaluation.term_of j)))"


instance ..

end


subsection {* Complex generators *}

text {* Towards @{typ "'a => 'b"} *}

axiomatization random_fun_aux :: "typerep => typerep => ('a => 'a => bool) => ('a => term)
=> (Random.seed => ('b × (unit => term)) × Random.seed) => (Random.seed => Random.seed × Random.seed)
=> Random.seed => (('a => 'b) × (unit => term)) × Random.seed"


definition random_fun_lift :: "(Random.seed => ('b × (unit => term)) × Random.seed)
=> Random.seed => (('a::term_of => 'b::typerep) × (unit => term)) × Random.seed"
where
"random_fun_lift f = random_fun_aux TYPEREP('a) TYPEREP('b) (op =) Code_Evaluation.term_of f Random.split_seed"


instantiation "fun" :: ("{equal, term_of}", random) random
begin


definition random_fun :: "code_numeral => Random.seed => (('a => 'b) × (unit => term)) × Random.seed" where
"random i = random_fun_lift (random i)"


instance ..

end

text {* Towards type copies and datatypes *}

definition collapse :: "('a => ('a => 'b × 'a) × 'a) => 'a => 'b × 'a" where
"collapse f = (f o-> id)"


definition beyond :: "code_numeral => code_numeral => code_numeral" where
"beyond k l = (if l > k then l else 0)"


lemma beyond_zero:
"beyond k 0 = 0"

by (simp add: beyond_def)

lemma random_aux_rec:
fixes random_aux :: "code_numeral => 'a"
assumes "random_aux 0 = rhs 0"
and "!!k. random_aux (Suc_code_numeral k) = rhs (Suc_code_numeral k)"
shows "random_aux k = rhs k"

using assms by (rule code_numeral.induct)

use "Tools/Quickcheck/random_generators.ML"
setup Random_Generators.setup


subsection {* Code setup *}

code_const random_fun_aux (Quickcheck "Random'_Generators.random'_fun")
-- {* With enough criminal energy this can be abused to derive @{prop False};
for this reason we use a distinguished target @{text Quickcheck}
not spoiling the regular trusted code generation *}


code_reserved Quickcheck Random_Generators

no_notation fcomp (infixl "o>" 60)
no_notation scomp (infixl "o->" 60)


subsection {* The Random-Predicate Monad *}

fun iter' ::
"'a itself => code_numeral => code_numeral => code_numeral * code_numeral => ('a::random) Predicate.pred"
where
"iter' T nrandom sz seed = (if nrandom = 0 then bot_class.bot else
let ((x, _), seed') = random sz seed
in Predicate.Seq (%u. Predicate.Insert x (iter' T (nrandom - 1) sz seed')))"


definition iter :: "code_numeral => code_numeral => code_numeral * code_numeral => ('a::random) Predicate.pred"
where
"iter nrandom sz seed = iter' (TYPE('a)) nrandom sz seed"


lemma [code]:
"iter nrandom sz seed = (if nrandom = 0 then bot_class.bot else
let ((x, _), seed') = random sz seed
in Predicate.Seq (%u. Predicate.Insert x (iter (nrandom - 1) sz seed')))"

unfolding iter_def iter'.simps[of _ nrandom] ..

type_synonym 'a randompred = "Random.seed => ('a Predicate.pred × Random.seed)"

definition empty :: "'a randompred"
where "empty = Pair (bot_class.bot)"


definition single :: "'a => 'a randompred"
where "single x = Pair (Predicate.single x)"


definition bind :: "'a randompred => ('a => 'b randompred) => 'b randompred"
where
"bind R f = (λs. let
(P, s') = R s;
(s1, s2) = Random.split_seed s'
in (Predicate.bind P (%a. fst (f a s1)), s2))"


definition union :: "'a randompred => 'a randompred => 'a randompred"
where
"union R1 R2 = (λs. let
(P1, s') = R1 s; (P2, s'') = R2 s'
in (sup_class.sup P1 P2, s''))"


definition if_randompred :: "bool => unit randompred"
where
"if_randompred b = (if b then single () else empty)"


definition iterate_upto :: "(code_numeral => 'a) => code_numeral => code_numeral => 'a randompred"
where
"iterate_upto f n m = Pair (Code_Numeral.iterate_upto f n m)"


definition not_randompred :: "unit randompred => unit randompred"
where
"not_randompred P = (λs. let
(P', s') = P s
in if Predicate.eval P' () then (Orderings.bot, s') else (Predicate.single (), s'))"


definition Random :: "(Random.seed => ('a × (unit => term)) × Random.seed) => 'a randompred"
where "Random g = scomp g (Pair o (Predicate.single o fst))"


definition map :: "('a => 'b) => ('a randompred => 'b randompred)"
where "map f P = bind P (single o f)"


hide_fact (open) iter'.simps iter_def empty_def single_def bind_def union_def if_randompred_def iterate_upto_def not_randompred_def Random_def map_def
hide_type (open) randompred
hide_const (open) random collapse beyond random_fun_aux random_fun_lift
iter' iter empty single bind union if_randompred iterate_upto not_randompred Random map


end